51
|
Zolochevska O, Taglialatela G. Non-Demented Individuals with Alzheimer's Disease Neuropathology: Resistance to Cognitive Decline May Reveal New Treatment Strategies. Curr Pharm Des 2017; 22:4063-8. [PMID: 27189599 DOI: 10.2174/1381612822666160518142110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a terminal neurodegenerative disorder that is characterized by accumulation of amyloid plaques and neurofibrillary tangles in the central nervous system. However, certain individuals remain cognitively intact despite manifestation of substantial plaques and tangles consistent with what would be normally associated with fully symptomatic AD. Mechanisms that allow these subjects to escape dementia remain unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. In this review article we discuss potential compensatory mechanisms that allow these individuals to remain cognitively intact despite the typical AD neuropathology.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | |
Collapse
|
52
|
Birkel L. Decreased use of spatial pattern separation in contemporary lifestyles may contribute to hippocampal atrophy and diminish mental health. Med Hypotheses 2017; 107:55-63. [DOI: 10.1016/j.mehy.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
|
53
|
Affiliation(s)
- Kathleen Farmer
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
54
|
Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD. Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behav Brain Res 2016; 311:54-69. [PMID: 27185734 PMCID: PMC4931948 DOI: 10.1016/j.bbr.2016.05.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Although the two pathological hallmarks of Alzheimer's disease (AD), senile plaques composed of amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau, have been studied extensively in postmortem AD and relevant animal and cellular models, the pathogenesis of AD remains unknown, particularly in the early stages of the disease where therapies presumably would be most effective. We and others have demonstrated that Aβ plaques and NFTs are present in varying degrees before the onset and throughout the progression of dementia. In this regard, aged people with no cognitive impairment (NCI), mild cognitive impairment (MCI, a presumed prodromal AD transitional state, and AD all present at autopsy with varying levels of pathological hallmarks. Cognitive decline, a requisite for the clinical diagnosis of dementia associated with AD, generally correlates better with NFTs than Aβ plaques. However, correlations are even higher between cognitive decline and synaptic loss. In this review, we illustrate relevant clinical pathological research in preclinical AD and throughout the progression of dementia in several areas including Aβ and tau pathobiology, single population expression profiling of vulnerable hippocampal and basal forebrain neurons, neuroplasticity, neuroimaging, cerebrospinal fluid (CSF) biomarker studies and their correlation with antemortem cognitive endpoints. In each of these areas, we provide evidence for the importance of studying the pathological hallmarks of AD not in isolation, but rather in conjunction with other molecular, cellular, and imaging markers to provide a more systematic and comprehensive assessment of the multiple changes that occur during the transition from NCI to MCI to frank AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Milos D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, and Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Hauenstien Neuroscience Institute, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States
| | - Sylvia E Perez
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, Department of Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, United States
| |
Collapse
|
55
|
Education is associated with sub-regions of the hippocampus and the amygdala vulnerable to neuropathologies of Alzheimer's disease. Brain Struct Funct 2016; 222:1469-1479. [PMID: 27535407 DOI: 10.1007/s00429-016-1287-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/11/2016] [Indexed: 01/18/2023]
Abstract
We evaluated the correlation of educational attainment with structural volume and shape morphometry of the bilateral hippocampi and amygdalae in a sample of 110 non-demented, older adults at elevated sociodemographic risk for cognitive and functional declines. In both men and women, no significant education-volume correlation was detected for either structure. However, when performing shape analysis, we observed regionally specific associations with education after adjusting for age, intracranial volume, and race. By sub-dividing the hippocampus and the amygdala into compatible subregions, we found that education was positively associated with size variations in the CA1 and subiculum subregions of the hippocampus and the basolateral subregion of the amygdala (p < 0.05). In addition, we detected a greater left versus right asymmetric pattern in the shape-education correlation for the hippocampus but not the amygdala. This asymmetric association was largely observed in men versus women. These findings suggest that education in youth may exert direct and indirect influences on brain reserve in regions that are most vulnerable to the neuropathologies of aging, dementia, and specifically, Alzheimer disease.
Collapse
|
56
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
57
|
Jewells VL. Commentary on “Multimodality Review of Amyloid-related Diseases of the Central Nervous System”. Radiographics 2016; 36:1163-5. [DOI: 10.1148/rg.2016160093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
58
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
59
|
Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, Micci MA. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep 2016; 6:27812. [PMID: 27298190 PMCID: PMC4906289 DOI: 10.1038/srep27812] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer’s disease (AD), which we refer to as Non-Demented with Alzheimer’s disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miRNAs in NDAN and AD subjects. Laser-capture microdissection of autopsy human hippocampus DG and qRT-PCR miRNA analyses were combined with immunofluorescence in this study. The number of SOX2+ NSCs in the DG was significantly increased in NDAN individuals as compared to AD subjects. Further, the prevalence of SOX2+ NSCs was found to correlate with cognitive capacity. Neurogenesis-regulating miRNAs were decreased in NDAN individuals as compared to AD patients. An increased number of NSCs and new neurons in NDAN individuals is associated with a unique expression of regulating miRNAs and strongly support a role of neurogenesis in mediating, in part, the ability of these individuals to resist the pathological burden of AD.
Collapse
Affiliation(s)
- David Briley
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Valeria Ghirardi
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health &Science University, OR, USA
| | - Alicia Renck
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Olga Zolochevska
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
60
|
Sengupta U, Nilson AN, Kayed R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016; 6:42-49. [PMID: 27211547 PMCID: PMC4856795 DOI: 10.1016/j.ebiom.2016.03.035] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) is growing every day and finding an effective treatment is becoming more vital. Amyloid-β (Aβ) has been the focus of research for several decades. The recent shift in the Aβ cascade hypothesis from all Aβ to small soluble oligomeric intermediates is directing the search for therapeutics towards the toxic mediators of the disease. Targeting the most toxic oligomers may prove to be an effective treatment by preventing their spread. Specific targeting of oligomers has been shown to protect cognition in rodent models. Additionally, the heterogeneity of research on Aβ oligomers may seem contradictory until size and conformation are taken into account. In this review, we will discuss Aβ oligomers and their toxicity in relation to size and conformation as well as their influence on inflammation and the potential of Aβ oligomer immunotherapy.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashley N Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
61
|
Elobeid A, Libard S, Leino M, Popova SN, Alafuzoff I. Altered Proteins in the Aging Brain. J Neuropathol Exp Neurol 2016; 75:316-25. [PMID: 26979082 PMCID: PMC4793886 DOI: 10.1093/jnen/nlw002] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We assessed the prevalence of common altered brain proteins in 296 cognitively unimpaired subjects ranging from age 50 to 102 years. The incidence and the stage of hyperphosphorylated-τ (HPτ), β-amyloid, α-synuclein (αS), and transactive response DNA (TDP) binding protein 43 (TDP43)-immunoreactivity (-IR) increased with age. HPτ-IR was observed in 98% of the subjects; the locus coeruleus was solely affected in 46%, and 79% of the subjects were in Braak stages a to II. β-Amyloid was seen in 47% of subjects and the Thal phase correlated with the HPτ Braak stage and age. Intermediate Alzheimer disease-related pathology (ADRP) was seen in 12%; 52% of the subjects with HPτ-IR fulfilled criteria for definite primary age-related tauopathy (PART). The incidence of concomitant pathology (αS, TDP43) did not differ between those with PART and those with ADRP but the former were younger. TDP43-IR was observed in 36%; the most frequently affected region was the medulla; αS-IR was observed in 19% of subjects. In 41% of the subjects from 80 to 89 years at death, 3 altered proteins were seen in the brain. Thus, altered proteins are common in the brains of cognitively unimpaired aged subjects; this should be considered while developing diagnostic biomarkers, particularly for identifying subjects at early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Adila Elobeid
- From the Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (AE, SL, IA); and Department of Pathology, Uppsala University Hospital, Uppsala, Sweden (AE, SL, ML, SNP, IA)
| | - Sylwia Libard
- From the Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (AE, SL, IA); and Department of Pathology, Uppsala University Hospital, Uppsala, Sweden (AE, SL, ML, SNP, IA)
| | - Marina Leino
- From the Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (AE, SL, IA); and Department of Pathology, Uppsala University Hospital, Uppsala, Sweden (AE, SL, ML, SNP, IA)
| | - Svetlana N Popova
- From the Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (AE, SL, IA); and Department of Pathology, Uppsala University Hospital, Uppsala, Sweden (AE, SL, ML, SNP, IA)
| | - Irina Alafuzoff
- From the Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (AE, SL, IA); and Department of Pathology, Uppsala University Hospital, Uppsala, Sweden (AE, SL, ML, SNP, IA).
| |
Collapse
|
62
|
Mufson EJ, Malek-Ahmadi M, Snyder N, Ausdemore J, Chen K, Perez SE. Braak stage and trajectory of cognitive decline in noncognitively impaired elders. Neurobiol Aging 2016; 43:101-10. [PMID: 27255819 DOI: 10.1016/j.neurobiolaging.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
In a previous cross-sectional study, we found that nondemented elderly participants from the Rush Religious Orders Study (RROS) displayed a wide range of Braak neurofibrillary tangle and amyloid plaque pathology similar to that seen in prodromal and frank Alzheimer's disease. Here, we examined longitudinal changes in cognitive domains in subjects from this cohort grouped by Braak stage using linear mixed effects models. We found that the trajectory of episodic memory composite (EMC), executive function composite (EFC), and global cognitive composite scores (GCS: average of EMC and EFC scores) was significantly associated with age at visit over time, but not with Braak stage, apolipoprotein E (APOE) ε4 status or plaque pathology alone. By contrast, the combined effects of Braak stage, APOE status, and age at visit were strongly correlated with the trajectory of EMC, EFC and GCS performance over time. These data suggest that age and APOE ε4 status, rather than Alzheimer's disease-related pathology, play a more prominent role in the trajectory of cognitive decline over time in this elderly nondemented population. However, the findings reported require confirmation in a larger cohort of cases.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | | | | | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
63
|
Chang YT, Huang CW, Chen NC, Lin KJ, Huang SH, Chang YH, Hsu SW, Chang WN, Lui CC, Hsu CW, Chang CC. Prefrontal Lobe Brain Reserve Capacity with Resistance to Higher Global Amyloid Load and White Matter Hyperintensity Burden in Mild Stage Alzheimer's Disease. PLoS One 2016; 11:e0149056. [PMID: 26872386 PMCID: PMC4752238 DOI: 10.1371/journal.pone.0149056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Amyloid deposition and white matter lesions (WMLs) in Alzheimer's disease (AD) are both considered clinically significant while a larger brain volume is thought to provide greater brain reserve (BR) against these pathological effects. This study identified the topography showing BR in patients with mild AD and explored the clinical balances among BR, amyloid, and WMLs burden. METHODS Thirty patients with AD were enrolled, and AV-45 positron emission tomography was conducted to measure the regional standardized uptake value ratio (SUVr) in 8 cortical volumes-of- interests (VOIs). The quantitative WMLs burden was measured from magnetic resonance imaging while the normalized VOIs volumes represented BR in this study. The cognitive test represented major clinical correlates. RESULTS Significant correlations between the prefrontal volume and global (r = 0.470, p = 0.024), but not regional (r = 0.264, p = 0.223) AV-45 SUVr were found. AD patients having larger regional volume in the superior- (r = 0.572, p = 0.004), superior medial- (r = 0.443, p = 0.034), and middle-prefrontal (r = 0.448, p = 0.032) regions had higher global AV-45 SUVr. For global WML loads, the prefrontal (r = -0.458, p = 0.019) and hippocampal volume (r = -0.469, p = 0.016) showed significant correlations while the prefrontal (r = -0.417, p = 0.043) or hippocampal volume (r = -0.422, p = 0.04) also predicted better composite memory scores. There were no interactions between amyloid SUVr and WML loads on the prefrontal volume. CONCLUSIONS BR of the prefrontal region might modulate the adverse global pathological burden caused by amyloid deposition. While prefrontal volume positively associated with hippocampal volume, WMLs had an adverse impact on the hippocampal volume that predicts memory performance in mild stage AD.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Ching Chen
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Hua Huang
- Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Chung Lui
- Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Wei Hsu
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
64
|
Schreiber S, Vogel J, Schwimmer HD, Marks SM, Schreiber F, Jagust W. Impact of lifestyle dimensions on brain pathology and cognition. Neurobiol Aging 2016; 40:164-172. [PMID: 26973116 DOI: 10.1016/j.neurobiolaging.2016.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 01/04/2016] [Accepted: 01/23/2016] [Indexed: 12/19/2022]
Abstract
Single lifestyle factors affect brain biomarkers and cognition. Here, we addressed the covariance of various lifestyle elements and investigated their impact on positron emission tomography-based β-amyloid (Aβ), hippocampal volume, and cognitive function in aged controls. Lower Aβ burden was associated with a lifestyle comprising high cognitive engagement and low vascular risk, particularly in apolipoprotein E ε4 carriers. Although cognitive function was related to high lifetime cognitive engagement and low vascular risk, Aβ load had no relation to current cognitive function. The covariance between high adult socioeconomic status, high education, and low smoking prevalence predicted better cognitive function and this was mediated by larger hippocampal volume. Our data show that lifestyle is a complex construct composed of associated variables, some of which reflect factors operating over the life span and others which may be developmental. These factors affect brain health via different pathways, which may reinforce one another. Our findings moreover support the importance of an intellectually enriched lifestyle accompanied by vascular health on both cognition and presumed cerebral mediators of cognitive function.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Jacob Vogel
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Henry D Schwimmer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Shawn M Marks
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Frank Schreiber
- Department of Control Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
65
|
Abner EL, Nelson PT, Kryscio RJ, Schmitt FA, Fardo DW, Woltjer RL, Cairns NJ, Yu L, Dodge HH, Xiong C, Masaki K, Tyas SL, Bennett DA, Schneider JA, Arvanitakis Z. Diabetes is associated with cerebrovascular but not Alzheimer's disease neuropathology. Alzheimers Dement 2016; 12:882-9. [PMID: 26812281 DOI: 10.1016/j.jalz.2015.12.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The relationship of diabetes to specific neuropathologic causes of dementia is incompletely understood. METHODS We used logistic regression to evaluate the association between diabetes and infarcts, Braak neurofibrillary tangle stage, and neuritic plaque score in 2365 autopsied persons. In a subset of >1300 persons with available cognitive data, we examined the association between diabetes and cognition using Poisson regression. RESULTS Diabetes increased odds of brain infarcts (odds ratio [OR] = 1.57, P < .0001), specifically lacunes (OR = 1.71, P < .0001), but not Alzheimer's disease neuropathology. Diabetes plus infarcts was associated with lower cognitive scores at end of life than infarcts or diabetes alone, and diabetes plus high level of Alzheimer's neuropathologic changes was associated with lower mini-mental state examination scores than the pathology alone. DISCUSSION This study supports the conclusions that diabetes increases the risk of cerebrovascular but not Alzheimer's disease pathology, and at least some of diabetes' relationship to cognitive impairment may be modified by neuropathology.
Collapse
Affiliation(s)
- Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY, USA; College of Public Health, Department of Epidemiology, University of Kentucky, Lexington, KY, USA; College of Public Health, Department of Biostatistics, University of Kentucky, Lexington, KY, USA.
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY, USA; College of Medicine, Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY, USA; College of Public Health, Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY, USA; College of Medicine, Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - David W Fardo
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY, USA; College of Public Health, Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Randall L Woltjer
- Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA; School of Medicine, Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA; School of Medicine, Department of Neurology, Washington University, St. Louis, MO, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Rush University Medical Center, Department of Neurological Sciences, Chicago, IL, USA
| | - Hiroko H Dodge
- Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA; School of Medicine, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA; School of Medicine, Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Kamal Masaki
- Kuakini Medical Center and John A. Burns School of Medicine, Department of Geriatric Medicine, University of Hawaii, Honolulu, HI, USA
| | - Suzanne L Tyas
- School of Public Health and Health Systems, Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Rush University Medical Center, Department of Neurological Sciences, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Rush University Medical Center, Department of Pathology, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Rush University Medical Center, Department of Neurological Sciences, Chicago, IL, USA
| |
Collapse
|
66
|
Triplett JC, Swomley AM, Cai J, Klein JB, Butterfield DA. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease. J Alzheimers Dis 2016; 49:45-62. [PMID: 26444780 DOI: 10.3233/jad-150417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is clinically characterized by progressive neuronal loss resulting in loss of memory and dementia. AD is histopathologically characterized by the extensive distribution of senile plaques and neurofibrillary tangles, and synapse loss. Amnestic mild cognitive impairment (MCI) is generally accepted to be an early stage of AD. MCI subjects have pathology and symptoms that fall on the scale intermediately between 'normal' cognition with little or no pathology and AD. A rare number of individuals, who exhibit normal cognition on psychometric tests but whose brains show widespread postmortem AD pathology, are classified as 'asymptomatic' or 'preclinical' AD (PCAD). In this study, we evaluated changes in protein phosphorylation states in the inferior parietal lobule of subjects with AD, MCI, PCAD, and control brain using a 2-D PAGE proteomics approach in conjunction with Pro-Q Diamond phosphoprotein staining. Statistically significant changes in phosphorylation levels were found in 19 proteins involved in energy metabolism, neuronal plasticity, signal transduction, and oxidative stress response. Changes in the disease state phosphoproteome may provide insights into underlying mechanisms for the preservation of memory with expansive AD pathology in PCAD and the progressive memory loss in amnestic MCI that escalates to the dementia and the characteristic pathology of AD brain.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
67
|
Wood PL, Locke VA, Herling P, Passaro A, Vigna GB, Volpato S, Valacchi G, Cervellati C, Zuliani G. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer's disease (LOAD). BBA CLINICAL 2015; 5:25-8. [PMID: 27051586 PMCID: PMC4802395 DOI: 10.1016/j.bbacli.2015.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 11/04/2022]
Abstract
Background Diverse research approaches support the concept that a clinical diagnosis of Late-Onset Alzheimer's Disease (LOAD) does not distinguish between subpopulations with differing neuropathologies, including dementia patients with amyloid deposition and dementia patients without amyloid deposition but with cortical thinning. Mild cognitive impairment (MCI) is generally considered the prodromal phase for LOAD, however, while a number of studies have attempted to define plasma biomarkers for the conversion of MCI to LOAD, these studies have not taken into account the heterogeneity of patient cohorts within a clinical phenotype. Methods Studies of MCI and LOAD in several laboratories have demonstrated decrements in ethanolamine plasmalogen levels in plasma and brain and increased levels of diacylglycerols in plasma and brain. To further extend these studies and to address the issue of heterogeneity in MCI and LOAD patient groups we investigated the levels of diacylglycerols and ethanolamine plasmalogens in larger cohorts of patients utilizing, high-resolution (0.2 to 2 ppm mass error) mass spectrometry. Results For the first time, our lipidomics data clearly stratify both MCI and LOAD subjects into 3 different patient cohorts within each clinical diagnosis. These include i) patients with lower circulating ethanolamine plasmalogen levels; ii) patients with augmented plasma diacylglycerol levels; and iii) patients with neither of these lipid alterations. Conclusions These represent the first serum biochemical data to stratify MCI and LOAD patients, advancing efforts to biochemically define patient heterogeneity in cognitive disorders. General significance Lipidomics offers a new approach for identifying biomarkers and biological targets in cognitive disorders. DAGs were increased in the serum of a subset of MCI and AD patient cohorts. Ethanolamine plasmalogens were decreased in a subset of MCI and AD patient cohorts. A subset of MCI and AD patient cohorts had neither of these biochemical alterations. No patient demonstrated both biochemical alterations. These data, for the first time, stratify MCI and AD patient cohorts into at least 3 subgroups.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Victoria A Locke
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Patrick Herling
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Angelina Passaro
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni B Vigna
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Zuliani
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
68
|
The Role of Reelin Signaling in Alzheimer’s Disease. Mol Neurobiol 2015; 53:5692-700. [DOI: 10.1007/s12035-015-9459-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/23/2022]
|
69
|
Mufson EJ, Malek-Ahmadi M, Perez SE, Chen K. Braak staging, plaque pathology, and APOE status in elderly persons without cognitive impairment. Neurobiol Aging 2015; 37:147-153. [PMID: 26686670 DOI: 10.1016/j.neurobiolaging.2015.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022]
Abstract
Clinico-pathological studies reveal that some elderly people with no cognitive impairment have high burdens of neurofibrillary tangles (NFTs), a pathology associated with Alzheimer's disease. We examined a total of 123 elderly participants without dementia and free of other neurological disorders or pathologies who at autopsy were classified as Braak NFT stages of I-V. We found that women were significantly more likely to have a high Braak score. Significant associations were found between high Braak scores and entorhinal cortex amyloid load, combined hippocampal and entorhinal cortex amyloid loads with perceptual speed in the low Braak group after adjusting for age, gender and apolipoprotein E ε4 status. Elderly with preserved cognitive function show a wide range of Braak scores and plaque pathology similar to that seen in prodromal and frank Alzheimer's disease at death. These data suggest that some older people with extensive NFT and plaque pathology demonstrate brain resilience or reserve leading to preserved cognitive function.
Collapse
Affiliation(s)
- Elliott J Mufson
- Alzheimer's Disease Research Laboratory, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | | | - Sylvia E Perez
- Alzheimer's Disease Research Laboratory, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| |
Collapse
|
70
|
Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer's disease subjects. Acta Neuropsychiatr 2015; 27:270-8. [PMID: 25858158 DOI: 10.1017/neu.2015.18] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We undertook a non-targeted lipidomics analysis of post-mortem cerebrospinal fluid (CSF), frontal cortex grey matter, and subjacent white matter to define potential biomarkers that distinguish cognitively intact subjects from those with incipient or established dementia. Our objective was to increase our understanding of the role of brain lipids in pathophysiology of aging and age-related cognitive impairment. METHODS Levels of 650 individual lipids, across 26 lipid subclasses, were measured utilising a high-resolution mass spectrometric analysis platform. RESULTS Monoacylglycerols (MAG), diacylglycerols (DAG), and the very-long-chain fatty acid 26:0 were elevated in the grey matter of the mild cognitive impairment (MCI) and old dementia (OD) cohorts. Ethanolamine plasmalogens (PlsEtn) were decreased in the grey matter of the young dementia (YD) and OD cohorts while and phosphatidylethanolamines (PtdEth) were lower in the MCI, YD and OD cohorts. In the white matter, decrements in sulphatide levels were detected in the YD group, DAG levels were elevated in the MCI group, and MAG levels were increased in the YD and OD groups. CONCLUSION The parallel changes in grey matter MAGs and DAGs in the MCI and OD groups suggest that these two cohorts may have a similar underlying pathophysiology; consistent with this, MCI subjects were more similar in age to OD than to YD subjects. While PlsEtn and phosphatidylethanolamine were decreased in the YD and OD groups they were unaltered in the MCI group indicating that alterations in plasmalogen synthesis are unlikely to represent an initiating event in the transition from MCI to dementia.
Collapse
|
71
|
Hubin E, Vanschoenwinkel B, Broersen K, De Deyn PP, Koedam N, van Nuland NA, Pauwels K. Could ecosystem management provide a new framework for Alzheimer's disease? Alzheimers Dement 2015; 12:65-74.e1. [PMID: 26341147 DOI: 10.1016/j.jalz.2015.07.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that involves a plethora of molecular pathways. In the context of therapeutic treatment and biomarker profiling, the amyloid-beta (Aβ) peptide constitutes an interesting research avenue that involves interactions within a complex mixture of Aβ alloforms and other disease-modifying factors. Here, we explore the potential of an ecosystem paradigm as a novel way to consider AD and Aβ dynamics in particular. We discuss the example that the complexity of the Aβ network not only exhibits interesting parallels with the functioning of complex systems such as ecosystems but that this analogy can also provide novel insights into the neurobiological phenomena in AD and serve as a communication tool. We propose that combining network medicine with general ecosystem management principles could be a new and holistic approach to understand AD pathology and design novel therapies.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium
| | - Bram Vanschoenwinkel
- Plant Biology and Nature Management (APNA), Department of Biology (DBIO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kerensa Broersen
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter P De Deyn
- Department of Physiotherapy (REVAKI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Middelheim General Hospital (Ziekenhuis Netwerk Antwerpen), University of Antwerp, Antwerp, Belgium; Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Nico Koedam
- Plant Biology and Nature Management (APNA), Department of Biology (DBIO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nico A van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium
| | - Kris Pauwels
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Structural Biology Research Center, VIB, Brussels, Belgium.
| |
Collapse
|
72
|
Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74:345-58. [PMID: 25756588 DOI: 10.1097/nen.0000000000000179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with β-amyloid (Aβ) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Aβ1-40 and Aβ1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Aβ pathology.
Collapse
|
73
|
Barnes JN. Exercise, cognitive function, and aging. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:55-62. [PMID: 26031719 PMCID: PMC4587595 DOI: 10.1152/advan.00101.2014] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/06/2015] [Indexed: 05/31/2023]
Abstract
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise.
Collapse
Affiliation(s)
- Jill N Barnes
- Department of Anesthesiology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
74
|
Kinugawa K, Nguyen-Michel VH, Mariani J. [Obstructive sleep apnea syndrome: a cause of cognitive disorders in the elderly?]. Rev Med Interne 2014; 35:664-9. [PMID: 24630586 DOI: 10.1016/j.revmed.2014.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 12/19/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022]
Abstract
Obstructive sleep apnea syndrome is a chronic disease characterized by repeated upper airway obstructions during sleep, resulting in fragmented sleep with arousals, nocturnal intermittent hypoxemia and diurnal dysfunctions. Despite its high prevalence in elderly, sleep apnea syndrome seems to be underestimated and difficult to be recognized because of the lack of clinical symptoms specificity in this population. Among the numerous consequences of the obstructive sleep apnea syndrome, cognitive impairment prevails on the attention, executive functions and memory. Neuroimaging studies in human and experimental models allowed to highlight neural correlates of these cognitive dysfunctions in obstructive sleep apnea syndrome. The obstructive sleep apnea syndrome with cognitive impairment shares some features with Alzheimer's disease, involving genetic predisposition ApoE4, hippocampus and synaptic plasticity abnormalities. In this context, the question arises whether obstructive sleep apnea syndrome is a possible etiological or aggravating factor of cognitive decline in elderly with mild cognitive impairment or Alzheimer's disease. Although there are conflicting results in studies evaluating therapeutic efficiency of continuous positive air pressure, obstructive sleep apnea syndrome seems nevertheless as a correctable factor, at least for its impact on some cognitive consequences. Looking for sleep apnea syndrome in elderly with cognitive decline should be considered in a global, diagnosis and therapeutic management.
Collapse
Affiliation(s)
- K Kinugawa
- Unité d'explorations fonctionnelles du sujet âgé, hôpital Charles-Foix, Assistance publique-Hôpitaux de Paris, 7, avenue de la République, 94005 Ivry-sur-Seine, France; UMR 8256 « Adaptation Biologique et Vieillissement », UPMC/CNRS - Sorbonne universités, 4, place Jussieu, 75005 Paris, France; Institut de la longévité Charles-Foix, 7, avenue de la République, 92005 Ivry-sur-Seine, France.
| | - V H Nguyen-Michel
- Unité d'explorations fonctionnelles du sujet âgé, hôpital Charles-Foix, Assistance publique-Hôpitaux de Paris, 7, avenue de la République, 94005 Ivry-sur-Seine, France
| | - J Mariani
- Unité d'explorations fonctionnelles du sujet âgé, hôpital Charles-Foix, Assistance publique-Hôpitaux de Paris, 7, avenue de la République, 94005 Ivry-sur-Seine, France; UMR 8256 « Adaptation Biologique et Vieillissement », UPMC/CNRS - Sorbonne universités, 4, place Jussieu, 75005 Paris, France; Institut de la longévité Charles-Foix, 7, avenue de la République, 92005 Ivry-sur-Seine, France
| |
Collapse
|
75
|
Duran-Aniotz C, Morales R, Moreno-Gonzalez I, Hu PP, Fedynyshyn J, Soto C. Aggregate-depleted brain fails to induce Aβ deposition in a mouse model of Alzheimer's disease. PLoS One 2014; 9:e89014. [PMID: 24533166 PMCID: PMC3923072 DOI: 10.1371/journal.pone.0089014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies in animal models of Alzheimer's disease (AD) show that amyloid-beta (Aβ) misfolding can be transmissible; however, the mechanisms by which this process occurs have not been fully explored. The goal of this study was to analyze whether depletion of aggregates from an AD brain suppresses its in vivo "seeding" capability. Removal of aggregates was performed by using the Aggregate Specific Reagent 1 (ASR1) compound which has been previously described to specifically bind misfolded species. Our results show that pre-treatment with ASR1-coupled magnetic beads reduces the in vivo misfolding inducing capability of an AD brain extract. These findings shed light respect to the active principle responsible for the prion-like spreading of Alzheimer's amyloid pathology and open the possibility of using seeds-capturing reagents as a promising target for AD treatment.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Ping Ping Hu
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Life Sciences, Southwest University, Chongqing, China
| | - Joseph Fedynyshyn
- Novartis Vaccines and Diagnostics, Emeryville, California, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| |
Collapse
|
76
|
Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology 2014; 39:24-33. [PMID: 23842599 PMCID: PMC3857645 DOI: 10.1038/npp.2013.167] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022]
Abstract
Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Math and Science 435, Harrogate, TN 37752, USA
| |
Collapse
|
77
|
Duran-Aniotz C, Morales R, Moreno-Gonzalez I, Hu PP, Soto C. Brains from non-Alzheimer's individuals containing amyloid deposits accelerate Aβ deposition in vivo. Acta Neuropathol Commun 2013; 1:76. [PMID: 24252208 PMCID: PMC4046659 DOI: 10.1186/2051-5960-1-76] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/14/2022] Open
Abstract
Background One of the main features of Alzheimer’s disease (AD) is the presence of Aβ deposits, which accumulate in the brain years before the onset of symptoms. We and others have demonstrated that cerebral Aβ-amyloidosis can be induced in vivo by administration of AD-brain extracts into transgenic mice. However, it is currently unknown whether amyloid formation can be induced using extracts from individuals harboring Aβ deposits, but not clinical disease. Results In this study we analyzed the amyloid-inducing capability of samples from individuals affected by mild cognitive impairment (MCI) and Non-Demented persons with Alzheimer’s disease Neuropathology (NDAN). Our results show that inoculation of transgenic mice with MCI and NDAN brain samples accelerated Aβ pathology in a similar way as extracts from confirmed AD. Conclusions This data demonstrate that the sole presence of Aβ aggregates in a given sample, regardless of the clinical condition, is capable to accelerate Aβ deposition in vivo. These findings indicate that the amyloid-inducing activity may be present in the brain of people during pre-symptomatic or a-symptomatic stages of AD.
Collapse
|
78
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576887 PMCID: PMC3622466 DOI: 10.31887/dcns.2013.15.1/kjellinger] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in “healthy” aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
79
|
Royall DR, Palmer RF. Does ethnicity moderate dementia's biomarkers? Neurobiol Aging 2013; 35:336-44. [PMID: 24054829 DOI: 10.1016/j.neurobiolaging.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 11/26/2022]
Abstract
We have used structural equation models to explicitly distinguish functional status, and therefore "dementia-relevant" variance in cognitive task performance (i.e., "δ") from that which is unrelated to a dementing process. Our approach results in a relatively "error-free" continuous variable that can serve as a dementia-specific phenotype. In this study, we associate δ with cytokines and other serum biomarkers in a well characterized Alzheimer's disease cohort, the Texas Alzheimer's Research and Care Consortium. Independent of covariates, δ is associated significantly with 12 serum biomarkers. These associations appear to be specific to non-Hispanic white participants.
Collapse
Affiliation(s)
- Donald R Royall
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA; Department of Family and Community Medicine, The University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans' Health System, Audie L. Murphy Division GRECC, San Antonio, TX, USA.
| | | | | |
Collapse
|
80
|
Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, Schneider JA, Bennett DA. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 2013; 80:1202-8. [PMID: 23486878 PMCID: PMC3691778 DOI: 10.1212/wnl.0b013e3182897103] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/26/2012] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To test the hypothesis that higher neuronal density in brainstem aminergic nuclei contributes to neural reserve. METHODS Participants are 165 individuals from the Rush Memory and Aging Project, a longitudinal clinical-pathologic cohort study. They completed a mean of 5.8 years of annual evaluations that included a battery of 19 cognitive tests from which a previously established composite measure of global cognition was derived. Upon death, they had a brain autopsy and uniform neuropathologic examination that provided estimates of the density of aminergic neurons in the locus ceruleus, dorsal raphe nucleus, substantia nigra, and ventral tegmental area plus summary measures of neuronal neurofibrillary tangles and Lewy bodies from these nuclei and medial temporal lobe and neocortex. RESULTS Neuronal densities in each nucleus were approximately normally distributed. In separate analyses, higher neuronal density in each nucleus except the ventral tegmental area was associated with slower rate of cognitive decline, but when modeled together only locus ceruleus neuronal density was related to cognitive decline (estimate = 0.003, SE = 0.001, p < 0.001). Higher densities of tangles and Lewy bodies in these brainstem nuclei were associated with faster cognitive decline even after controlling for pathologic burden elsewhere in the brain. Locus ceruleus neuronal density, brainstem tangles, and brainstem Lewy bodies had independent associations with rate of cognitive decline. In addition, at higher levels of locus ceruleus neuronal density, the association of Lewy bodies with cognitive decline was diminished. CONCLUSION Density of noradrenergic neurons in the locus ceruleus may be a structural component of neural reserve.
Collapse
Affiliation(s)
- Robert S Wilson
- Rush Alzheimer's Disease Center and Departments of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 1:a006189. [PMID: 22229116 DOI: 10.1101/cshperspect.a006189] [Citation(s) in RCA: 2207] [Impact Index Per Article: 183.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neuropathological hallmarks of Alzheimer disease (AD) include "positive" lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and "negative" lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between "normal" aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Alzheimer Research Unit of the MassGeneral Institute for Neurodegenerative Disease, Department of Neurology of the Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA, 02129-4404
| | | | | | | |
Collapse
|
82
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013; 15:29-43. [PMID: 23576887 PMCID: PMC3622466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in "healthy" aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
83
|
Staff RT, Murray AD, Ahearn TS, Mustafa N, Fox HC, Whalley LJ. Childhood socioeconomic status and adult brain size: childhood socioeconomic status influences adult hippocampal size. Ann Neurol 2012; 71:653-60. [PMID: 22522480 DOI: 10.1002/ana.22631] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To investigate in older adults without dementia the relationships between socioeconomic status (SES) in childhood and magnetic resonance imaging (MRI)-derived brain volume measures typical of brain aging and Alzheimer's disease (AD). METHODS Using a cross-sectional and longitudinal observation approach, we invited volunteers without dementia, all born in 1936, and who were participants in the 1947 Scottish Mental Survey, for MR brain imaging; 249 of 320 (77%) agreed. We measured whole brain and hippocampal volumes and recorded childhood SES history, the number of years of education undertaken, and adult SES history. Mental ability at age 11 years was recorded in 1947 and was also available. RESULTS Analysis shows a significant association between childhood SES and hippocampal volume after adjusting for mental ability at age 11 years, adult SES, gender, and education. INTERPRETATION A significant association between childhood SES and hippocampal volumes in late life is consistent with the established neurodevelopmental findings that early life conditions have an effect on structural brain development. This remains detectable more than 50 years later.
Collapse
|
84
|
Bjorklund NL, Reese LC, Sadagoparamanujam VM, Ghirardi V, Woltjer RL, Taglialatela G. Absence of amyloid β oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer's disease neuropathology. Mol Neurodegener 2012; 7:23. [PMID: 22640423 PMCID: PMC3403985 DOI: 10.1186/1750-1326-7-23] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early cognitive impairment in Alzheimer Disease (AD) is thought to result from the dysfunctional effect of amyloid beta (Aβ) oligomers targeting the synapses. Some individuals, however, escape cognitive decline despite the presence of the neuropathologic features of AD (Aβ plaques and neurofibrillary tangles). We term this group Non-Demented with AD Neuropathology or NDAN. The present study illustrates one putative resistance mechanism involved in NDAN cases which may suggest targets for the effective treatment of AD. RESULTS Here we describe the localization of Aβ oligomers at the postsynapse in hippocampi from AD cases. Notably, however, we also found that while present in soluble fractions, Aβ oligomers are absent from hippocampal postsynapses in NDAN cases. In addition, levels of phosphorylated (active) CREB, a transcription factor important for synaptic plasticity, are normal in NDAN individuals, suggesting that their synapses are functionally intact. Analysis of Zn2+ showed that levels were increased in both soluble fractions and synaptic vesicles in AD hippocampi, paralleled by a decrease of expression of the synaptic vesicle Zn2+ transporter, ZnT3. Conversely, in NDAN individuals, levels of Zn2+ in soluble fractions were significantly lower than in AD, whereas in synaptic vesicles the levels of Zn2+ were similar to AD, but accompanied by preserved expression of the ZnT3. CONCLUSIONS Taken together, these data illustrate that despite substantial AD neuropathology, Aβ oligomers, and increased synaptic vesicle Zn2+, susceptible brain tissue in these aged NDAN individuals features, as compared to symptomatic AD subjects, significantly lower total Zn2+ levels and no association of Aβ oligomers with the postsynapse, which collectively may promote the maintenance of intact cognitive function.
Collapse
Affiliation(s)
| | - Lindsay C Reese
- Department of Neuroscience and Cell Biology, Galveston, TX, 77555, USA
| | - V-M Sadagoparamanujam
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Valeria Ghirardi
- Department of Neuroscience and Cell Biology, Galveston, TX, 77555, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97201, USA
| | | |
Collapse
|
85
|
Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 2012; 97:38-51. [DOI: 10.1016/j.pneurobio.2012.03.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
|
86
|
Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 2012; 8:189-202. [PMID: 22410582 DOI: 10.1038/nrneurol.2012.27] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hippocampus is particularly vulnerable to the neurotoxic effects of obesity, diabetes mellitus, hypertension, hypoxic brain injury, obstructive sleep apnoea, bipolar disorder, clinical depression and head trauma. Patients with these conditions often have smaller hippocampi and experience a greater degree of cognitive decline than individuals without these comorbidities. Moreover, hippocampal atrophy is an established indicator for conversion from the normal ageing process to developing mild cognitive impairment and dementia. As such, an important aim is to ascertain which modifiable factors can have a positive effect on the size of the hippocampus throughout life. Observational studies and preliminary clinical trials have raised the possibility that physical exercise, cognitive stimulation and treatment of general medical conditions can reverse age-related atrophy in the hippocampus, or even expand its size. An emerging concept--the dynamic polygon hypothesis--suggests that treatment of modifiable risk factors can increase the volume or prevent atrophy of the hippocampus. According to this hypothesis, a multidisciplinary approach, which involves strategies to both reduce neurotoxicity and increase neurogenesis, is likely to be successful in delaying the onset of cognitive impairment with ageing. Further research on the constellation of interventions that could be most effective is needed before recommendations can be made for implementing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Majid Fotuhi
- Neurology Institute for Brain Health and Fitness, 1205 York Road, Suite 18, Lutherville, MD 21093, USA.
| | | | | |
Collapse
|
87
|
Abstract
The incidence of dementia increases steeply with age in older people, although from the tenth decade the slope may be smoother, perhaps reflecting different pathological processes in the oldest old. The prevalence depends upon interaction of age with other factors (e.g., comorbidities, genetic or environmental factors) that in turn are subject to change. If onset of dementia could be postponed by modulating its risk factors, this could significantly affect its incidence. Analysis of risk and protection factors should take into account the critical period during which these factors play a role. For example, the impact of education and diabetes mellitus occurs in early- and midlife, respectively, while maintaining optimal physical and mental activity and controlling vascular factors later in life may slow the rate of cognitive decline. Modifying factors need to be evaluated for different clinical groups, taking into account genetic background, age, and duration at exposure. The aim of the present article is to try to take stock of epidemiological data concerning factors affecting the prevalence of dementia and predict future developments, as well as to look for possible interventions that could affect outcome.
Collapse
Affiliation(s)
- T A Treves
- Memory Disorders Clinic, Rabin Medical Center, Petach Tikva, Israel
| | | |
Collapse
|
88
|
Abstract
Alzheimer's disease (AD) is a cognitive disorder with a number of complex neuropathologies, including, but not limited to, neurofibrillary tangles, neuritic plaques, neuronal shrinkage, hypomyelination, neuroinflammation and cholinergic dysfunction. The role of underlying pathological processes in the evolution of the cholinergic deficit responsible for cognitive decline has not been elucidated. Furthermore, generation of testable hypotheses for defining points of pharmacological intervention in AD are complicated by the large scale occurrence of older individuals dying with no cognitive impairment despite having a high burden of AD pathology (plaques and tangles). To further complicate these research challenges, there is no animal model that reproduces the combined hallmark neuropathologies of AD. These research limitations have stimulated the application of 'omics' technologies in AD research with the goals of defining biologic markers of disease and disease progression and uncovering potential points of pharmacological intervention for the design of AD therapeutics. In the case of sporadic AD, the dominant form of dementia, genomics has revealed that the ε4 allele of apolipoprotein E, a lipid transport/chaperone protein, is a susceptibility factor. This seminal observation points to the importance of lipid dynamics as an area of investigation in AD. In this regard, lipidomics studies have demonstrated that there are major deficits in brain structural glycerophospholipids and sphingolipids, as well as alterations in metabolites of these complex structural lipids, which act as signaling molecules. Peroxisomal dysfunction appears to be a key component of the changes in glycerophospholipid deficits. In this review, lipid alterations and their potential roles in the pathophysiology of AD are discussed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| |
Collapse
|
89
|
Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G, Goodenowe DB. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis 2011; 10:227. [PMID: 22142382 PMCID: PMC3260122 DOI: 10.1186/1476-511x-10-227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 12/03/2022] Open
Abstract
Introduction Docosahexaenoic acid (DHA) and DHA-containing ethanolamine plasmalogens (PlsEtn) are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn). Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3 phosphoethanolamine group and desaturation at sn-1 to generate the target plasmalogen. The second pool, like the PtdEtn, resulted from increased availability of DHA released during remodeling of sn-2. In the case of sn-1 18:0 and 18:1 plasmalogens with [13C3]DHA at sn-2, labeling was the result of increased availability of [13C3]DHA from lipid remodeling. Isotope and repeated dosing (2 weeks) experiments also demonstrated that plasmalogens and/or plasmalogen precursors derived from PPI-1011 are able to cross both the blood-retinal and blood-brain barriers. Conclusions Our data demonstrate that PPI-1011, an ether lipid precursor of plasmalogens is orally bioavailable in the rabbit, augmenting the circulating levels of unesterified DHA and DHA-containing PlsEtn and PtdEtn. Other ethanolamine plasmalogens were generated from the precursor via lipid remodeling (de-acylation/re-acylation reactions at sn-2) and phosphatidylethanolamines were generated via de-alkylation/re-acylation reactions at sn-1. Repeated oral dosing for 2 weeks with PPI-1011 resulted in dose-dependent increases in circulating DHA and DHA-containing plasmalogens. These products and/or precursors were also able to cross the blood-retinal and blood-brain barriers.
Collapse
Affiliation(s)
- Paul L Wood
- Dept, of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752 USA.
| | | | | | | | | | | |
Collapse
|
90
|
Alzheimer disease pathology in subjects without dementia in 2 studies of aging: the Nun Study and the Adult Changes in Thought Study. J Neuropathol Exp Neurol 2011; 70:832-40. [PMID: 21937909 DOI: 10.1097/nen.0b013e31822e8ae9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Individuals with antemortem preservation of cognition who show autopsy evidence of at least moderate Alzheimer disease (AD) pathology suggest the possibility of brain reserve, that is, functional resistance to structural brain damage. This reserve would, however, only be relevant if the pathologic markers correlate well with dementia. Using data from the Nun Study (n = 498) and the Adult Changes in Thought (ACT) Study (n = 323), we show that Braak staging correlates strongly with dementia status. Moreover, participants with severe(Braak stage V-VI) AD pathology who remained not demented represent only 12% (Nun Study) and 8% (ACT study) of nondemented subjects. Comparison of these subjects to those who were demented revealed that the former group was often significantly memory-impaired despite not being classified as demented. Most of these nondemented participants showed only stage V neurofibrillary pathology and frontal tangle counts that were slightly lower than a comparable (Braak stage V) dementia group. In summary, these data indicate that, in individuals with AD-type pathology who do not meet criteria for dementia, neocortical neurofibrillary tangles are somewhat reduced and incipient cognitive decline is present. Our data provide a foundation for helping to define additional factors that may impair, or be protective of, cognition in older adults.
Collapse
|
91
|
Abner EL, Kryscio RJ, Schmitt FA, Santacruz KS, Jicha GA, Lin Y, Neltner JM, Smith CD, Van Eldik LJ, Nelson PT. "End-stage" neurofibrillary tangle pathology in preclinical Alzheimer's disease: fact or fiction? J Alzheimers Dis 2011; 25:445-53. [PMID: 21471646 DOI: 10.3233/jad-2011-101980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Among individuals who were cognitively intact before death, autopsies may reveal some Alzheimer's disease-type pathology. The presence of end-stage pathology in cognitively intact persons would support the hypothesis that pathological markers are epiphenomena. We assessed advanced neurofibrillary (Braak stages V and VI) pathology focusing on nondemented individuals. Data from the National Alzheimer's Coordinating Center database (n = 4,690 included initially) and from the Nun Study (n = 526 included initially) were analyzed, with antemortem information about global cognition and careful postmortem studies available from each case. Global cognition (final Mini-Mental State Examination scores (MMSE) and clinical 'dementia' status) was correlated with neuropathology, including the severity of neurofibrillary pathology (Braak stages and neurofibrillary tangle counts in cerebral neocortex). Analyses support three major findings: 1. Braak stage V cases and Braak VI cases are significantly different from each other in terms of associated antemortem cognition; 2. There is an appreciable range of pathology within the category of Braak stage VI based on tangle counts such that brains with the most neurofibrillary tangles in neocortex always had profound antemortem cognitive impairment; and 3. There was no nondemented case with final MMSE score of 30 within a year of life and Braak stage VI pathology. It may be inappropriate to combine Braak stages V and VI cases, particularly in patients with early cognitive dysfunction, since the two pathological stages appear to differ dramatically in terms of both pathological severity and antemortem cognitive status. There is no documented example of truly end-stage neurofibrillary pathology coexisting with intact cognition.
Collapse
Affiliation(s)
- Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Dawe RJ, Bennett DA, Schneider JA, Arfanakis K. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 2011; 6:e26286. [PMID: 22043314 PMCID: PMC3197137 DOI: 10.1371/journal.pone.0026286] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
The volume of the hippocampus measured with structural magnetic resonance imaging (MRI) is increasingly used as a biomarker for Alzheimer's disease (AD). However, the neuropathologic basis of structural MRI changes in the hippocampus in the elderly has not been directly assessed. Postmortem MRI of the aging human brain, combined with histopathology, could be an important tool to address this issue. Therefore, this study combined postmortem MRI and histopathology in 100 elderly subjects from the Rush Memory and Aging Project and the Religious Orders Study. First, to validate the information contained in postmortem MRI data, we tested the hypothesis that postmortem hippocampal volume is smaller in subjects with clinically diagnosed Alzheimer's disease compared to subjects with mild or no cognitive impairment, as observed in antemortem imaging studies. Subsequently, the relations of postmortem hippocampal volume to AD pathology, Lewy bodies, amyloid angiopathy, gross infarcts, microscopic infarcts, and hippocampal sclerosis were examined. It was demonstrated that hippocampal volume was smaller in persons with a clinical diagnosis of AD compared to those with no cognitive impairment (P = 2.6×10−7) or mild cognitive impairment (P = 9.6×10−7). Additionally, hippocampal volume was related to multiple cognitive abilities assessed proximate to death, with its strongest association with episodic memory. Among all pathologies investigated, the most significant factors related to lower hippocampal volume were shown to be AD pathology (P = 0.0018) and hippocampal sclerosis (P = 4.2×10−7). Shape analysis allowed for visualization of the hippocampal regions most associated with volume loss for each of these two pathologies. Overall, this investigation confirmed the relation of hippocampal volume measured postmortem to clinical diagnosis of AD and measures of cognition, and concluded that both AD pathology and hippocampal sclerosis affect hippocampal volume in old age, though the impacts of each pathology on the shape of the hippocampus may differ.
Collapse
Affiliation(s)
- Robert J. Dawe
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
93
|
Sonnen JA, Cruz KS, Hemmy LS, Woltjer R, Leverenz JB, Montine KS, Jack CR, Kaye J, Lim K, Larson EB, White L, Montine TJ. Ecology of the aging human brain. ARCHIVES OF NEUROLOGY 2011; 68:1049-56. [PMID: 21825242 PMCID: PMC3218566 DOI: 10.1001/archneurol.2011.157] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. OBJECTIVE To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. DESIGN Autopsy study. SETTING Community- and population based. PARTICIPANTS A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. MAIN OUTCOME MEASURES Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. RESULTS Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. CONCLUSIONS These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.
Collapse
Affiliation(s)
| | - Karen Santa Cruz
- Department of Pathology, University of Minnesota, Minneapolis, MN
| | - Laura S. Hemmy
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | | | | | | | | | - Jeffrey Kaye
- Department of Neurology, Oregon Health & Science University
| | - Kelvin Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | | | - Lon White
- Pacific Health Research Institute, Honolulu, HI
| | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, WA
- Department of Neurology, Oregon Health & Science University
| |
Collapse
|
94
|
Neuropathological associates of multiple cognitive functions in two community-based cohorts of older adults. J Int Neuropsychol Soc 2011; 17:602-14. [PMID: 21092373 PMCID: PMC3376403 DOI: 10.1017/s1355617710001426] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies of neuropathology-cognition associations are not common and have been limited by small sample sizes, long intervals between autopsy and cognitive testing, and lack of breadth of neuropathology and cognition variables. This study examined domain-specific effects of common neuropathologies on cognition using data (N = 652) from two large cohort studies of older adults. We first identified dimensions of a battery of 17 neuropsychological tests, and regional measures of Alzheimer's disease (AD) neuropathology. We then evaluated how cognitive factors were related to dimensions of AD and additional measures of cerebrovascular and Lewy Body disease, and also examined independent effects of brain weight. All cognitive domains had multiple neuropathology determinants that differed by domain. Neocortical neurofibrillary tangles were the strongest predictors of most domains, while medial temporal tangles showed a weaker relationship with episodic memory. Neuritic plaques had relatively strong effects on multiple domains. Lewy bodies and macroscopic infarcts were associated with all domains, while microscopic infarcts had more limited associations. Brain weight was related to all domains independent of specific neuropathologies. Results show that cognition is complexly determined by multiple disease substrates. Neuropathological variables and brain weight contributed approximately a third to half of the explained variance in different cognitive domains.
Collapse
|
95
|
Miller DI, Taler V, Davidson PSR, Messier C. Measuring the impact of exercise on cognitive aging: methodological issues. Neurobiol Aging 2011; 33:622.e29-43. [PMID: 21514694 DOI: 10.1016/j.neurobiolaging.2011.02.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/24/2022]
Abstract
Physical exercise and fitness have been proposed as potential factors that promote healthy cognitive aging. Support for this hypothesis has come from cross sectional, longitudinal, and intervention studies. In the present review, we discuss several methodological problems that limit the conclusions of many studies. The lack of consensus on how to retrospectively measure exercise intensity is a major difficulty for all studies that attempt to estimate lifelong impact of exercise on cognitive performance in older adults. Intervention studies have a much better capacity to establish causality, but still suffer from difficulties arising from inadequate control groups and the choice and modality of administration of cognitive measures. We argue that, while the association between exercise and preserved cognition during aging is clearly demonstrated, the specific hypothesis that physical exercise is a cause of healthy cognitive aging has yet to be validated. A number of factors could mediate the exercise-cognition association, including depression, and social or cognitive stimulation. The complex interactions among these 3 factors and the potential impact of exercise on cognition remain to be systematically studied. At this time, the best prescription for lifestyle interventions for healthy cognitive aging would be sustained physical, social, and mental activities. What remains unknown is which type of activity might be most useful, and whether everyone benefits similarly from the same interventions.
Collapse
Affiliation(s)
- Delyana I Miller
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
96
|
Abstract
INTRODUCTION Alzheimer's disease (AD) is a debilitating neurodegenerative illness affecting over 35 million people worldwide. Solanezumab is a monoclonal antibody that binds to β-amyloid (Aβ), a protein that plays a key role in the pathogenesis of AD. The drug is currently being investigated in Phase III trials as a disease-modifying treatment for AD. AREAS COVERED This paper reviews literature on solanezumab that is available in PubMed from 2008 to 2010, other treatment trials in clinicaltrials.gov and published abstracts from conferences. The article also provides a discussion of the early trials of AN1792 and an overview of the immunotherapies currently in development. The authors provide the reader with a critical appraisal of the to-date clinical trial data on solanezumab and its implications for the broader field of immunotherapies for AD. EXPERT OPINION Solanezumab can neutralize soluble Aβ peptides, which may represent the more neurotoxic of the Aβ species. Phase II findings support the compound's safety, which has been a concern for some Aβ immunotherapies. Cerebrospinal and plasma biomarker changes with solanezumab treatment are encouraging. Results of the ongoing Phase III trials will be instrumental in determining the drug's clinical significance.
Collapse
Affiliation(s)
- Hossein Samadi
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, 760 Westwood Plaza RM C8-193, Los Angeles, CA 90024, USA
| | | |
Collapse
|
97
|
Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:331-9. [PMID: 21112312 DOI: 10.1016/j.pnpbp.2010.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/13/2010] [Accepted: 10/29/2010] [Indexed: 01/01/2023]
Abstract
'Brain and cognitive reserve' (BCR) refers here to the accumulated neuroprotective reserve and capacity for functional compensation induced by the chronic enhancement of mental and physical activity. BCR is thought to protect against, and compensate for, a range of different neurodegenerative diseases, as well as other neurological and psychiatric disorders. In this review we will discuss BCR, and its potential mechanisms, in neurodegenerative disorders, with a focus on Huntington's disease (HD) and Alzheimer's disease (AD). Epidemiological studies of AD, and other forms of dementia, provided early evidence for BCR. The first evidence for the beneficial effects of enhanced mental and physical activity, and associated mechanistic insights, in an animal model of neurodegenerative disease was provided by experiments using HD transgenic mice. More recently, experiments on animal models of HD, AD and various other brain disorders have suggested potential molecular and cellular mechanisms underpinning BCR. We propose that sophisticated insight into the processes underlying BCR, and identification of key molecules mediating these beneficial effects, will pave the way for therapeutic advances targeting these currently incurable neurodegenerative diseases.
Collapse
|
98
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
99
|
Tate DF, Neeley ES, Norton MC, Tschanz JT, Miller MJ, Wolfson L, Hulette C, Leslie C, Welsh-Bohmer KA, Plassman B, Bigler ED. Intracranial volume and dementia: some evidence in support of the cerebral reserve hypothesis. Brain Res 2010; 1385:151-62. [PMID: 21172323 DOI: 10.1016/j.brainres.2010.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 12/02/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
The brain reserve hypothesis has been posited as being one important mediating factor for developing dementia, especially Alzheimer's disease (AD). Evidence for this hypothesis is mixed though different methodologies have made these findings difficult to interpret. We examined imaging data from a large cohort (N=194) of mixed dementia patients and controls, 65years old and older from the Cache County, Utah Study of Memory and Aging for evidence of the brain reserve hypothesis using total intracranial volume (TICV) as a quantitative measure of pre-morbid brain size and a vicarious indicator of reserve. A broader spectrum of non-demented elderly control subjects from previous studies was also included for comparison (N=423). In addition, non-parametric Classification and Regression Tree (CART) analyses were performed to model group heterogeneity and identify any subgroups of patients where TICV might be an important predictor of dementia. Parametrically, no main effect was found for TICV when predicting a dementia diagnosis; however, the CART analysis did reveal important TICV subgroups, including a sex differential wherein ε4 APOE allele presence in males and low TICV predicted AD classification. TICV, APOE, and other potential mediator/moderator variables are discussed in the context of the brain reserve hypothesis.
Collapse
Affiliation(s)
- D F Tate
- Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chételat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, Faux NG, Ellis KA, Salvado O, Szoeke C, Martins RN, Ames D, Masters CL, Rowe CC. Larger temporal volume in elderly with high versus low beta-amyloid deposition. ACTA ACUST UNITED AC 2010; 133:3349-58. [PMID: 20739349 DOI: 10.1093/brain/awq187] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Amyloid deposition is one of the main hallmarks of Alzheimer's disease thought to eventually cause neuronal death. Post-mortem and neuroimaging studies have consistently reported cases with documented normal cognition despite high β-amyloid burden. It is of great interest to understand what differentiates these particular subjects from those without β-amyloid deposition or with both β-amyloid deposition and cognitive deficits, i.e. what allows these subjects to resist the damage of the pathological lesions. [¹¹C]Pittsburgh compound B positron emission tomography and magnetic resonance brain scans were obtained in 149 participants including healthy controls and patients with subjective cognitive impairment, mild cognitive impairment and Alzheimer's disease. Magnetic resonance data were compared between high versus low-[11C]Pittsburgh compound B cases, and between high-[¹¹C]Pittsburgh compound B cases with versus those without cognitive deficits. Larger temporal (including hippocampal) grey matter volume, associated with better episodic memory performance, was found in high- versus low-[¹¹C]Pittsburgh compound B healthy controls. The same finding was obtained using different [¹¹C]Pittsburgh compound B thresholds, correcting [¹¹C]Pittsburgh compound B data for partial averaging, using age, education, Mini-Mental State Examination, apolipoprotein E4 and sex-matched subsamples, and using manual hippocampal delineation instead of voxel-based analysis. By contrast, in participants with subjective cognitive impairment, significant grey matter atrophy was found in high-[¹¹C]Pittsburgh compound B cases compared to low-[¹¹C]Pittsburgh compound B cases, as well as in high-[¹¹C]Pittsburgh compound B cases with subjective cognitive impairment, mild cognitive impairment and Alzheimer's disease compared to high-[¹¹C]Pittsburgh compound B healthy controls. Larger grey matter volume in high-[¹¹C]Pittsburgh compound B healthy controls may reflect either a tissue reactive response to β-amyloid or a combination of higher 'brain reserve' and under-representation of subjects with standard/low temporal volume in the high-[¹¹C]Pittsburgh compound B healthy controls. Our complementary analyses tend to support the latter hypotheses. Overall, our findings suggest that the deleterious effects of β-amyloid on cognition may be delayed in those subjects with larger brain (temporal) volume.
Collapse
Affiliation(s)
- Gaël Chételat
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|