51
|
Abstract
INTRODUCTION Migraine is the most common of all neurological disorders. A breakthrough in migraine treatment emerged in the early nineties with the introduction of 5-HT1B/D receptor agonists called triptans. Triptans are used as the standard of care for acute migraine; however, they have significant limitations such as incomplete and inconsistent pain relief, high rates of headache recurrence, class- specific side effects and cardiovascular contraindications. First- and second-generation calcitonin gene-related peptide (CGRP) receptor antagonists, namely gepants, is a class of drugs primarily developed for the acute treatment of migraine. CGRP is the most evaluated target for migraine treatments that are in development. AREAS COVERED This article reviews the available data for first- and second-generation CGRP receptor antagonists, the role of CGRPs in human physiology and migraine pathophysiology and the possible mechanism of action and safety of CGRP-targeted drugs. EXPERT OPINION Available data suggest that second generation of gepants has clinical efficacy similar to triptans and lasmiditan (5-HT1F receptor agonist) and has improved tolerability. Future studies will assess their safety, especially in specific populations such as patients with cardiovascular disease and pregnant women.
Collapse
Affiliation(s)
- Andrea Negro
- a Department of Clinical and Molecular Medicine , Sapienza University , Rome , Italy.,b Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- a Department of Clinical and Molecular Medicine , Sapienza University , Rome , Italy.,b Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
52
|
Goadsby PJ. Primary headache disorders: Five new things. Neurol Clin Pract 2019; 9:233-240. [PMID: 31341711 PMCID: PMC6615655 DOI: 10.1212/cpj.0000000000000654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Purpose of review To review 5 new areas in primary headache disorders, especially migraine and cluster headache. Recent findings Calcitonin gene-related peptide (CGRP) receptor antagonists (gepants-rimegepant and ubrogepant) and serotonin 5-HT1F receptor agonists (ditans-lasmiditan) have completed phase 3 clinical trials and will soon offer novel, effective, well-tolerated nonvasoconstrictor options to treat acute migraine. CGRP preventive treatment is being revolutionized after the licensing of 3 monoclonal antibodies (MABs), erenumab, fremanezumab, and galcanezumab, with eptinezumab to follow, especially designed for migraine; they are effective and well tolerated. For patients seeking a nondrug therapy, neuromodulation approaches, single-pulse transcranial magnetic stimulation, noninvasive vagus nerve stimulation (nVNS), and external trigeminal nerve stimulation, represent licensed, well-tolerated approaches to migraine treatment. For the acute treatment of episodic cluster headache, nVNS is effective, well tolerated, and licensed; nVNS is effective and well tolerated in preventive treatment of cluster headache. The CGRP MAB galcanezumab was effective and well tolerated in a placebo-controlled trial in the preventive treatment of episodic cluster headache. Sphenopalatine ganglion stimulation has been shown to be effective and well tolerated in 2 randomized sham-controlled studies on chronic cluster headache. Understanding the premonitory (prodromal) phase of migraine during which patients experience symptoms such as yawning, tiredness, cognitive dysfunction, and food cravings may help explain apparent migraine triggers in some patients, thus offering better self-management. Summary Headache medicine has made remarkable strides, particularly in understanding migraine and cluster headache in the past 5 years. For the most common reason to visit a neurologist, therapeutic advances offer patients reduced disability and neurologists a rewarding, key role in improving the lives of those with migraine and cluster headache.
Collapse
Affiliation(s)
- Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College London, UK; and Department of Neurology, University of California, San Francisco
| |
Collapse
|
53
|
|
54
|
Hargreaves R, Olesen J. Calcitonin Gene-Related Peptide Modulators - The History and Renaissance of a New Migraine Drug Class. Headache 2019; 59:951-970. [PMID: 31020659 DOI: 10.1111/head.13510] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Abstract
Several lines of evidence pointed to an important role for CGRP in migraine. These included the anatomic colocalization of CGRP and its receptor in sensory fibers innervating pain-producing meningeal blood vessels, its release by trigeminal stimulation, the observation of elevated CGRP in the cranial circulation during migraine with normalization concomitant with headache relief by sumatriptan, and translational studies with intravenous (IV) CGRP that evoked migraine only in migraineurs. The development of small molecule CGRP receptor antagonists (CGRP-RAs) that showed clinical antimigraine efficacy acutely and prophylactically in randomized placebo-controlled clinical trials subsequently gave definitive pharmacological proof of the importance of CGRP in migraine. More recently, CGRP target engagement imaging studies using a CGRP receptor PET ligand [11 C]MK-4232 demonstrated that there was no brain CGRP receptor occupancy at clinically effective antimigraine doses of telcagepant, a prototypic CGRP-RA. Taken together, these data indicated that (1) the therapeutic site of action of the CGRP-RAs was peripheral not central; (2) that IV CGRP had most likely evoked migraine through an action at sites outside the blood-brain barrier; and (3) that migraine pain was therefore, at least in part, peripheral in origin. The evolution of CGRP migraine science gave impetus to the development of peripherally acting drugs that could modulate CGRP chronically to prevent frequent episodic and chronic migraine. Large molecule biologic antibody (mAb) approaches that are given subcutaneously to neutralize circulating CGRP peptide (fremanezumab, galcanezumab) or block CGRP receptors (erenumab) have shown consistent efficacy and tolerability in multicenter migraine prevention trials and are now approved for clinical use. Eptinezumab, a CGRP neutralizing antibody given IV, shows promise in late stage clinical development. Recently, orally administered next-generation small molecule CGRP-RAs have been shown to have safety and efficacy in acute treatment (ubrogepant and rimegepant) and prevention (atogepant) of migraine, giving additional CGRP-based therapeutic options for migraine patients.
Collapse
Affiliation(s)
- Richard Hargreaves
- Center for Pain and the Brain, Harvard Medical School and Department of Anesthesia, Boston Children's Hospital, Boston, MA, USA
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
55
|
Diener HC, Tassorelli C, Dodick DW, Silberstein SD, Lipton RB, Ashina M, Becker WJ, Ferrari MD, Goadsby PJ, Pozo-Rosich P, Wang SJ, Mandrekar J. Guidelines of the International Headache Society for controlled trials of acute treatment of migraine attacks in adults: Fourth edition. Cephalalgia 2019; 39:687-710. [PMID: 30806518 PMCID: PMC6501455 DOI: 10.1177/0333102419828967] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The quality of clinical trials is an essential part of the evidence base for the treatment of headache disorders. In 1991, the International Headache Society Clinical Trials Standing Committee developed and published the first edition of the Guidelines for controlled trials of drugs in migraine. Scientific and clinical developments in headache medicine led to second and third editions in 2000 and 2012, respectively. The current, fourth edition of the Guidelines retains the structure and much content from previous editions. However, it also incorporates evidence from clinical trials published after the third edition as well as feedback from meetings with regulators, pharmaceutical and device manufacturers, and patient associations. Its final form reflects the collective expertise and judgement of the Committee. These updated recommendations and commentary are intended to meet the Society's continuing objective of providing a contemporary, standardized, and evidence-based approach to the conduct and reporting of randomised controlled trials for the acute treatment of migraine attacks.
Collapse
Affiliation(s)
| | - Cristina Tassorelli
- 2 Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,3 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - David W Dodick
- 4 Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Richard B Lipton
- 6 Montefiore Headache Center, Department of Neurology and Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Messoud Ashina
- 7 Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Werner J Becker
- 8 Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,9 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michel D Ferrari
- 10 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J Goadsby
- 11 National Institute for Health Research Wellcome Trust King's Clinical Research Facility, King's College London, London, England
| | - Patricia Pozo-Rosich
- 12 Headache Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shuu-Jiun Wang
- 13 Headache & Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,14 Neurological Institute, Taipei Veterans General Hospital and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jay Mandrekar
- 15 Department of Health Sciences Research, Mayo Clinic Rochester, MN, USA
| | | |
Collapse
|
56
|
Lambru G, Andreou AP, Guglielmetti M, Martelletti P. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs 2018; 23:301-318. [PMID: 30484333 DOI: 10.1080/14728214.2018.1552939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Migraine is a very frequent and disabling neurological disorder. The current treatment options are old, generally poorly tolerated and not migraine-specific, reflecting the low priority of migraine research and highlighting the vast unmet need in its management. Areas covered: Advancement in the understanding of migraine pathophysiological mechanisms and identification of novel potentially meaningful targets have resulted in a multitude of emerging acute and preventive treatments. Here we review the known putative migraine pathophysiological mechanisms in order to understand the rationale of the most promising novel treatments targeting the Calcitonin-Gene-Related Peptide receptor and ligand and the 5 hydroxytryptamine (5-HT)1F receptor. Key findings on the phase II and phase III clinical trials on these treatments will be summarized. Furthermore, a critical analysis on failed trials of potentially meaningful targets such the nitric oxide and the orexinergic pathways will be conducted. Future perspective will be outlined. Expert opinion: The recent approval of Erenumab and Fremanezumab is a major milestone in the therapy of migraine since the approval of triptans. Several more studies are needed to fully understand the clinical potential, long-term safety and cost-effectiveness of these therapies. This paramount achievement should stimulate the development of further research in the migraine field.
Collapse
Affiliation(s)
- Giorgio Lambru
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Anna P Andreou
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Martina Guglielmetti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
57
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
58
|
Rea BJ, Wattiez AS, Waite JS, Castonguay WC, Schmidt CM, Fairbanks AM, Robertson BR, Brown CJ, Mason BN, Moldovan-Loomis MC, Garcia-Martinez LF, Poolman P, Ledolter J, Kardon RH, Sowers LP, Russo AF. Peripherally administered calcitonin gene-related peptide induces spontaneous pain in mice: implications for migraine. Pain 2018; 159:2306-2317. [PMID: 29994995 PMCID: PMC6193822 DOI: 10.1097/j.pain.0000000000001337] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Migraine is the third most common disease in the world (behind dental caries and tension-type headache) with an estimated global prevalence of 15%, yet its etiology remains poorly understood. Recent clinical trials have heralded the potential of therapeutic antibodies that block the actions of the neuropeptide calcitonin gene-related peptide (CGRP) or its receptor to prevent migraine. Calcitonin gene-related peptide is believed to contribute to trigeminal nerve hypersensitivity and photosensitivity in migraine, but a direct role in pain associated with migraine has not been established. In this study, we report that peripherally administered CGRP can act in a light-independent manner to produce spontaneous pain in mice that is manifested as a facial grimace. As an objective validation of the orbital tightening action unit of the grimace response, we developed a squint assay using a video-based measurement of the eyelid fissure, which confirmed a significant squint response after CGRP injection, both in complete darkness and very bright light. These indicators of discomfort were completely blocked by preadministration of a monoclonal anti-CGRP-blocking antibody. However, the nonsteroidal anti-inflammatory drug meloxicam failed to block the effect of CGRP. Interestingly, an apparent sex-specific response to treatment was observed with the antimigraine drug sumatriptan partially blocking the CGRP response in male, but not female mice. These results demonstrate that CGRP can induce spontaneous pain, even in the absence of light, and that the squint response provides an objective biomarker for CGRP-induced pain that is translatable to humans.
Collapse
Affiliation(s)
- Brandon J Rea
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
| | - Jayme S Waite
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William C Castonguay
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chantel M Schmidt
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aaron M Fairbanks
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Bennett R Robertson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cameron J Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Bianca N Mason
- Department of Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | | | | | - Pieter Poolman
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Johannes Ledolter
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Statistics and Actuarial Sciences, Tippie College of Business, University of Iowa, Iowa City, IA, United States
| | - Randy H Kardon
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Levi P Sowers
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
59
|
Yu ES, Priyadharsini S S Y, Venkatesan T. Migraine, Cyclic Vomiting Syndrome, and Other Gastrointestinal Disorders. ACTA ACUST UNITED AC 2018; 16:511-527. [PMID: 30361855 DOI: 10.1007/s11938-018-0202-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cyclic vomiting syndrome (CVS) is a chronic functional gastrointestinal disorder characterized by episodic nausea and vomiting and is diagnosed using Rome IV criteria. CVS is being recognized more frequently in adults with a prevalence of 2%. It is associated with several functional disorders like autonomic dysfunction, anxiety, and depression, but the strongest association is with migraine. We will elucidate the close relationship between migraine and CVS and briefly discuss its association with other gastrointestinal disorders. RECENT FINDINGS We highlight similarities in pathophysiology, clinical presentation, and response to medications between CVS and migraine (tricyclic antidepressants, triptans, antiepileptics). We also discuss novel therapies like CGRP inhibitors which are effective in migraine and have potential for adaptation in patients with CVS. Using migraine as a template should enable investigators to elucidate the mechanisms underlying this disorder, develop novel therapies, and direct future research in CVS.
Collapse
Affiliation(s)
- Elliot S Yu
- Department of Internal Medicine, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yasodara Priyadharsini S S
- Division of Gastroenterology and Hepatology, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thangam Venkatesan
- Division of Gastroenterology and Hepatology, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
60
|
Abstract
Primary headache disorders, such as migraine and cluster headache, are common and often debilitating. When preventive therapy is needed, several oral medications are used. Patients tend to have poor adherence and persistence on their preventive therapy. The introduction of treatments blocking calcitonin gene-related peptide (CGRP) is anticipated to begin a new era in migraine preventive treatment. In addition, non-triptan serotonin receptor agonists, newer delivery systems for older therapies, and innovative devices represent other exciting advances in acute and preventive migraine and cluster treatment and shall also be discussed in this review.
Collapse
Affiliation(s)
- Michail Vikelis
- Glyfada Headache Clinic, No. 8 Lazaraki Str., 16675, Glyfada, Greece.
- Mediterraneo Hospital Headache Clinic, Glyfada, Greece.
| | | | | |
Collapse
|
61
|
Taylor FR. Antigens and Antibodies in Disease With Specifics About CGRP Immunology. Headache 2018; 58 Suppl 3:230-237. [PMID: 30187471 DOI: 10.1111/head.13409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Growth in knowledge about calcitonin gene-related peptide (CGRP) in the pathophysiology of migraine brought CGRP antagonism to headache medicine. Failures in development of small molecule CGRP receptor antagonists and increasing knowledge and use of monoclonal antibodies (mAbs) in medicine led to the breakthrough development of large molecule anti-CGRP mAbs: eptinezumab, erenumab, fremanezumab, and galcanezumab. This specifics about CGRP immunology aims to outline: (1) knowledge needed for CGRP antagonism and (2) developmental issues of specific CGRP antagonists for provider use. This clinically oriented review documents IgG structure and function; state of the art of monoclonal IgG production and ligand-antigen-antibodies in migraine therapeutics contributing to immunogenic risks and off-target toxicities. Specifics to CGRP ligand, receptor, antagonism, and molecules, small and large, complete this review. Completion will facilitate assessment of the similarities, differences, and application of the forthcoming anti-CGRP receptor and ligand antagonists for patients.
Collapse
Affiliation(s)
- Frederick R Taylor
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
62
|
Cohen-Barak O, Weiss S, Rasamoelisolo M, Faulhaber N, Yeung PP, Loupe PS, Yoon E, Gandhi MD, Spiegelstein O, Aycardi E. A phase 1 study to assess the pharmacokinetics, safety, and tolerability of fremanezumab doses (225 mg, 675 mg and 900 mg) in Japanese and Caucasian healthy subjects. Cephalalgia 2018; 38:1960-1971. [PMID: 29667896 DOI: 10.1177/0333102418771376] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The primary and secondary objectives of this phase 1 study were to evaluate the pharmacokinetic profile, safety, and immunogenicity of fremanezumab subcutaneous (sc) doses tested in phase 2 and 3 trials (225 mg, 675 mg and 900 mg) following single administration in Japanese (n = 32) and Caucasian (n = 32) healthy subjects. METHODS Japanese and matched Caucasian healthy subjects were enrolled into one of four cohorts and were randomly assigned to one of four treatments: 225, 675, or 900 mg fremanezumab, or placebo. Pharmacokinetic and immunogenicity sampling, and safety and tolerability assessments occurred at one inpatient visit and 12 ambulatory visits during the 36-week study. RESULTS Pharmacokinetic analyses included those randomized to fremanezumab (n = 24 for each ethnic group) and safety analyses included all subjects enrolled in the study (n = 32 for each ethnic group). Fremanezumab concentration-time profiles and pharmacokinetic parameters per dose were similar for Japanese and Caucasians at all dose levels. Geometric mean ratios (GMRs) for Cmax for Japanese to Caucasian subjects were 0.91, 1.04 and 1.14 for the 225 mg, 675 mg and 900 mg fremanezumab doses. GMRs for AUC0-inf were 0.96, 1.09, and 0.98, respectively. Median Tmax (range 5-11 days) and mean half-lives (range 31-39 days) were similar across doses for both ethnicities. Most frequently occurring adverse events were injection site reactions, abdominal pain, headache, upper respiratory tract infection, constipation and nasopharyngitis. There was no development of anti-drug-antibodies and no clinically meaningful changes in laboratory findings. CONCLUSION The results of the pharmacokinetic exposure parameters and safety measures were similar for Japanese and Caucasians and support the once monthly and once quarterly sc injections of fremanezumab.
Collapse
Affiliation(s)
- Orit Cohen-Barak
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | - Sivan Weiss
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | | | - Nicola Faulhaber
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | - Paul P Yeung
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | - Pippa S Loupe
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | - Esther Yoon
- 2 PAREXEL International, Los Angeles, CA, USA
| | | | - Ofer Spiegelstein
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| | - Ernesto Aycardi
- 1 Global Research and Development, Teva Pharmaceuticals, Inc., Netanya, Israel
| |
Collapse
|
63
|
Abstract
Background A better understanding of the mechanisms underlying the migraine attack has reinforced the concept that migraine is a complex brain disease, and has paved the way for the development of new migraine specific acute treatments. In recent years, targeting the calcitonin gene-related peptide and its receptors has been one of the most promising pharmacological strategies for both acute and preventive treatment of migraine. Findings Randomized double-blind placebo-controlled trials have demonstrated the superiority of small molecule calcitonin gene-related peptide receptor antagonists (gepants) over placebo in treating acute migraine attacks measured as the two-hour pain free endpoint. Gepants also improved migraine associated symptoms, such as nausea, photophobia and phonophobia. Two of the class have had their development stopped because of hepatotoxicity, which is emerging as being due to metabolites. Gepants have a good tolerability and can be safely used in patients with stable cardiovascular disease. Conclusion Exciting results have been obtained targeting the calcitonin gene-related peptide pathway to abort acute migraine attacks, thus reinforcing the relevance of mechanism-based treatments specific for migraine.
Collapse
Affiliation(s)
- Roberta Messina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Peter J Goadsby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
64
|
Abstract
Migraine is a highly prevalent, severe, and disabling neurological condition with a significant unmet need for effective acute therapies. Patients (~50%) are dissatisfied with their currently available therapies. Calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide involved in the pathophysiology of migraines. As reviewed in this manuscript, a number of small molecule antagonists of the CGRP receptor have been developed for migraine therapy. Incredibly, the majority of the clinical trials conducted have proven positive, demonstrating the importance of this signalling pathway in migraine. Unfortunately, a number of these molecules raised liver toxicity concerns when used daily for as little as 7 days resulting in their discontinuation. Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant). Further, these proofs of principle studies identifying CGRP as a viable clinical target have led to the development of several CGRP or CGRP receptor-targeted monoclonal antibodies that continue to show good clinical efficacy.
Collapse
Affiliation(s)
- Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, UK.
| | - Peter J Goadsby
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, UK
| |
Collapse
|
65
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
66
|
Falkenberg K, Dunga BÓÁ, Guo S, Ashina M, Olesen J. Cilostazol induced migraine does not respond to sumatriptan in a double blind trial. J Headache Pain 2018; 19:11. [PMID: 29396788 PMCID: PMC5796931 DOI: 10.1186/s10194-018-0841-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cilostazol is an inhibitor of phosphodiesterase 3 and thus causes accumulation of cAMP. It induces migraine-like attacks in migraine patients. Whether the cilostazol model responds to sumatriptan in migraine patients and therefore is valid for testing of future anti-migraine medications has never been investigated. METHODS In a cross-over study, 30 patients received cilostazol (200 mg p.o.) on two separate days each day followed by oral self-administered placebo or sumatriptan 50 mg. We recorded headache characteristics and associated symptoms using a questionnaire. The 30 participants were asked to subsequently treat their spontaneous attacks with sumatriptan (50 mg) or placebo in a double-blind cross-over design and 15 participants did so. RESULTS Cilostazol induced headache with some migraine characteristics in all participants; 18 patients on the sumatriptan day and 19 patients on the placebo day fulfilled criteria for a migraine-like attack. The difference in median headache intensity between sumatriptan and placebo at 2 h was not significant (p = 0.09), but it was at 4 h (p = 0.017). During spontaneous attacks, the difference between placebo and sumatriptan was not significant at 2 h (p = 0.26), but it was highly significant at 4 h (p = 0.006). CONCLUSION The cilostazol model in migraine patients could not be validated by a sufficient sumatriptan response. The model may perhaps respond to new drugs that act intracellularly or directly on ion channels. TRIAL REGISTRATION The study is registered on clinicaltrials.gov ( NCT02486276 ).
Collapse
Affiliation(s)
- Katrine Falkenberg
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Copenhagen, DK-2600, Glostrup, Denmark
| | - Bára Óladóttir Á Dunga
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Copenhagen, DK-2600, Glostrup, Denmark
| | - Song Guo
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Copenhagen, DK-2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Copenhagen, DK-2600, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Copenhagen, DK-2600, Glostrup, Denmark.
| |
Collapse
|
67
|
Fischer MJM, Schmidt J, Koulchitsky S, Klussmann S, Vater A, Messlinger K. Effect of a calcitonin gene-related peptide-binding L-RNA aptamer on neuronal activity in the rat spinal trigeminal nucleus. J Headache Pain 2018; 19:3. [PMID: 29335794 PMCID: PMC5768576 DOI: 10.1186/s10194-018-0832-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) plays a major role in the pathogenesis of migraine and other primary headaches. Spinal trigeminal neurons integrate nociceptive afferent input from trigeminal tissues including intracranial afferents, and their activity is thought to reflect facial pain and headache in man. CGRP receptor inhibitors and anti-CGRP antibodies have been demonstrated to be therapeutically effective in migraine. In parallel, CGRP receptor inhibition has been shown to lower spinal trigeminal neuron activity in animal models of meningeal nociception. Methods In a rat model of meningeal nociception, single cell activity of neurons in the spinal trigeminal nucleus with meningeal afferent input was recorded to test a further pharmacological approach, scavenging CGRP with a CGRP-binding l-RNA oligonucleotide, the l-aptamer NOX-C89. Cumulative ascending doses of NOX-C89 were intravenously infused. Results Spontaneous activity of spinal trigeminal neurons did not change after 0.05 mg/kg NOX-C89, however, after additional infusion of 0.5 mg/kg and 5 mg/kg NOX-C89, spontaneous activity was dose-dependently reduced. Identical doses of a control l-aptamer had no effect. This pharmacological effect of NOX-C89 was observed 10–25 min after infusion, but no difference was detected in the period 0–5 min. For comparison, the previously investigated CGRP receptor antagonist olcegepant had reduced activity within 5 min after infusion. Alongside the reduced spontaneous activity, after infusion of NOX-C89 the heat-induced neuronal activity was abolished. Conclusions Scavenging CGRP by mirror-image RNA aptamers provides further evidence that this approach can be used to control spinal trigeminal activity.
Collapse
Affiliation(s)
- Michael J M Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Universitätstrasse 17, D-91054, Erlangen, Germany.,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jakob Schmidt
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Universitätstrasse 17, D-91054, Erlangen, Germany
| | - Stanislav Koulchitsky
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Universitätstrasse 17, D-91054, Erlangen, Germany.,Department of Pharmacology, University of Liège, Liège, Belgium
| | | | | | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Universitätstrasse 17, D-91054, Erlangen, Germany.
| |
Collapse
|
68
|
González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, Villalón CM. Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin Drug Metab Toxicol 2018; 14:25-41. [PMID: 29226741 DOI: 10.1080/17425255.2018.1416097] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Migraine is a neurovascular disorder. Current acute specific antimigraine pharmacotherapies target trigeminovascular 5-HT1B/1D, 5-HT1F and CGRP receptors but, unfortunately, they induce some cardiovascular and central side effects that lead to poor treatment adherence/compliance. Therefore, new antimigraine drugs are being explored. Areas covered: This review considers the adverse (or potential) side effects produced by current and prospective antimigraine drugs, including medication overuse headache (MOH) produced by ergots and triptans, the side effects observed in clinical trials for the new gepants and CGRP antibodies, and a section discussing the potential effects resulting from disruption of the cardiovascular CGRPergic neurotransmission. Expert opinion: The last decades have witnessed remarkable developments in antimigraine therapy, which includes acute (e.g. triptans) and prophylactic (e.g. β-adrenoceptor blockers) antimigraine drugs. Indeed, the triptans represent a considerable advance, but their side effects (including nausea, dizziness and coronary vasoconstriction) preclude some patients from using triptans. This has led to the development of the ditans (5-HT1F receptor agonists), the gepants (CGRP receptor antagonists) and the monoclonal antibodies against CGRP or its receptor. The latter drugs represent a new hope in the antimigraine armamentarium, but as CGRP plays a role in cardiovascular homeostasis, the potential for adverse cardiovascular side effects remains latent.
Collapse
Affiliation(s)
| | - Bruno A Marichal-Cancino
- b Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes , Ciudad Universitaria , Aguascalientes , México
| | - Antoinette MaassenVanDenBrink
- c Division of Vascular Medicine and Pharmacology, Department of Internal Medicine , Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Carlos M Villalón
- d Departamento de Farmacobiología , Cinvestav-Coapa , Ciudad de México , México
| |
Collapse
|
69
|
Farajdokht F, Mohaddes G, Shanehbandi D, Karimi P, Babri S. Ghrelin attenuated hyperalgesia induced by chronic nitroglycerin: CGRP and TRPV1 as targets for migraine management. Cephalalgia 2017; 38:1716-1730. [DOI: 10.1177/0333102417748563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background According to the neurovascular theory of migraine, activation of the trigeminovascular system contributes to the development of migraine. This study examined the effects of chronic intraperitoneal ghrelin (150 µg/kg) treatment on the development of chronic migraine induced by intermittent injection of nitroglycerin 10 mg/kg. Methods Baseline and post-drug (2 h following nitroglycerin injection) mechanical and thermal sensitivity were assessed by von Frey hair and tail immersion tests, respectively on days 1, 3, 5, 7, 9 and 11. Moreover, we investigated the effect of ghrelin treatment on nitroglycerin-induced aversive behavior by using a two-chamber conditioned place aversion paradigm. At the end of behavioral testing, on day 11, animals were sacrificed and plasma concentration of calcitonin gene-related peptide was measured using a rat-specific enzyme-linked immunosorbent assay kit. Also, real time polymerase chain reaction was used to quantify mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid 1 in the trigeminal ganglion. Results Our results indicated that nitroglycerin activated the trigeminovascular system, which was reflected by mechanical and thermal hypersensitivity and elevation of mRNA expression of calcitonin gene-related peptide and transient receptor potential vanilloid-1, as migraine markers, and plasma calcitonin gene-related peptide levels. Moreover, chronic nitroglycerin injection induced conditioned place aversion and body weight loss. Nevertheless, ghrelin modulated nitroglycerin-triggered changes in transient receptor potential vanilloid-1 and calcitonin gene-related peptide expression, and mitigated nitroglycerin-induced hyperalgesia. Conclusion These results provide the first convincing evidence that ghrelin has a modulating effect on central sensitization induced by chronic intermittent nitroglycerin, and its antinociceptive effect may be related to a reduction of these factors in the trigeminal ganglion.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
70
|
Hou M, Xing H, Cai Y, Li B, Wang X, Li P, Hu X, Chen J. The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. J Headache Pain 2017; 18:42. [PMID: 28389966 PMCID: PMC5383797 DOI: 10.1186/s10194-017-0750-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Migraine has been recognized as one of the leading causes of disability in the 2013 Global Burden of Disease Study and seriously affects the quality of patients' life, current treatment options are not ideal. Monoclonal antibodies to calcitonin gene-related peptide and its receptor (CGRP-mAbs) appear more promising for migraine because of considerably better effect and safety profiles. The objective of this study is to systematically assess the clinical efficacy and safety of CGRP-mAbs for migraine therapy. METHODS A systematic literature search in PubMed, Cochrane Library and Baidu Scholar was performed to identify randomized controlled trials (RCTs), which compared the effect and safety of CGRP-mAbs with placebo on migraine. Regarding the efficacy, the reduction of monthly migraine days from baseline to weeks 1-4, 5-8, and 9-12; responder rates were extracted as the outcome measures of the effects of CGRP-mAbs. Regarding the safety, total adverse events, the main adverse events, and other adverse events were evaluated. RESULTS We found significant reduction of monthly migraine days in CGRP-mAbs vs. placebo (weeks 1-4: SMD -0.49, 95% CI -0.61 to -0.36; weeks 5-8: SMD -0.43, 95% CI -0.56 to -0.30; weeks 9-12: SMD -0.37, 95% CI -0.49 to -0.24). 50% and 75% responder rates (OR 2.59, 95% CI 1.99 to 3.37; and OR 2.91, 95% CI 2.06 to 4.10) were significantly increased compared with placebo. There was no significant difference in total adverse events (OR 1.17, 95% CI 0.91 to 1.51), and the main adverse events including upper respiratory tract infection (OR 1.44, 95% CI 0.82 to 2.55), nasopharyngitis (OR 0.59, 95% CI 0.30 to 1.16), nausea (OR 0.61, 95% CI 0.29 to 1.32), injection-site pain (OR 1.73, 95% CI 0.95 to 3.16) and back pain (OR 0.97, 95% CI 0.49 to 1.90) were not obviously changed compared with placebo control, but the results showed significant increase of dizziness in CGRP-mAbs vs. placebo (OR 3.22, 95% CI 1.09 to 9.45). CONCLUSIONS This meta-analysis suggests that CGRP-mAbs are effective in anti-migraine therapy with few adverse reactions, but more and larger sample-size RCTs are required to verify the current findings.
Collapse
Affiliation(s)
- Min Hou
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Bin Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Pan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Xiaolin Hu
- China Pharmacy Publishing House, Chongqing, 500000, People's Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
71
|
Khan S, Olesen A, Ashina M. CGRP, a target for preventive therapy in migraine and cluster headache: Systematic review of clinical data. Cephalalgia 2017; 39:374-389. [DOI: 10.1177/0333102417741297] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Migraine and cluster headache are challenging to manage, with no tailored preventive medications available. Targeting the calcitonin gene-related peptide (CGRP) pathway to treat these headaches may be the first focused therapeutic option to date, with the potential for promising efficacy. Methods We systematically searched PubMed and clinicaltrials.gov for randomized controlled trials investigating the preventive potential of monoclonal antibodies against the CGRP pathway in the treatment of migraine and cluster headache. Results The literature search returned a total of 136 records, of which 32 were eligible for review. Discussion Clinical data from phase II and III trials of the four monoclonal antibodies targeting the CGRP pathway: Eptinezumab, erenumab, fremanezumab, and galcanezumab, collectively show a positive effect in the preventive treatment of episodic and chronic migraine. Multiple phase II and III trials are under way to further determine the efficacy and safety of this new drug class. It may be particularly important to assess the cardiovascular effects of long-term CGRP blockade. Phase III trials are also currently in progress for the preventive treatment of cluster headache. Conclusion Efficacy of anti-CGRP monoclonal antibodies spells a promising future for the many patients suffering from migraine, and possibly also for the smaller but severely-affected population with cluster headache.
Collapse
Affiliation(s)
- Sabrina Khan
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Astrid Olesen
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
72
|
Abstract
Background Migraine is two to three times more prevalent in women than in men, but the mechanisms involved in this gender disparity are still poorly understood. In this respect, calcitonin gene-related peptide (CGRP) plays a key role in migraine pathophysiology and, more recently, the functional interactions between ovarian steroid hormones, CGRP and the trigeminovascular system have been recognized and studied in more detail. Aims To provide an overview of CGRP studies that have addressed gender differences utilizing animal and human migraine preclinical research models to highlight how the female trigeminovascular system responds differently in the presence of varying ovarian steroid hormones. Conclusions Gender differences are evident in migraine. Several studies indicate that fluctuations of ovarian steroid hormone (mainly estrogen) levels modulate CGRP in the trigeminovascular system during different reproductive milestones. Such interactions need to be considered when conducting future animal and human experiments, since these differences may contribute to the development of gender-specific therapies.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carlos M Villalón
- 2 Departamento de Farmacobiología, Cinvestav-I.P.N. (Unidad Sur), Ciudad de México, México
| | - Antoinette MaassenVanDenBrink
- 1 Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
73
|
Deen M, Correnti E, Kamm K, Kelderman T, Papetti L, Rubio-Beltrán E, Vigneri S, Edvinsson L, Maassen Van Den Brink A. Blocking CGRP in migraine patients - a review of pros and cons. J Headache Pain 2017; 18:96. [PMID: 28948500 PMCID: PMC5612904 DOI: 10.1186/s10194-017-0807-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Migraine is the most prevalent neurological disorder worldwide and it has immense socioeconomic impact. Currently, preventative treatment options for migraine include drugs developed for diseases other than migraine such as hypertension, depression and epilepsy. During the last decade, however, blocking calcitonin gene-related peptide (CGRP) has emerged as a possible mechanism for prevention of migraine attacks. CGRP has been shown to be released during migraine attacks and it may play a causative role in induction of migraine attacks. Here, we review the pros and cons of blocking CGRP in migraine patients. To date, two different classes of drugs blocking CGRP have been developed: small molecule CGRP receptor antagonists (gepants), and monoclonal antibodies, targeting either CGRP or the CGRP receptor. Several trials have been conducted to test the efficacy and safety of these drugs. In general, a superior efficacy compared to placebo has been shown, especially with regards to the antibodies. In addition, the efficacy is in line with other currently used prophylactic treatments. The drugs have also been well tolerated, except for some of the gepants, which induced a transient increase in transaminases. Thus, blocking CGRP in migraine patients is seemingly both efficient and well tolerated. However, CGRP and its receptor are abundantly present in both the vasculature, and in the peripheral and central nervous system, and are involved in several physiological processes. Therefore, blocking CGRP may pose a risk in subjects with comorbidities such as cardiovascular diseases. In addition, long-term effects are still unknown. Evidence from animal studies suggests that blocking CGRP may induce constipation, affect the homeostatic functions of the pituitary hormones or attenuate wound healing. However, these effects have so far not been reported in human studies. In conclusion, this review suggests that, based on current knowledge, the pros of blocking CGRP in migraine patients exceed the cons.
Collapse
Affiliation(s)
- Marie Deen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark.
| | - Edvige Correnti
- Department of Child Neuropsychiatry, University of Palermo, Palermo, Italy
| | - Katharina Kamm
- Department of Neurology, University Hospital, LMU, Munich, Germany
| | - Tim Kelderman
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Laura Papetti
- Headache Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eloisa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simone Vigneri
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo; Advanced Algology Research and Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Lars Edvinsson
- Department of Internal Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
74
|
Calcitonin gene-related peptide antagonism and cluster headache: an emerging new treatment. Neurol Sci 2017; 38:2089-2093. [PMID: 28856479 DOI: 10.1007/s10072-017-3101-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play an important role in cluster headache pathophysiology. More refined human studies are warranted with regard to assay validation and using larger sample sizes. The results from RCTs may reveal the therapeutic potential of CGRP monoclonal antibodies and antagonists for cluster headache treatment.
Collapse
|
75
|
Abstract
Temporomandibular disorders (TMD) and primary headaches can be perpetual and debilitating musculoskeletal and neurological disorders. The presence of both can affect up to one-sixth of the population at any one time. Initially, TMDs were thought to be predominantly musculoskeletal disorders, and migraine was thought to be solely a cerebrovascular disorder. The further understanding of their pathophysiology has helped to clarify their clinical presentation. This article focuses on the role of the trigeminal system in associating TMD and migraine. By discussing recent descriptions of prevalence, diagnosis, and treatment of headache and TMD, we will further elucidate this relationship.
Collapse
Affiliation(s)
- Steven B Graff-Radford
- The Pain Center, Cedars-Sinai Medical Center, 444 South San Vicente Boulevard #1101, Los Angeles, CA 90048, USA; The Program for Headache and Orofacial Pain, Cedars-Sinai Medical Center, Los Angeles, CA, USA; UCLA School of Dentistry, Los Angeles, CA, USA.
| | - Jeremy J Abbott
- West Coast Ear, Nose & Throat Medical Group, 301 South Moorpark Road, Thousand Oaks, CA 91361, USA
| |
Collapse
|
76
|
Dux M, Will C, Eberhardt M, Fischer MJM, Messlinger K. Stimulation of rat cranial dura mater with potassium chloride causes CGRP release into the cerebrospinal fluid and increases medullary blood flow. Neuropeptides 2017; 64:61-68. [PMID: 28202186 DOI: 10.1016/j.npep.2017.02.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/30/2016] [Accepted: 02/08/2017] [Indexed: 01/28/2023]
Abstract
Primary headaches may be accompanied by increased intracranial blood flow induced by the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from activated meningeal afferents. We aimed to record meningeal and medullary blood flow simultaneously and to localize the sites of CGRP release in rodent preparations in vivo and ex vivo. Blood flow in the exposed rat parietal dura mater and the medulla oblongata was recorded by laser Doppler flowmetry, while the dura was stimulated by topical application of 60mM potassium chloride (KCl). Samples of jugular venous plasma and cerebrospinal fluid (CSF) collected from the cisterna magna were analysed for CGRP concentrations using an enzyme immunoassay. In a hemisected rat skull preparation lined with dura mater the CGRP releasing effect of KCl superfusion was examined. Superfusion of the dura mater with KCl decreased meningeal blood flow unless alpha-adrenoceptors were blocked by phentolamine, whereas the medullary blood flow was increased. The same treatment caused increased CGRP concentrations in jugular plasma and CSF and induced significant CGRP release in the hemisected rat skull preparation. Anaesthesia of the trigeminal ganglion by injection of lidocaine reduced increases in medullary blood flow and CGRP concentration in the CSF upon meningeal KCl application. CGRP release evoked by depolarisation of meningeal afferents is accompanied by increased blood flow in the medulla oblongata but not the dura mater. This discrepancy can be explained by the smooth muscle depolarising effect of KCl and the activation of sympathetic vasoconstrictor mechanisms. The medullary blood flow response is most likely mediated by CGRP released from activated central terminals of trigeminal afferents. Increased blood supply of the medulla oblongata and CGRP release into the CSF may also occur in headaches accompanying vigorous activation of meningeal afferents.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged. Dóm tér 10, H-6720 Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Mirjam Eberhardt
- Department of Anaesthesia and Critical Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany.
| |
Collapse
|
77
|
Calcitonin gene-related peptide in peripheral blood as a biomarker for migraine. Curr Opin Neurol 2017; 30:281-286. [DOI: 10.1097/wco.0000000000000440] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
78
|
|
79
|
Bohn KJ, Li B, Huang X, Mason BN, Wattiez AS, Kuburas A, Walker CS, Yang P, Yu J, Heinz BA, Johnson KW, Russo AF. CGRP receptor activity in mice with global expression of human receptor activity modifying protein 1. Br J Pharmacol 2017; 174:1826-1840. [PMID: 28317098 DOI: 10.1111/bph.13783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 01/26/2017] [Accepted: 03/03/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE CGRP is a potent vasodilator and nociceptive neuropeptide linked to migraine. CGRP receptors are heterodimers of receptor activity modifying protein 1 (RAMP1) and either calcitonin receptor-like receptor (CLR; forms canonical CGRP receptor) or calcitonin receptor (CT receptor; forms AMY1 receptor). The goal of this study was to test whether transgenic mice globally expressing human RAMP1 have increased CGRP receptor activity and whether the receptors are sensitive to human selective antagonist telcagepant. EXPERIMENTAL APPROACH cAMP production was measured in primary cultures of aortic smooth muscle and trigeminal ganglia neurons from global hRAMP1 mice and non-transgenic littermates. Functional activity and inhibition were compared with clonal cell lines expressing combinations of CLR or CT receptors with RAMP1. KEY RESULTS Cultured smooth muscle from global hRAMP1 mice had a 10-fold greater CGRP-induced cAMP maximal response (Rmax) than non-transgenic littermates, with similar EC50 s. In contrast, cultured trigeminal ganglia from global hRAMP1 mice had a 40-fold leftward shift of the EC50 , with similar Rmax values as littermates. In both hRAMP1 cultures, telcagepant blocked CGRP-induced cAMP production, but was not effective in non-transgenic cultures. IC50 values were closer to those observed for CT receptor/hRAMP1 than CLR/hRAMP1 in clonal cell lines. CONCLUSIONS AND IMPLICATIONS Overexpression of hRAMP1 increases CGRP signalling by changing the maximal response or ligand sensitivity, depending on tissue type. Furthermore, telcagepant inhibited transgenic hRAMP1 CGRP receptors, but the degree of inhibition suggests that the transgenic mice are only partially humanized or both canonical CGRP and AMY1 receptors are functional in trigeminal ganglia neurons and vascular smooth muscle.
Collapse
Affiliation(s)
- Keegan J Bohn
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Baolin Li
- Neuroscience Research Division, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Xiaofang Huang
- Neuroscience Research Division, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Bianca N Mason
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Christopher S Walker
- Maurice Wilkins Centre and Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peiyi Yang
- Quantitative Biology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Jianliang Yu
- Quantitative Biology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Beverly A Heinz
- Quantitative Biology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Kirk W Johnson
- Neuroscience Research Division, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA.,Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
80
|
Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, Hernandez P, Yue X, Goshima N, Ossipov M, King T, Streicher JM, Navratilova E, Dodick D, Rosen H, Roberts E, Porreca F. Kappa opioid receptor antagonists: A possible new class of therapeutics for migraine prevention. Cephalalgia 2017; 37:780-794. [PMID: 28376659 DOI: 10.1177/0333102417702120] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Stress is the most commonly reported migraine trigger. Dynorphin, an endogenous opioid peptide acting preferentially at kappa opioid receptors (KORs), is a key mediator of stress responses. The aim of this study was to use an injury-free rat model of functional cephalic pain with features of migraine and medication overuse headache (MOH) to test the possible preventive benefit of KOR blockade on stress-induced cephalic pain. Methods Following sumatriptan priming to model MOH, rats were hyper-responsive to environmental stress, demonstrating delayed cephalic and extracephalic allodynia and increased levels of CGRP in the jugular blood, consistent with commonly observed clinical outcomes during migraine. Nor-binaltorphimine (nor-BNI), a long-acting KOR antagonist or CYM51317, a novel short-acting KOR antagonist, were given systemically either during sumatriptan priming or immediately before environmental stress challenge. The effects of KOR blockade in the amygdala on stress-induced allodynia was determined by administration of nor-BNI into the right or left central nucleus of the amygdala (CeA). Results KOR blockade prevented both stress-induced allodynia and increased plasma CGRP. Stress increased dynorphin content and phosphorylated KOR in both the left and right CeA in sumatriptan-primed rats. However, KOR blockade only in the right CeA prevented stress-induced cephalic allodynia as well as extracephalic allodynia, measured in either the right or left hindpaws. U69,593, a KOR agonist, given into the right, but not the left, CeA, produced allodynia selectively in sumatriptan-primed rats. Both stress and U69,593-induced allodynia were prevented by right CeA U0126, a mitogen-activated protein kinase inhibitor, presumably acting downstream of KOR. Conclusions Our data reveal a novel lateralized KOR circuit that mediated stress-induced cutaneous allodynia and increased plasma CGRP in an injury-free model of functional cephalic pain with features of migraine and medication overuse headache. Selective, small molecule, orally available, and reversible KOR antagonists are currently in development and may represent a novel class of preventive therapeutics for migraine.
Collapse
Affiliation(s)
- Jennifer Y Xie
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Milena De Felice
- 2 School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Caroline M Kopruszinski
- 3 Department of Pharmacology, Biological Sciences Section, Federal University of Parana, Curitiba, Brazil
| | - Nathan Eyde
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Justin LaVigne
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Bethany Remeniuk
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Pablo Hernandez
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Xu Yue
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Naomi Goshima
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Michael Ossipov
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Tamara King
- 4 Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - John M Streicher
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | - Hugh Rosen
- 6 Scripps Research Institute, La Jolla, CA, USA
| | - Ed Roberts
- 6 Scripps Research Institute, La Jolla, CA, USA
| | - Frank Porreca
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA.,5 Mayo Clinic, Phoenix, AZ USA
| |
Collapse
|
81
|
Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 2017; 172:151-170. [PMID: 27919795 DOI: 10.1016/j.pharmthera.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA.
| | - Marcela Romero-Reyes
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA
| | - Philip R Holland
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
82
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1146] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
83
|
Riesco N, Cernuda-Morollón E, Pascual J. Neuropeptides as a Marker for Chronic Headache. Curr Pain Headache Rep 2017; 21:18. [PMID: 28281109 DOI: 10.1007/s11916-017-0618-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to revise current evidence on trigemino-vascular system (TVS) neuropeptides as potential biomarkers for chronic primary headaches, mainly for chronic migraine (CM). RECENT FINDINGS Within sensory neuropeptides, released by an activated trigeminal nerve, calcitonin gene-related peptide (CGRP) levels seem to be a good biomarker of acute migraine and somewhat sensitive and specific for CM. CGRP, however, is not increased in 20-30% of CM patients, which suggests that CGRP is not the only neuropeptide involved in migraine pain generation and maintenance. Data for other sensory neuropeptides are inconsistent (neurokinin, substance P) or absent (amylin and cholecystokinin-8). Among parasympathetic neuropeptides, vasoactive intestinal polypeptide (VIP) is increased interictally in CM, and in at least some migraine cases ictally, pituitary adenylate cyclase-activating peptide (PACAP) has been shown to be increased ictally in jugular blood, but interictal, peripheral data do not indicate such an increase, and there are no data for other parasympathetic peptides. Finally, S100B, as a potential marker of glial TVS activation, has been studied with inconsistent results in migraine patients. Current data on TVS neuropeptides as potential migraine biomarkers must be taken with caution, even for the promising case of CGRP. We do not know with certainty whether increased levels are the reflection of TVS activation, the reliability and homogeneity of the different laboratory tests, or what is the influence on these measurements of the short half-life of many of these peptides or of preventive treatments. One further limitation would be whether the described increases in levels of some neuropeptides such as CGRP are specific for migraine versus other headaches.
Collapse
Affiliation(s)
- Nuria Riesco
- Service of Neurology, University Hospital Central de Asturias, Oviedo, Spain
| | | | - Julio Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008, Santander, Spain.
| |
Collapse
|
84
|
Hong P, Wu X, Liu Y. Calcitonin gene-related peptide monoclonal antibody for preventive treatment of episodic migraine: A meta analysis. Clin Neurol Neurosurg 2017; 154:74-78. [PMID: 28129635 DOI: 10.1016/j.clineuro.2017.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 02/05/2023]
Abstract
Calcitonin gene-related peptide monoclonal antibodies (CGRP mAbs) have shown promise in the preventive treatment of migraine. Therefore, we performed a meta-analysis to evaluate the efficacy and safety of CGRP mAbs for preventive treatment of migraine. Database including Ovid-SP, Cochrane Library, Pubmed and Web of Science (ISI) were systematically searched up to April 2, 2016 for randomized controlled trials(RCTs) which were dealing with the efficacy and safety of CGRP mAbs for preventive treatment of episodic migraine. Cochrane collaboration's tool for assessing risk of bias was utilized for evaluating the bias and quality of RCTs. The data was analyzed by reviewer manager 5.2. Totally, 4 literatures matched the inclusion criteria, including 4 independent RCTs and 1198 patients. Among mentioned above, AMG334 is a monoclonal antibody against CGRP receptor, but ALD403, LY2951742 and TEV-48125 are monoclonal antibody against CGRP. We found that 7mg and 21mg AMG334 couldn't reduce the monthly migraine days from baseline to week 1-4/9-12. But 70mg AMG334 could reduce the monthly migraine days from baseline to week 9-12 (MD=-1.1, 95% CI=[-2.1,-0.2]; P=0.021) significantly, as compared with placebo. Meanwhile, after pooled estimate the efficacy of CGRP mAb against CGRP, we found that CGRP mAbs improved the decrease of monthly migraine days from baseline to week 1-4, as compared with placebo (WMD=1.62, 95% CI=[1.09,2.14], I2=0%, P<0.00001). And CGRP mAbs improved the decrease of monthly migraine days from baseline to week 9-12, no matter in single dose subgroup (WMD=1.83, 95%CI=[0.06,3.60], I2=69%,P=0.04) or in multiple doses subgroup (WMD=1.77, 95%CI=[0.40,3.14], I2=61%,P=0.01). And there were no difference in incidence of adverse events between CGRP mAb group and placebo group. In conclusion, CGRP mAbs was a safety and effective preventive treatment for episodic migraine.
Collapse
Affiliation(s)
- Peiwei Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xintong Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yao Liu
- Xindu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
85
|
Estimation of response from longitudinal binary data with nonignorable missing values in migraine trials. Contemp Clin Trials Commun 2016; 4:90-98. [PMID: 29736472 PMCID: PMC5935886 DOI: 10.1016/j.conctc.2016.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
In migraine trials pain relief responses from a headache at specific time points and sustained pain relief response over a period of time are important efficacy measures. When there are missing records of individual time point pain scores and/or headache recurrences during a migraine trial, the common approach used in practice to estimate the sustained response is statistically inconsistent even if the data are missing completely at random. Methods dealing with nonignorable longitudinal missing data usually assume certain models for the missing mechanism which can not be checked as they involve unobserved data. Taking advantage of the specific definition of the 'sustained pain relief' response, we propose two estimating methods based on intuitive imputation, which do not require model assumptions on the missing probability or specification of the correlation structure among the longitudinal observations. The consistency of the proposed methods is discussed in theory and their empirical performances are assessed through intensive simulation studies. The simulation results show that the proposed methods perform well in terms of reducing bias and mean square error except in several extreme cases which are unlikely to happen in real trials. The application of the proposed methods is illustrated in a real data analysis.
Collapse
|
86
|
Abstract
Objective To review the role of CGRP in human models of primary headaches and to discuss methodological aspects and future directions. Discussion Provocation experiments demonstrated a heterogeneous CGRP migraine response in migraine patients. Conflicting CGRP plasma results in the provocation experiments are likely due to assay variation; therefore, proper validation and standardization of an assay is needed. To what extent CGRP is involved in tension-type headache and cluster headache is unknown. Conclusion Human models of primary headaches have elucidated the role of CGRP in headache pathophysiology and sparked great interest in developing new treatment strategies using CGRP antagonists and antibodies. Future studies applying more refined human experimental models should identify biomarkers of CGRP-induced primary headache and reveal whether CGRP provocation experiments could be used to predict efficacy of CGRP antagonists in migraine patients.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
87
|
Jacobs B, Dussor G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016; 338:130-144. [PMID: 27312704 PMCID: PMC5083225 DOI: 10.1016/j.neuroscience.2016.06.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
Migraine is the third most common disease worldwide, the most common neurological disorder, and one of the most common pain conditions. Despite its prevalence, the basic physiology and underlying mechanisms contributing to the development of migraine are still poorly understood and development of new therapeutic targets is long overdue. Until recently, the major contributing pathophysiological event thought to initiate migraine was cerebral and meningeal arterial vasodilation. However, the role of vasodilation in migraine is unclear and recent findings challenge its necessity. While vasodilation itself may not contribute to migraine, it remains possible that vessels play a role in migraine pathophysiology in the absence of vasodilation. Blood vessels consist of a variety of cell types that both release and respond to numerous mediators including growth factors, cytokines, adenosine triphosphate (ATP), and nitric oxide (NO). Many of these mediators have actions on neurons that can contribute to migraine. Conversely, neurons release factors such as norepinephrine and calcitonin gene-related peptide (CGRP) that act on cells native to blood vessels. Both normal and pathological events occurring within and between vascular cells could thus mediate bi-directional communication between vessels and the nervous system, without the need for changes in vascular tone. This review will discuss the potential contribution of the vasculature, specifically endothelial cells, to current neuronal mechanisms hypothesized to play a role in migraine. Hypothalamic activity, cortical spreading depression (CSD), and dural afferent input from the cranial meninges will be reviewed with a focus on how these mechanisms can influence or be impacted by blood vessels. Together, the data discussed will provide a framework by which vessels can be viewed as important potential contributors to migraine pathophysiology, even in light of the current uncertainty over the role of vasodilation in this disorder.
Collapse
Affiliation(s)
- Blaine Jacobs
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
88
|
Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, Assaid C, Aurora SK, Michelson D. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia 2016; 36:887-98. [DOI: 10.1177/0333102416653233] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Aim The aim of this trial was to evaluate the efficacy and tolerability of ubrogepant (MK-1602), a calcitonin gene-related peptide receptor antagonist (CGRP-RA), for the acute treatment of migraine. Methods This double-blind, placebo-controlled study randomized 834 participants to treat one migraine attack with ubrogepant 1 mg, 10 mg, 25 mg, 50 mg, 100 mg, or placebo in a 1:1 ratio. The co-primary endpoints were pain freedom and headache response at two hours. The first primary hypothesis tested the dose-response trend for two-hour pain freedom using a logistic regression model. Subsequent hypotheses tested the effects of each dose on the co-primary endpoints, using a closed sequential testing procedure to control for multiplicity. Results A total of 527 participants received ubrogepant and 113 received placebo. A positive response trend in the proportion of participants achieving two-hour pain freedom was demonstrated ( p < 0.001). Ubrogepant 100 mg was significantly superior to placebo for two-hour pain freedom (25.5% vs 8.9%) but not for two-hour headache response. Per the prespecified multiplicity strategy, this nonsignificant result precluded further formal hypothesis testing, although the 50 mg and 25 mg doses demonstrated nominal significance over placebo for two-hour pain freedom (unadjusted p < 0.05). Overall, adverse events were similar between ubrogepant and placebo. Conclusion This trial supports ubrogepant’s efficacy and provides further evidence that CGRP-RAs are viable options for the acute treatment of migraine.
Collapse
Affiliation(s)
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Headache Center, Bronx, NY, USA
| | - David W Dodick
- Department of Neurology, The Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | | - Sheena K Aurora
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA, USA
| | | |
Collapse
|
90
|
Negro A, Curto M, Lionetto L, Giamberardino MA, Martelletti P. Chronic migraine treatment: from OnabotulinumtoxinA onwards. Expert Rev Neurother 2016; 16:1217-27. [DOI: 10.1080/14737175.2016.1200973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
91
|
Abstract
Migraine is one of the world's most common neurological disorders. Current acute migraine treatments have suboptimal efficacy, and new therapeutic options are needed. Approaches targeting calcitonin gene related peptide (CGRP) signaling are clinically effective, but small molecule antagonists have not been advanced because of toxicity. In this study, we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel “druggable” target for inhibiting CGRP release and for potential relevance for treatment of migraine pain. Collapsin response mediator protein 2 has been demonstrated to regulate N-type voltage-gated Ca2+ channel activity and Ca2+-dependent CGRP release in sensory neurons. The coexpression of CRMP2 with N-type voltage-gated Ca2+ channel and CGRP in trigeminal ganglia (TGs) sensory neurons suggested the possibility of a novel approach to regulate CGRP release in the trigeminal system. Screening protocols surprisingly revealed that (S)-lacosamide ((S)-LCM), an inactive analog of the clinically approved small molecule antiepileptic drug (R)-lacosamide (Vimpat), inhibited CRMP2 phosphorylation by cyclin-dependent kinase 5 in rat TG slices and decreased depolarization-evoked Ca2+ influx in TG cells in culture. (S)-LCM significantly blocked capsaicin-evoked CGRP release from dural nerve terminals in the rat in ex vivo cranial cup preparation. Additionally, cephalic and extracephalic cutaneous allodynia induced in rats by activation of dural nociceptors with a cocktail of inflammatory mediators, was inhibited by oral administration of (S)-LCM. The confirmation of CRMP2 as an upstream mediator of CGRP release, together with the brain penetrance of this molecule suggests (S)-LCM as a potential therapy for acute migraine.
Collapse
|
92
|
Kopruszinski CM, Xie JY, Eyde NM, Remeniuk B, Walter S, Stratton J, Bigal M, Chichorro JG, Dodick D, Porreca F. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents. Cephalalgia 2016; 37:560-570. [PMID: 27206958 DOI: 10.1177/0333102416650702] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective The objective of this study was the determination of the role of calcitonin gene-related peptide (CGRP) in the induction of medication overuse headache (MOH)-related migraine in an injury-free preclinical model. Methods Rats were primed by a 7-day period of exposure to acute migraine therapies including sumatriptan and morphine. After an additional 14-day drug-free period, rats were exposed to putative migraine triggers including bright light stress (BLS) or nitric oxide (NO) donor in the presence or absence of TEV48125, a fully humanized CGRP antibody. Cutaneous allodynia (CA) was used as an outcome measure and CGRP blood and cerebrospinal fluid (CSF) levels were measured. Results BLS and NO donor challenge evoked delayed, long-lasting CA selectively in rats that were previously treated with sumatriptan or morphine. BLS produced a significant increase in CGRP in the plasma, but not CSF, in animals that were previously exposed to sumatriptan compared to saline controls. TEV48125 did not modify baseline tactile thresholds or produce behavioral side effects, but significantly inhibited both BLS- and NO donor-induced CA in animals that were previously primed with sumatriptan or morphine; an isotype control protein that does not bind CGRP had no effect. Interpretation These data suggest that acute migraine medications may promote MOH in susceptible individuals through CGRP-dependent mechanisms and that anti-CGRP antibodies may be a useful clinical strategy for the treatment of MOH.
Collapse
Affiliation(s)
| | - Jennifer Yanhua Xie
- 2 Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Nathan Mackenzie Eyde
- 2 Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Bethany Remeniuk
- 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Walter
- 4 Antiva Biosciences, Inc., South San Francesco, CA, USA
| | | | - Marcelo Bigal
- 4 Antiva Biosciences, Inc., South San Francesco, CA, USA
| | - Juliana Geremias Chichorro
- 1 Department of Pharmacology, Biological Sciences Section, Federal University of Parana, Curitiba, Brazil
| | | | - Frank Porreca
- 2 Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA.,4 Antiva Biosciences, Inc., South San Francesco, CA, USA
| |
Collapse
|
93
|
Zhang LM, Dong Z, Yu SY. Migraine in the era of precision medicine. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:105. [PMID: 27127758 DOI: 10.21037/atm.2016.03.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Migraine is a common neurovascular disorder in the neurologic clinics whose mechanisms have been explored for several years. The aura has been considered to be attributed to cortical spreading depression (CSD) and dysfunction of the trigeminovascular system is the key factor that has been considered in the pathogenesis of migraine pain. Moreover, three genes (CACNA1A, ATP1A2, and SCN1A) have come from studies performed in individuals with familial hemiplegic migraine (FHM), a monogenic form of migraine with aura. Therapies targeting on the neuropeptids and genes may be helpful in the precision medicine of migraineurs. 5-hydroxytryptamine (5-HT) receptor agonists and calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated efficacy in the acute specific treatment of migraine attacks. Therefore, ongoing and future efforts to find new vulnerabilities of migraine, unravel the complexity of drug therapy, and perform biomarker-driven clinical trials are necessary to improve outcomes for patients with migraine.
Collapse
Affiliation(s)
- Lv-Ming Zhang
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhao Dong
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng-Yuan Yu
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
94
|
De La Cruz P, Gee L, Walling I, Morris B, Chen N, Kumar V, Feustel P, Shin DS, Pilitsis JG. Treatment of Allodynia by Occipital Nerve Stimulation in Chronic Migraine Rodent. Neurosurgery 2016; 77:479-85; discussion 485. [PMID: 26080069 DOI: 10.1227/neu.0000000000000846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Occipital nerve stimulation (ONS) is a therapy that benefits one-third of medically refractory chronic migraine (CM) patients. How ONS affects sensory thresholds and whether modulation of thresholds could predict which patients respond to the therapy remains unclear. OBJECTIVE To examine the effects of ONS on mechanical and thermal thresholds in a rodent CM model to better elucidate its mechanism of action. METHODS Male Sprague-Dawley rats were implanted bilaterally with electrodes to produce ONS. The CM cohort was infused with inflammatory media epidurally based on a validated model, whereas shams were not. Thresholds were evaluated with von Frey filaments and hot plate and thermode tests. RESULTS No baseline differences in sensory thresholds were found between the sham (n = 16) and CM (n = 16) groups. After headache induction, CM animals demonstrated mechanical allodynia in the occiput, periorbital region, forepaws, and hind paws (P < .05). In CM animals, ONS increased mechanical thresholds in all regions (P < .001), whereas in shams, it did not. ONS did not affect thermal thresholds in either group. CONCLUSION We show that ONS improves mechanical thresholds in a rodent CM model, but not in shams. Our finding that mechanical but not thermal thresholds are altered with ONS suggests a more significant modulation of A-α/β fibers than of C fibers. Assessing the ability of ONS to reduce mechanical thresholds during a trial period could potentially be used to predict which patients respond.
Collapse
Affiliation(s)
- Priscilla De La Cruz
- *Center for Neuroscience and Neuropharmacology, Albany Medical College, Albany, New York; ‡Department of Neurosurgery, Albany Medical Center, Albany, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Hong P, Liu Y. Calcitonin gene-related peptide antagonism for acute treatment of migraine: a meta-analysis. Int J Neurosci 2016; 127:20-27. [DOI: 10.3109/00207454.2015.1137915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
96
|
Shi L, Lehto SG, Zhu DXD, Sun H, Zhang J, Smith BP, Immke DC, Wild KD, Xu C. Pharmacologic Characterization of AMG 334, a Potent and Selective Human Monoclonal Antibody against the Calcitonin Gene-Related Peptide Receptor. J Pharmacol Exp Ther 2016; 356:223-31. [PMID: 26559125 DOI: 10.1124/jpet.115.227793] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Therapeutic agents that block the calcitonin gene-related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [(125)I]-CGRP binding to the human CGRP receptor, with a Ki of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (>5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine.
Collapse
Affiliation(s)
- Licheng Shi
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Sonya G Lehto
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Dawn X D Zhu
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Hong Sun
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Jianhua Zhang
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Brian P Smith
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - David C Immke
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Kenneth D Wild
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| | - Cen Xu
- Department of Neuroscience (L.S., S.G.L., D.X.D.Z., H.S., J.Z., D.C.I., K.D.W., C.X.), Department of Global Biostatistical Science (B.P.S.), Amgen Inc., Thousand Oaks, California
| |
Collapse
|
97
|
Neal F, Arnold J, Rossant CJ, Podichetty S, Lowne D, Dobson C, Wilkinson T, Colley C, Howes R, Vaughan TJ. Isolation of Potent CGRP Neutralizing Antibodies Using Four Simple Assays. ACTA ACUST UNITED AC 2015; 21:24-34. [PMID: 26450103 DOI: 10.1177/1087057115610070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome display libraries and characterization of their epitope, species cross-reactivity, kinetics, and functional activity. Homogenous time-resolved fluorescence (HTRF) binding assays identified antibodies with the desired species cross-reactivity from naïve libraries, and HTRF epitope competition assays were used to characterize and group scFv by epitope. The functional inhibition of CGRP and species cross-reactivity of purified scFv and antibodies were subsequently confirmed using cAMP assays. We show that epitope competition assays could be used as a surrogate for functional cell-based assays during affinity maturation, in combination with scFv off-rate ranking by biolayer interferometry (BLI). This is the first time it has been shown that off-rate ranking can be predictive of functional activity for anti-CGRP antibodies. Here we demonstrate how, by using just four simple assays, diverse panels of antibodies to CGRP can be identified. These assay formats have potential utility in the identification of antibodies to other therapeutic targets.
Collapse
Affiliation(s)
- Frances Neal
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Joanne Arnold
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Christine J Rossant
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK Crescendo Biologics Ltd., Cambridge, UK
| | | | - David Lowne
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK Immunocore Ltd., Abingdon, Oxfordshire, UK
| | - Claire Dobson
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Caroline Colley
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Rob Howes
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Tristan J Vaughan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| |
Collapse
|
98
|
Buntinx L, Vermeersch S, de Hoon J. Development of anti-migraine therapeutics using the capsaicin-induced dermal blood flow model. Br J Clin Pharmacol 2015; 80:992-1000. [PMID: 26114340 DOI: 10.1111/bcp.12704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022] Open
Abstract
The efficacy of calcitonin gene-related peptide (receptor) (CGRP-(R)) blocking therapeutics in the treatment of acute migraine headache provided proof-of-concept for the involvement of CGRP in the pathophysiology of this disorder. One of the major hurdles for the development of any class of drugs, including CGRP blocking therapeutics, is the early clinical development process during which toxic and inefficacious compounds need to be eliminated as early as possible in order to focus on the most promising molecules. At this stage, human models providing proof of target engagement, combined with safety and tolerability studies, are extremely valuable in focusing on those therapeutics that have the highest engagement from the lowest exposure. They guide the go/no-go decision making, establish confidence in the candidate molecule by de-risking toxicity and safety issues and thereby speed up the early clinical development. In this review the focus is on the so called 'capsaicin model' as a typical example of a target engagement biomarker used as a human model for the development of CGRP blocking therapeutics. By applying capsaicin onto the skin, TRPV1 channels are activated and a CGRP-mediated increase in dermal blood flow can be quantified with laser Doppler perfusion imaging. Effective CGRP blocking therapeutics in turn, display blockade of this response. The translation of this biomarker model from animals to humans is discussed as well as the limitations of the assay in predicting the efficacy of anti-migraine drugs.
Collapse
Affiliation(s)
- Linde Buntinx
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Vermeersch
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan de Hoon
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
99
|
Markley HG. Editorial for Therapeutic Monoclonal Antibodies: What Headache Specialists Need to Know. Headache 2015; 55:1169-70. [DOI: 10.1111/head.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Herbert G. Markley
- New England Regional Headache Center; Worcester MA USA
- University of Massachusetts Medical School; Worcester MA USA
| |
Collapse
|
100
|
Silberstein S, Lenz R, Xu C. Therapeutic Monoclonal Antibodies: What Headache Specialists Need to Know. Headache 2015; 55:1171-82. [PMID: 26316307 DOI: 10.1111/head.12642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are now an important part of the treatment armamentarium for a wide range of conditions including cancer, autoimmune diseases, inflammatory diseases of the joint and bowel, transplant rejection, and multiple sclerosis. Significant progress over the last 30 years in the development of therapeutic mAbs has resulted in improved efficacy and safety. Monoclonal antibodies approved for the treatment of neurological illnesses so far are limited to use in multiple sclerosis. Several therapeutic mAbs have completed phase 2 clinical trials for migraine prevention, and there are phase 3 trials underway for migraine prophylaxis and for cluster headache at the time of this writing. AIM The purpose of this review is to discuss the characteristics of mAbs, including their mechanism of action and safety profile, and briefly describe the mAbs being evaluated for the prevention of migraine and cluster headaches. SUMMARY Monoclonal antibodies have several features that distinguish them from small molecules, including very high selectivity, relatively long half-life that generally allows for once or twice monthly dosing, and significantly reduced potential for drug-drug interactions or other nontarget related toxicities. The clinical development of mAbs that target calcitonin gene-related peptide and its receptor is underway and will evaluate this promising new drug class for the prevention of migraine and cluster headache.
Collapse
Affiliation(s)
| | | | - Cen Xu
- Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|