51
|
Skillbäck T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, Lindberg O, Mielke MM, Zettergren A, Ryden L, Westman E, Wahlund L, Skoog I, Kern S. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12141. [PMID: 33748393 PMCID: PMC7968119 DOI: 10.1002/dad2.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand. METHODS Participants were derived from two Swedish samples: the population-based H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the population-based study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age. RESULTS Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs. DISCUSSION The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Sara Shams
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Alejandra Machado
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Joana Pereira
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Olof Lindberg
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Michelle M. Mielke
- Department of Health Sciences ResearchDivision of Epidemiology and Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Anna Zettergren
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Lina Ryden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Eric Westman
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Lars‐Olof Wahlund
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| |
Collapse
|
52
|
Remnestål J, Bergström S, Olofsson J, Sjöstedt E, Uhlén M, Blennow K, Zetterberg H, Zettergren A, Kern S, Skoog I, Nilsson P, Månberg A. Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds. ALZHEIMERS RESEARCH & THERAPY 2021; 13:54. [PMID: 33653397 PMCID: PMC7923505 DOI: 10.1186/s13195-021-00789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Background Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer’s disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. Methods In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. Results The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. Conclusions We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins’ role in AD pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00789-5.
Collapse
Affiliation(s)
- Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Evelina Sjöstedt
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mathias Uhlén
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.
| |
Collapse
|
53
|
Therriault J, Pascoal TA, Benedet AL, Tissot C, Savard M, Chamoun M, Lussier F, Kang MS, Berzgin G, Wang T, Fernandes-Arias J, Massarweh G, Soucy JP, Vitali P, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Frequency of Biologically Defined Alzheimer Disease in Relation to Age, Sex, APOE ε4, and Cognitive Impairment. Neurology 2021; 96:e975-e985. [PMID: 33443136 PMCID: PMC8055338 DOI: 10.1212/wnl.0000000000011416] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To assess the frequency of biologically defined Alzheimer disease (AD) in relation to age, sex, APOE ε4, and clinical diagnosis in a prospective cohort study evaluated with amyloid-PET and tau-PET. METHODS We assessed cognitively unimpaired (CU) elderly (n = 166), patients with amnestic mild cognitive impairment (n = 77), and patients with probable AD dementia (n = 62) who underwent evaluation by dementia specialists and neuropsychologists in addition to amyloid-PET with [18F]AZD4694 and tau-PET with [18F]MK6240. Individuals were grouped according to their AD biomarker profile. Positive predictive value for biologically defined AD was assessed in relation to clinical diagnosis. Frequency of AD biomarker profiles was assessed using logistic regressions with odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The clinical diagnosis of probable AD dementia demonstrated good agreement with biologically defined AD (positive predictive value 85.2%). A total of 7.88% of CU were positive for both amyloid-PET and tau-PET. Frequency of biologically defined AD increased with age (OR 1.14; p < 0.0001) and frequency of APOE ε4 allele carriers (single ε4: OR 3.82; p < 0.0001; double ε4: OR 17.55, p < 0.0001). CONCLUSION Whereas we observed strong, but not complete, agreement between clinically defined probable AD dementia and biomarker positivity for both β-amyloid and tau, we also observed that biologically defined AD was not rare in CU elderly. Abnormal tau-PET was almost exclusively observed in individuals with abnormal amyloid-PET. Our results highlight that even in tertiary care memory clinics, detailed evaluation by dementia specialists systematically underestimates the frequency of biologically defined AD and related entities. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that biologically defined AD (abnormal amyloid PET and tau PET) was observed in 85.2% of people with clinically defined AD and 7.88% of CU elderly.
Collapse
Affiliation(s)
- Joseph Therriault
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Tharick A Pascoal
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Andrea L Benedet
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Cecile Tissot
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Melissa Savard
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Mira Chamoun
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Firoza Lussier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Min Su Kang
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Gleb Berzgin
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Tina Wang
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Jaime Fernandes-Arias
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Gassan Massarweh
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Jean-Paul Soucy
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Paolo Vitali
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Paramita Saha-Chaudhuri
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Serge Gauthier
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada
| | - Pedro Rosa-Neto
- From the Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital (J.T., T.A.P., A.L.B., C.T., M.S., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., S.G., P.R.-N.), and the Departments of Neurology and Neurosurgery (J.T., T.A.P., A.L.B., C.T., M.C., F.L., M.S.K., G.B., T.W., J.F.-A., J.-P.S., P.V., S.G., P.R.-N.), Psychiatry (S.G., P.R.-N.), Radiochemistry (G.M.), and Epidemiology and Biostatistics (P.S.-C.), McGill University, Montreal; and Montreal Neurological Institute (J.T., T.A.P., A.L.B., C.T., F.L., M.S.K., G.B., T.W., J.F.-A., G.M., J.-P.S., P.R.-N.), Canada.
| |
Collapse
|
54
|
Skoog I, Kern S, Najar J, Guerreiro R, Bras J, Waern M, Zetterberg H, Blennow K, Zettergren A. A Non-APOE Polygenic Risk Score for Alzheimer's Disease Is Associated With Cerebrospinal Fluid Neurofilament Light in a Representative Sample of Cognitively Unimpaired 70-Year Olds. J Gerontol A Biol Sci Med Sci 2021; 76:983-990. [PMID: 33512503 PMCID: PMC8140047 DOI: 10.1093/gerona/glab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
The effect of Alzheimer's disease (AD) polygenic risk scores (PRS) on amyloid and tau pathophysiology and neurodegeneration in cognitively unimpaired older adults is not known in detail. This study aims to investigate non-APOE AD-PRS and APOE ε4 in relation to AD pathophysiology evaluated by cerebrospinal fluid (CSF) biomarkers in a population-based sample of 70-year olds. A total of 303 dementia-free individuals from the Gothenburg H70 Birth Cohort Studies were included. Genotyping was performed using the NeuroChip, and AD-PRS were calculated. CSF levels of amyloid-β (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), neurogranin (Ng), and neurofilament light (NfL) were measured with enzyme-linked immunosorbent assay. Associations were found between non-APOE PRS and both NfL (p = .001) and Aβ42 (p = .02), and between APOE ε4 and Aβ42 (p = 1e-10), t-tau (p = 5e-4), and p-tau (p = .002). Similar results were observed when only including individuals with CDR = 0, except for no evidence of an association between non-APOE PRS and Aβ42. There was an interaction between non-APOE PRS and Aβ42 pathology status in relation to NfL (p = .005); association was only present in individuals without Aβ42 pathology (p = 3e-4). In relation to Aβ42, there was a borderline interaction (p = .06) between non-APOE PRS and APOE ε4; association was present in ε4 carriers only (p = .03). Similar results were observed in individuals with CDR = 0 (n = 246). In conclusion, among cognitively healthy 70-year olds from the general population, genetic risk of AD beyond the APOE locus was associated with NfL in individuals without Aβ42 pathology, and with Aβ42 in APOE ε4 carriers, suggesting these associations are driven by different mechanisms.
Collapse
Affiliation(s)
- Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Jenna Najar
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden,Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom,UK Dementia Research Institute at UCL, London, United Kingdom,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Sweden,Address correspondence to: Anna Zettergren, PhD, Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Wallinsgatan 6, 431 41 Mölndal, Sweden. E-mail:
| |
Collapse
|
55
|
Lee S, Cho EJ, Kwak HB. Personalized Healthcare for Dementia. Healthcare (Basel) 2021; 9:healthcare9020128. [PMID: 33525656 PMCID: PMC7910906 DOI: 10.3390/healthcare9020128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Dementia is one of the most common health problems affecting older adults, and the population with dementia is growing. Dementia refers to a comprehensive syndrome rather than a specific disease and is characterized by the loss of cognitive abilities. Many factors are related to dementia, such as aging, genetic profile, systemic vascular disease, unhealthy diet, and physical inactivity. As the causes and types of dementia are diverse, personalized healthcare is required. In this review, we first summarize various diagnostic approaches associated with dementia. Particularly, clinical diagnosis methods, biomarkers, neuroimaging, and digital biomarkers based on advances in data science and wearable devices are comprehensively reviewed. We then discuss three effective approaches to treating dementia, including engineering design, exercise, and diet. In the engineering design section, recent advances in monitoring and drug delivery systems for dementia are introduced. Additionally, we describe the effects of exercise on the treatment of dementia, especially focusing on the effects of aerobic and resistance training on cognitive function, and the effects of diets such as the Mediterranean diet and ketogenic diet on dementia.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Department of Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Eun-Jeong Cho
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (E.-J.C.)
- Correspondence: ; Tel.: +82-32-860-8183
| |
Collapse
|
56
|
Lindberg O, Kern S, Skoog J, Machado A, Pereira JB, Sacuiu SF, Wahlund LO, Blennow K, Zetterberg H, Zettergren A, Westman E, Skoog I. Effects of amyloid pathology and the APOE ε4 allele on the association between cerebrospinal fluid Aβ38 and Aβ40 and brain morphology in cognitively normal 70-years-olds. Neurobiol Aging 2021; 101:1-12. [PMID: 33548794 DOI: 10.1016/j.neurobiolaging.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022]
Abstract
The association between cerebrospinal fluid (CSF) amyloid beta (Aβ) Aβ38 or Aβ40 and brain grey- and white matter integrity is poorly understood. We studied this in 213 cognitively normal 70-year-olds, and in subgroups defined by presence/absence of the APOE ε4 allele and Aβ pathology: Aβ-/APOE-, Aβ+/APOE-, Aβ-/APOE+ and Aβ+/APOE+. CSF Aβ was quantified using ELISA and genotyping for APOE was performed. Low CSF Aβ42 defined Aβ plaque pathology. Brain volumes were assessed using Freesurfer-5.3, and white matter integrity using tract-based statistics in FSL. Aβ38 and Aβ40 were positively correlated with cortical thickness, some subcortical volumes and white matter integrity in the total sample, and in 3 of the subgroups: Aβ-/APOE-, Aβ+/APOE- and Aβ-/APOE+. In Aβ+/APOE+ subjects, higher Aβ38 and Aβ40 were linked to reduced cortical thickness and subcortical volumes. We hypothesize that production of all Aβ species decrease in brain regions with atrophy. In Aβ+/APOE+, Aβ-dysregulation may be linked to cortical atrophy in which high Aβ levels is causing pathological changes in the gray matter of the brain.
Collapse
Affiliation(s)
- Olof Lindberg
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Silke Kern
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Johan Skoog
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Alejandra Machado
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Simona F Sacuiu
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Skoog
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
57
|
Rådestig MA, Skoog J, Zetterberg H, Kern J, Zettergren A, Sacuiu S, Waern M, Wetterberg H, Blennow K, Skoog I, Kern S. Cognitive Performance and Cerebrospinal Fluid Markers in Preclinical Alzheimer's Disease: Results from the Gothenburg H70 Birth Cohort Studies. J Alzheimers Dis 2021; 79:225-235. [PMID: 33216028 DOI: 10.3233/jad-200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We have previously shown that older adults with preclinical Alzheimer's disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. OBJECTIVE We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. METHODS The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. RESULTS Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). CONCLUSION Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.
Collapse
Affiliation(s)
- Maya Arvidsson Rådestig
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johan Skoog
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychology, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology (H.Z.), Queen Square, London, United Kingdom.,The UK Dementia Research Institute at UCL, London, United Kingdom
| | - Jürgen Kern
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anna Zettergren
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Simona Sacuiu
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Margda Waern
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hanna Wetterberg
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ingmar Skoog
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Silke Kern
- Center for Ageing and Health (AgeCap) at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
58
|
Rafii MS, Ances BM, Schupf N, Krinsky‐McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Lai F, Rosas HD, Zaman S, Petersen ME, Strydom A, Fortea J, Handen B, O'Bryant S. The AT(N) framework for Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12062. [PMID: 33134477 PMCID: PMC7588820 DOI: 10.1002/dad2.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
The National Institute on Aging in conjunction with the Alzheimer's Association (NIA-AA) recently proposed a biological framework for defining the Alzheimer's disease (AD) continuum. This new framework is based upon the key AD biomarkers (amyloid, tau, neurodegeneration, AT[N]) instead of clinical symptoms and represents the latest understanding that the pathological processes underlying AD begin decades before the manifestation of symptoms. By using these same biomarkers, individuals with Down syndrome (DS), who are genetically predisposed to developing AD, can also be placed more precisely along the AD continuum. The A/T(N) framework is therefore thought to provide an objective manner by which to select and enrich samples for clinical trials. This new framework is highly flexible and allows the addition of newly confirmed AD biomarkers into the existing AT(N) groups. As biomarkers for other pathological processes are validated, they can also be added to the AT(N) classification scheme, which will allow for better characterization and staging of AD in DS. These biological classifications can then be merged with clinical staging for an examination of factors that impact the biological and clinical progression of the disease. Here, we leverage previously published guidelines for the AT(N) framework to generate such a plan for AD among adults with DS.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Beau M. Ances
- Center for Advanced Medicine NeuroscienceWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain/G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological Institute of New York, Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Sharon J. Krinsky‐McHale
- Department of PsychologyNYS Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wayne Silverman
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- Department of PathologyGillespie Neuroscience Research Facility, University of CaliforniaIrvineCaliforniaUSA
| | - Brad Christian
- Department of Medical Physics and PsychiatryUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - H. Diana Rosas
- Departments of Neurology and RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Shahid Zaman
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Melissa E. Petersen
- Department of Family Medicine and Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Fortea
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sid O'Bryant
- Institute for Translational Research and Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
59
|
The preclinical amyloid sensitive composite to determine subtle cognitive differences in preclinical Alzheimer's disease. Sci Rep 2020; 10:13583. [PMID: 32788669 PMCID: PMC7423599 DOI: 10.1038/s41598-020-70386-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, the focus of Alzheimer's disease (AD) research has shifted from the clinical stage to the preclinical stage. We, therefore, aimed to develop a cognitive composite score that can detect the subtle cognitive differences between the amyloid positive (Aβ+) and negative (Aβ-) status in cognitively normal (CN) participants. A total of 423 CN participants with Aβ positron emission tomography images were recruited. The multiple-indicators multiple-causes model found the latent mean difference between the Aβ+ and Aβ- groups in the domains of verbal memory, visual memory, and executive functions. The multivariate analysis of covariance (MANCOVA) showed that the Aβ+ group performed worse in tests related to the verbal and visual delayed recall, semantic verbal fluency, and inhibition of cognitive inference within the three cognitive domains. The Preclinical Amyloid Sensitive Composite (PASC) model we developed using the result of MANCOVA and the MMSE presented a good fit with the data. The accuracy of the PASC score when applied with age, sex, education, and APOE ε4 for distinguishing between Aβ+ and Aβ- was adequate (AUC = 0.764; 95% CI = 0.667-0.860) in the external validation set (N = 179). We conclude that the PASC can eventually contribute to facilitating more prevention trials in preclinical AD.
Collapse
|
60
|
Lu K, Nicholas JM, James S, Lane CA, Parker TD, Keshavan A, Keuss SE, Buchanan SM, Murray‐Smith H, Cash DM, Sudre CH, Malone IB, Coath W, Wong A, Henley SM, Fox NC, Richards M, Schott JM, Crutch SJ. Increased variability in reaction time is associated with amyloid beta pathology at age 70. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12076. [PMID: 32789161 PMCID: PMC7416668 DOI: 10.1002/dad2.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION We investigated whether life-course factors and neuroimaging biomarkers of Alzheimer's disease pathology predict reaction time (RT) performance in older adults. METHODS Insight 46 study participants, all born in the same week in 1946 (n = 501; ages at assessment = 69 to 71 years), completed a 2-choice RT task and amyloid beta (Aβ) positron emission tomography and MR imaging. We tested for associations between task outcomes (RT; error rate; intra-individual variability in RT) and life-course predictors including childhood cognitive ability and education. In a subsample of 406 cognitively normal participants, we investigated associations between task outcomes and biomarkers including Aβ-positivity. RESULTS Cognitively normal Aβ-positive participants had 10% more variable RTs than Aβ-negative participants, despite having similar mean RTs. Childhood cognitive ability and education independently predicted task performance. DISCUSSION This study provides novel evidence that Aβ pathology is associated with poorer consistency of RT in cognitively normal older adults, at an age when dementia prevalence is still very low.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Jennifer M. Nicholas
- Department of Medical StatisticsLondon School of Hygiene and Tropical MedicineLondonUK
| | - Sarah‐Naomi James
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | - Christopher A. Lane
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Thomas D. Parker
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sarah E. Keuss
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sarah M. Buchanan
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Heidi Murray‐Smith
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - David M. Cash
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Carole H. Sudre
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of Medical PhysicsUniversity College LondonLondonUK
| | - Ian B. Malone
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - William Coath
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | - Susie M.D. Henley
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute at University College LondonLondonUK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCLUniversity College LondonLondonUK
| | - Jonathan M. Schott
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sebastian J. Crutch
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
61
|
Canevelli M, Remoli G, Bacigalupo I, Valletta M, Toccaceli Blasi M, Sciancalepore F, Bruno G, Cesari M, Vanacore N. Use of Biomarkers in Ongoing Research Protocols on Alzheimer's Disease. J Pers Med 2020; 10:jpm10030068. [PMID: 32722106 PMCID: PMC7564515 DOI: 10.3390/jpm10030068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to describe and discuss the state of the art of biomarker use in ongoing Alzheimer’s disease (AD) research. A review of 222 ongoing phase 1, 2, 3, and 4 protocols registered in the clinicaltrials.gov database was performed. All the trials (i) enrolling subjects with clinical disturbances and/or preclinical diagnoses falling within the AD continuum; and (ii) testing the efficacy and/or safety/tolerability of a therapeutic intervention, were analyzed. The use of biomarkers of amyloid deposition, tau pathology, and neurodegeneration among the eligibility criteria and/or study outcomes was assessed. Overall, 58.2% of ongoing interventional studies on AD adopt candidate biomarkers. They are mostly adopted by studies at the preliminary stages of the drug development process to explore the safety profile of novel therapies, and to provide evidence of target engagement and disease-modifying properties. The biologically supported selection of participants is mostly based on biomarkers of amyloid deposition, whereas the use of biomarkers as study outcomes mostly relies on markers of neurodegeneration. Biomarkers play an important role in the design and conduction of research protocols targeting AD. Nevertheless, their clinical validity, utility, and cost-effectiveness in the “real world” remain to be clarified.
Collapse
Affiliation(s)
- Marco Canevelli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
- Correspondence: ; Tel./Fax: +39-(06)-4991-4604
| | - Giulia Remoli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
| | - Martina Valletta
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Marco Toccaceli Blasi
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Francesco Sciancalepore
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (G.R.); (M.V.); (M.T.B.); (F.S.); (G.B.)
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, 00161 Rome, Italy; (I.B.); (N.V.)
| |
Collapse
|
62
|
Ebenau JL, Timmers T, Wesselman LMP, Verberk IMW, Verfaillie SCJ, Slot RER, van Harten AC, Teunissen CE, Barkhof F, van den Bosch KA, van Leeuwenstijn M, Tomassen J, Braber AD, Visser PJ, Prins ND, Sikkes SAM, Scheltens P, van Berckel BNM, van der Flier WM. ATN classification and clinical progression in subjective cognitive decline: The SCIENCe project. Neurology 2020; 95:e46-e58. [PMID: 32522798 PMCID: PMC7371376 DOI: 10.1212/wnl.0000000000009724] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate the relationship between the ATN classification system (amyloid, tau, neurodegeneration) and risk of dementia and cognitive decline in individuals with subjective cognitive decline (SCD). Methods We classified 693 participants with SCD (60 ± 9 years, 41% women, Mini-Mental State Examination score 28 ± 2) from the Amsterdam Dementia Cohort and Subjective Cognitive Impairment Cohort (SCIENCe) project according to the ATN model, as determined by amyloid PET or CSF β-amyloid (A), CSF p-tau (T), and MRI-based medial temporal lobe atrophy (N). All underwent extensive neuropsychological assessment. For 342 participants, follow-up was available (3 ± 2 years). As a control population, we included 124 participants without SCD. Results Fifty-six (n = 385) participants had normal Alzheimer disease (AD) biomarkers (A–T–N–), 27% (n = 186) had non-AD pathologic change (A–T–N+, A–T+N–, A–T+N+), 18% (n = 122) fell within the Alzheimer continuum (A+T–N–, A+T–N+, A+T+N–, A+T+N+). ATN profiles were unevenly distributed, with A–T+N+, A+T–N+, and A+T+N+ containing very few participants. Cox regression showed that compared to A–T–N–, participants in A+ profiles had a higher risk of dementia with a dose–response pattern for number of biomarkers affected. Linear mixed models showed participants in A+ profiles showed a steeper decline on tests addressing memory, attention, language, and executive functions. In the control group, there was no association between ATN and cognition. Conclusions Among individuals presenting with SCD at a memory clinic, those with a biomarker profile A–T+N+, A+T–N–, A+T+N–, and A+T+N+ were at increased risk of dementia, and showed steeper cognitive decline compared to A–T–N– individuals. These results suggest a future where biomarker results could be used for individualized risk profiling in cognitively normal individuals presenting at a memory clinic.
Collapse
Affiliation(s)
- Jarith L Ebenau
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden.
| | - Tessa Timmers
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Linda M P Wesselman
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Inge M W Verberk
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Sander C J Verfaillie
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Rosalinde E R Slot
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Argonde C van Harten
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Charlotte E Teunissen
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Frederik Barkhof
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Karlijn A van den Bosch
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Mardou van Leeuwenstijn
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Jori Tomassen
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Anouk den Braber
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Pieter Jelle Visser
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Niels D Prins
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Sietske A M Sikkes
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Philip Scheltens
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Bart N M van Berckel
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Wiesje M van der Flier
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| |
Collapse
|
63
|
Goda A, Murata S, Nakano H, Matsuda H, Yokoe K, Mitsumoto H, Shiraiwa K, Abiko T, Horie J. Temporal Patterns in Performance of the 30 Second Chair-Stand Test Evince Differences in Physical and Mental Characteristics Among Community-Dwelling Older Adults in Japan. Healthcare (Basel) 2020; 8:healthcare8020146. [PMID: 32481571 PMCID: PMC7349553 DOI: 10.3390/healthcare8020146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/26/2022] Open
Abstract
Studies involving the 30 s chair-stand test (CS-30) have shown that subjects’ movements can vary during the test, and that these variations may follow several patterns. The present study aimed to define these different patterns and their respective incidences among a population of community-dwelling older adults in Japan. We also investigated, among the patterns identified, potential associations with physical and mental characteristics. The study population comprised 202 community-dwelling older adults. Subjects were classified into four groups based on how their CS-30 performance (defined through sit–stand–sit cycle count) changed over three successive 10 s segments: “steady-goers,” “fluctuators,” “decelerators,” and “accelerators.” Several other measures were also evaluated, including sit-up count, knee-extension strength, toe-grip strength, and Mini-Mental State Examination score. We found that steady-goers and decelerators comprised 70% of the sample. Fluctuators and steady-goers showed comparable physical function. Decelerators exhibited significant correlations between CS-30 score (total cycles) and tasks involving persistence and repetitive actions (p < 0.05). In addition, accelerators showed significantly stronger knee extension than steady-goers (p < 0.01). Differences in temporal patterns of CS-30 performance corresponded to differences in certain dimensions of physical and mental function. Our findings may be useful for planning and evaluating intervention programs aimed at long-term-care prevention among community-dwelling older adults.
Collapse
Affiliation(s)
- Akio Goda
- Correspondence: ; Tel.: +81-75-574-4313
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Huang SY, Zhu JX, Shen XN, Xu W, Ma YH, Li HQ, Dong Q, Tan L, Yu JT. Prevalence of the Preclinical Stages of Alzheimer's Disease in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2020; 75:483-492. [PMID: 32310174 DOI: 10.3233/jad-200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The National Institute on Aging and Alzheimer's Association proposed an ATN classification system which divided Alzheimer's disease biomarkers into three binary classes: amyloid deposition (A), tauopathy (T), and neurodegeneration or neuronal injury (N). OBJECTIVE To estimate the prevalence of each profile and to describe the demographic characteristics of each group in Chinese cognitively intact older adults. METHODS In this cross-sectional study, 561 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were classified into eight groups using cerebrospinal fluid amyloid-β 42/40 as A, phosphorylated tau as T, and total tau as N. Multinomial models were used to determine the estimated prevalence of the eight groups. RESULTS The number and proportion of 561 participants in each ATN profile were 254 A-T-N- (45.3%), 28 A-T+N- (5.0%), 21 A-T-N+ (3.7%), 71 A-T+N+ (12.7%), 78 A + T-N- (13.9%), 14 A + T+N- (2.5%), 21 A + T-N+ (3.7%), and 74 A + T+N+ (13.2%). Individuals in N+ groups tend to be older than N- groups. A+ groups included more female individuals. The prevalence of A-T-N- profile declined with age, while that of A + T+N+ increased continuously. CONCLUSION This is the first work to estimate the prevalence of each ATN profile and describe the demographic characteristics of ATN profiles based on a Chinese cohort. The clinical implications of our findings need to be scrutinized further in longitudinal studies of the ATN classification system.
Collapse
Affiliation(s)
- Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Xia Zhu
- Department of Prevention and Health Protection, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
65
|
Vinciguerra F, Graziano M, Hagnäs M, Frittitta L, Tumminia A. Influence of the Mediterranean and Ketogenic Diets on Cognitive Status and Decline: A Narrative Review. Nutrients 2020; 12:E1019. [PMID: 32276339 PMCID: PMC7231139 DOI: 10.3390/nu12041019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia, accounting for up to 70% of dementia cases. AD is a slowly progressive disease, which causes global mental deterioration by affecting various cognitive areas. A growing body of evidence has demonstrated that lifestyle habits and nutritional patterns could delay the natural course of the neurodegeneration process. There is no single dietary pattern unequivocally proven to prevent AD. Nevertheless, epidemiological data suggest that by adopting several dietary habits, especially if accompanied with a healthy lifestyle, the negative consequences of AD could potentially be delayed. Alongside with others, two specific eating patterns have been well investigated concerning their potential beneficial effect on cognitive status: the Mediterranean diet (MedDi) and the Ketogenic Diet (KD). Despite the different underlying mechanisms, both of them have demonstrated a fairly profitable role in reducing or delaying cognitive impairment. The aim of the present narrative review is to overview the existing research on the efficacy of MedDi and KD against AD-related cognitive decline, focusing on the proposed protective mechanisms of action. Although the current knowledge on this complex topic does not allow us, at this point, to make exhaustive conclusions, this information could be of help in order to better characterize the possible role of MedDi and KD as nonpharmacological therapies in the treatment of AD and, more generically, of neurodegenerative disorders.
Collapse
Affiliation(s)
- Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Marco Graziano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Maria Hagnäs
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Center for Life Course Health Research, University of Oulu, Aapistie 5/PO Box 5000, 90014 Oulu, Finland
- Rovaniemi Health Center, Koskikatu 25, 96200 Rovaniemi, Finland
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Diabetes, Obesity and Dietetic Center, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy
| | - Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| |
Collapse
|
66
|
Hessen E, Kirsebom BE, Eriksson CM, Eliassen CF, Nakling AE, Bråthen G, Waterloo KK, Aarsland D, Fladby T. In Brief Neuropsychological Assessment, Amnestic Mild Cognitive Impairment (MCI) Is associated with Cerebrospinal Fluid Biomarkers for Cognitive Decline in Contrast to the Prevailing NIA-AA MCI Criterion. J Alzheimers Dis 2020; 67:715-723. [PMID: 30614807 PMCID: PMC6398834 DOI: 10.3233/jad-180964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: In the care of persons with cognitive problems, it is important to use a valid mild cognitive impairment (MCI) criterion that discriminates well between normal and pathological aging. Objective: To find the brief neuropsychological screening criterion that best correlates with cerebrospinal fluid (CSF) biomarkers for cognitive decline and dementia in persons seeking help for cognitive problems. Methods: 452 consecutively recruited patients (age 40–80 years) from memory-clinics in the Norwegian national multicentre longitudinal study Dementia Disease Initiation were included. CSF data as well as full data from brief neuropsychological screening were available for all patients. Results: Amnestic MCI, including at least one memory test below T-score 40, outperformed the conventional US National Institute on Aging-Alzheimer’s Association (NIA-AA) MCI criterion. Only amnestic MCI was significantly associated with biomarker pattern of NIA-AA stage 2 (low CSF Aβ42 concentrations and elevated tau) in multivariate regression analysis. Conclusions: The finding that amnestic MCI based on brief neuropsychological assessment is significantly associated with CSF biomarkers for cognitive decline and Alzheimer’s disease is in accordance with longitudinal studies that find memory impairment; both in itself and especially in combination with other cognitive deficit to constitute a risk factor for subsequent cognitive decline and dementia. The prevalence of pathological biomarkers for Alzheimer’s disease is common in the elderly and the clinical significance of present findings depend on longitudinal validation.
Collapse
Affiliation(s)
- Erik Hessen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø
| | - Cecilia Magdalena Eriksson
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway.,Department of Geriatric Psychiatry, Akershus University Hospital, Lørenskog, Norway
| | - Carl Fredrik Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway
| | | | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Heath Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Knut K Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø
| | - Dag Aarsland
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
67
|
Rabipour S, Rajagopal S, Yu E, Pasvanis S, Lafaille-Magnan ME, Breitner J, Rajah MN. APOE4 Status is Related to Differences in Memory-Related Brain Function in Asymptomatic Older Adults with Family History of Alzheimer's Disease: Baseline Analysis of the PREVENT-AD Task Functional MRI Dataset. J Alzheimers Dis 2020; 76:97-119. [PMID: 32474466 PMCID: PMC7369116 DOI: 10.3233/jad-191292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Episodic memory decline is one of the earliest symptoms of late-onset Alzheimer's disease (AD). Older adults with the apolipoprotein E ɛ4 (+APOE4) genetic risk factor for AD may exhibit altered patterns of memory-related brain activity years prior to initial symptom onset. OBJECTIVE Here we report the baseline episodic memory task functional MRI results from the PRe-symptomatic EValuation of Experimental or Novel Treatments for Alzheimer's Disease cohort in Montreal, Canada, in which 327 healthy older adults were scanned within 15 years of their parent's conversion to AD. METHODS Volunteers were scanned as they encoded and retrieved object-location spatial source associations. The task was designed to discriminate between brain activity related to spatial source recollection and object-only (recognition) memory. We used multivariate partial least squares (PLS) to test the hypothesis that +APOE4 adults with family history of AD would exhibit altered patterns of brain activity in the recollection-related memory network, comprised of medial frontal, parietal, and medial temporal cortices, compared to APOE4 non-carriers (-APOE4). We also examined group differences in the correlation between event-related brain activity and memory performance. RESULTS We found group similarities in memory performance and in task-related brain activity in the recollection network, but differences in brain activity-behavior correlations in ventral occipito-temporal, medial temporal, and medial prefrontal cortices during episodic encoding. CONCLUSION These findings are consistent with previous literature on the influence of APOE4 on brain activity and provide new perspective on potential gene-based differences in brain-behavior relationships in people with first-degree family history of AD.
Collapse
Affiliation(s)
- Sheida Rabipour
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | | | - Elsa Yu
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Stamatoula Pasvanis
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
| | - Marie-Elyse Lafaille-Magnan
- Department of Psychiatry, McGill University, Montreal, Canada
- Center for Studies on Prevention of Alzheimer’s Disease, Montreal, Canada
- Lady Davis Center for Medical Research, Jewish General Hospital, Montreal, Canada
| | - John Breitner
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
- Center for Studies on Prevention of Alzheimer’s Disease, Montreal, Canada
| | | | - M. Natasha Rajah
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
68
|
Betthauser TJ, Koscik RL, Jonaitis EM, Allison SL, Cody KA, Erickson CM, Rowley HA, Stone CK, Mueller KD, Clark LR, Carlsson CM, Chin NA, Asthana S, Christian BT, Johnson SC. Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain 2020; 143:320-335. [PMID: 31886494 PMCID: PMC6935717 DOI: 10.1093/brain/awz378] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 11/14/2022] Open
Abstract
This study investigated differences in retrospective cognitive trajectories between amyloid and tau PET biomarker stratified groups in initially cognitively unimpaired participants sampled from the Wisconsin Registry for Alzheimer's Prevention. One hundred and sixty-seven initially unimpaired individuals (baseline age 59 ± 6 years; 115 females) were stratified by elevated amyloid-β and tau status based on 11C-Pittsburgh compound B (PiB) and 18F-MK-6240 PET imaging. Mixed effects models were used to determine if longitudinal cognitive trajectories based on a composite of cognitive tests including memory and executive function differed between biomarker groups. Secondary analyses investigated group differences for a variety of cross-sectional health and cognitive tests, and associations between 18F-MK-6240, 11C-PiB, and age. A significant group × age interaction was observed with post hoc comparisons indicating that the group with both elevated amyloid and tau pathophysiology were declining approximately three times faster in retrospective cognition compared to those with just one or no elevated biomarkers. This result was robust against various thresholds and medial temporal lobe regions defining elevated tau. Participants were relatively healthy and mostly did not differ between biomarker groups in health factors at the beginning or end of study, or most cognitive measures at study entry. Analyses investigating association between age, MK-6240 and PiB indicated weak associations between age and 18F-MK-6240 in tangle-associated regions, which were negligible after adjusting for 11C-PiB. Strong associations, particularly in entorhinal cortex, hippocampus and amygdala, were observed between 18F-MK-6240 and global 11C-PiB in regions associated with Braak neurofibrillary tangle stages I-VI. These results suggest that the combination of pathological amyloid and tau is detrimental to cognitive decline in preclinical Alzheimer's disease during late middle-age. Within the Alzheimer's disease continuum, middle-age health factors likely do not greatly influence preclinical cognitive decline. Future studies in a larger preclinical sample are needed to determine if and to what extent individual contributions of amyloid and tau affect cognitive decline. 18F-MK-6240 shows promise as a sensitive biomarker for detecting neurofibrillary tangles in preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Tobey J Betthauser
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Samantha L Allison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Karly A Cody
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Claire M Erickson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Howard A Rowley
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles K Stone
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly D Mueller
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsay R Clark
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Nathaniel A Chin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
69
|
Jack CR, Therneau TM, Weigand SD, Wiste HJ, Knopman DS, Vemuri P, Lowe VJ, Mielke MM, Roberts RO, Machulda MM, Graff-Radford J, Jones DT, Schwarz CG, Gunter JL, Senjem ML, Rocca WA, Petersen RC. Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging-Alzheimer's Association Research Framework. JAMA Neurol 2019; 76:1174-1183. [PMID: 31305929 PMCID: PMC6632154 DOI: 10.1001/jamaneurol.2019.1971] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Importance A National Institute on Aging-Alzheimer's Association (NIA-AA) workgroup recently published a research framework in which Alzheimer disease is defined by neuropathologic or biomarker evidence of β-amyloid plaques and tau tangles and not by clinical symptoms. Objectives To estimate the sex- and age-specific prevalence of 3 imaging biomarker-based definitions of the Alzheimer disease spectrum from the NIA-AA research framework and to compare these entities with clinically defined diagnostic entities commonly linked with Alzheimer disease. Design, Setting, and Participants The Mayo Clinic Study of Aging (MCSA) is a population-based cohort study of cognitive aging in Olmsted County, Minnesota. The MCSA in-person participants (n = 4660) and passively ascertained (ie, through the medical record rather than in-person) individuals with dementia (n = 553) aged 60 to 89 years were included. Subsets underwent amyloid positron emission tomography (PET) (n = 1524) or both amyloid and tau PET (n = 576). Therefore, this study included 3 nested cohorts examined between November 29, 2004, and June 5, 2018. Data were analyzed between February 19, 2018, and March 26, 2019. Main Outcomes and Measures The sex- and age-specific prevalence of the following 3 biologically defined diagnostic entities was estimated: Alzheimer continuum (abnormal amyloid regardless of tau status), Alzheimer pathologic change (abnormal amyloid but normal tau), and Alzheimer disease (abnormal amyloid and tau). These were compared with the prevalence of 3 clinically defined diagnostic groups (mild cognitive impairment or dementia, dementia, and clinically defined probable Alzheimer disease). Results The median (interquartile range) age was 77 (72-83) years in the clinical cohort (n = 5213 participants), 77 (70-83) years in the amyloid PET cohort (n = 1524 participants), and 77 (69-83) years in the tau PET cohort (n = 576 participants). There were roughly equal numbers of women and men. The prevalence of all diagnostic entities (biological and clinical) increased rapidly with age, with the exception of Alzheimer pathologic change. The prevalence of biological Alzheimer disease was greater than clinically defined probable Alzheimer disease for women and men. Among women, these values were 10% (95% CI, 6%-14%) vs 1% (95% CI, 1%-1%) at age 70 years and 33% (95% CI, 25%-41%) vs 10% (95% CI, 9%-12%) at age 85 years (P < .001). Among men, these values were 9% (95% CI, 5%-12%) vs 1% (95% CI, 0%-1%) at age 70 years and 31% (95% CI, 24%-38%) vs 9% (95% CI, 8%-11%) at age 85 years (P < .001). The only notable difference by sex was a greater prevalence of the mild cognitive impairment or dementia clinical category among men than women. Conclusions and Relevance Results of this study suggest that biologically defined Alzheimer disease is more prevalent than clinically defined probable Alzheimer disease at any age and is 3 times more prevalent at age 85 years among both women and men. This difference is mostly driven by asymptomatic individuals with biological Alzheimer disease. These findings illustrate the magnitude of the consequences on public health that potentially exist by intervening with disease-specific treatments to prevent symptom onset.
Collapse
Affiliation(s)
| | - Terry M. Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Stephen D. Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Heather J. Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | | | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michelle M. Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Walter A. Rocca
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Ronald C. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
70
|
Lue LF, Pai MC, Chen TF, Hu CJ, Huang LK, Lin WC, Wu CC, Jeng JS, Blennow K, Sabbagh MN, Yan SH, Wang PN, Yang SY, Hatsuta H, Morimoto S, Takeda A, Itoh Y, Liu J, Xie H, Chiu MJ. Age-Dependent Relationship Between Plasma Aβ40 and Aβ42 and Total Tau Levels in Cognitively Normal Subjects. Front Aging Neurosci 2019; 11:222. [PMID: 31551751 PMCID: PMC6734161 DOI: 10.3389/fnagi.2019.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Both amyloid plaques and neurofibrillary tangles are pathological hallmarks in the brains of patients with Alzheimer’s disease (AD). However, the constituents of these hallmarks, amyloid beta (Aβ) 40, Aβ42, and total Tau (t-Tau), have been detected in the blood of cognitively normal subjects by using an immunomagnetic reduction (IMR) assay. Whether these levels are age-dependent is not known, and their interrelation remains undefined. We determined the levels of these biomarkers in cognitively normal subjects of different age groups. A total of 391 cognitively normal subjects aged 23–91 were enrolled from hospitals in Asia, Europe, and North America. Healthy cognition was evaluated by NIA-AA guidelines to exclude subjects with mild cognitive impairment (MCI) and AD and by cognitive assessment using the Mini Mental State Examination and Clinical Dementia Rating (CDR). We examined the effect of age on plasma levels of Aβ40, Aβ42, and t-Tau and the relationship between these biomarkers during aging. Additionally, we explored age-related reference intervals for each biomarker. Plasma t-Tau and Aβ42 levels had modest but significant correlations with chronological age (r = 0.127, p = 0.0120 for t-Tau; r = −0.126, p = 0.0128 for Aβ42), ranging from ages 23 to 91. Significant positive correlations were detected between Aβ42 and t-Tau in the groups aged 50 years and older, with Rho values ranging from 0.249 to 0.474. Significant negative correlations were detected between Aβ40 and t-Tau from age 40 to 91 (r ranged from −0.293 to −0.582) and between Aβ40 and Aβ42 in the age groups of 30–39 (r = −0.562, p = 0.0235), 50–59 (r = −0.261, p = 0.0142), 60–69 (r = −0.303, p = 0.0004), and 80–91 (r = 0.459, p = 0.0083). We also provided age-related reference intervals for each biomarker. In this multicenter study, age had weak but significant effects on the levels of Aβ42 and t-Tau in plasma. However, the age group defined by decade revealed the emergence of a relationship between Aβ40, Aβ42, and t-Tau in the 6th and 7th decades. Validation of our findings in a large-scale and longitudinal study is warranted.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Civin Neuropathology Laboratory, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Che Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chau-Chung Wu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Marwan N Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, United States
| | - Sui-Hing Yan
- Department of Neurology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shieh-Yueh Yang
- MagQu Company Limited, New Taipei City, Taiwan.,MagQu LLC, Surprise, AZ, United States
| | - Hiroyuki Hatsuta
- Hatsuta Neurology Clinic, Osaka, Japan.,Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Morimoto
- Hatsuta Neurology Clinic, Osaka, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Jun Liu
- Departemnt of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiqun Xie
- Department of Neurology, Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
71
|
Yu JT, Li JQ, Suckling J, Feng L, Pan A, Wang YJ, Song B, Zhu SL, Li DH, Wang HF, Tan CC, Dong Q, Tan L, Mok V, Aisen PS, Weiner MM. Frequency and longitudinal clinical outcomes of Alzheimer's AT(N) biomarker profiles: A longitudinal study. Alzheimers Dement 2019; 15:1208-1217. [PMID: 31399333 DOI: 10.1016/j.jalz.2019.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We aimed to estimate the frequency of each AT(N) (β-amyloid deposition [A], pathologic tau [T], and neurodegeneration [N]) profile in different clinical diagnosis groups and to describe the longitudinal change in clinical outcomes of individuals in each group. METHODS Longitudinal change in clinical outcomes and conversion risk of AT(N) profiles are assessed using linear mixed-effects models and multivariate Cox proportional-hazard models, respectively. RESULTS Participants with A+T+N+ showed faster clinical progression than those with A-T-N- and A+T±N-. Compared with A-T-N-, participants with A+T+N± had an increased risk of conversion from cognitively normal (CN) to incident prodromal stage of Alzheimer's disease (AD), and from MCI to AD dementia. A+T+N+ showed an increased conversion risk when compared with A+T±N-. DISCUSSION The 2018 research framework may provide prognostic information of clinical change and progression. It may also be useful for targeted recruitment of participants with AD into clinical trials.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bo Song
- College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
| | - Shan-Liang Zhu
- Research Center for Mathematical Modeling, School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China
| | - De-Hu Li
- Research Center for Mathematical Modeling, School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Center for Prevention of Dementia, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Michael M Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
72
|
Dou KX, Zhang C, Tan CC, Xu W, Li JQ, Cao XP, Tan L, Yu JT. Genome-wide association study identifies CBFA2T3 affecting the rate of CSF Aβ 42 decline in non-demented elders. Aging (Albany NY) 2019; 11:5433-5444. [PMID: 31370031 PMCID: PMC6710044 DOI: 10.18632/aging.102125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/21/2019] [Indexed: 11/30/2022]
Abstract
Brain amyloid deposition is an early pathological event in Alzheimer's disease (AD), and abnormally low levels amyloid-β42 peptide (Aβ42) in cerebrospinal fluid (CSF) can be detected in preclinical AD. To identify the genetic determinants that regulate the rate of CSF Aβ42 decline among non-demented elders, we conducted a genome-wide association study involved 321 non-demented elders from Alzheimer's Disease Neuroimaging Initiative (ADNI) 1/GO/2 cohorts restricted to non-Hispanic Caucasians. A novel genome-wide significant association of higher annualized percent decline of CSF Aβ42 in the gene CBFA2T3 (CBFA2/RUNX1 translocation partner 3; rs13333659-T; p = 2.24 × 10-9) was identified. Besides displaying abnormal CSF Aβ42 levels, rs13333659-T carriers were more likely to exhibit a greater longitudinal cognitive decline (p = 0.029, β = 0.097) and hippocampal atrophy (p = 0.029, β = -0.160) in the non-demented elders, especially for the participants who were amyloid-positive at baseline. These findings suggest rs13333659 in CBFA2T3 as a risk locus to modulate the decline rate of CSF Aβ42 preceding the onset of clinical symptoms.
Collapse
Affiliation(s)
- Kai-Xin Dou
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
73
|
De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, Taylor CG, Aprile FA, Muyldermans S, Knowles TPJ, Vendruscolo M, Bryant C, Blennow K, Skoog I, Kern S, Zetterberg H, Klenerman D. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathol Commun 2019; 7:120. [PMID: 31349874 PMCID: PMC6659275 DOI: 10.1186/s40478-019-0777-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023] Open
Abstract
Soluble aggregates of amyloid-β (Aβ) have been associated with neuronal and synaptic loss in Alzheimer's disease (AD). However, despite significant recent progress, the mechanisms by which these aggregated species contribute to disease progression are not fully determined. As the analysis of human cerebrospinal fluid (CSF) provides an accessible window into the molecular changes associated with the disease progression, we characterised soluble aggregates present in CSF samples from individuals with AD, mild cognitive impairment (MCI) and healthy controls using a range of sensitive biophysical methods. We used super-resolution imaging and atomic force microscopy to characterise the size and structure of the aggregates present in CSF and correlate this with their ability to permeabilise lipid membranes and induce an inflammatory response. We found that these aggregates are extremely heterogeneous and exist in a range of sizes, varying both structurally and in their mechanisms of toxicity during the disease progression. A higher proportion of small aggregates of Aβ that can cause membrane permeabilization are found in MCI CSF; in established AD, a higher proportion of the aggregates were larger and more prone to elicit a pro-inflammatory response in glial cells, while there was no detectable change in aggregate concentration. These results show that large aggregates, some longer than 100 nm, are present in the CSF of AD patients and suggest that different neurotoxic mechanisms are prevalent at different stages of AD.
Collapse
|
74
|
Chan HN, Xu D, Ho SL, He D, Wong MS, Li HW. Highly sensitive quantification of Alzheimer's disease biomarkers by aptamer-assisted amplification. Am J Cancer Res 2019; 9:2939-2949. [PMID: 31244934 PMCID: PMC6568170 DOI: 10.7150/thno.29232] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease associated with the loss of neurons in the brain, is the most pervasive type of dementia; 47 million people are affected, and the number is expected to increase to more than 131 million by 2050, according to Alzheimer's Disease International. Both early diagnosis and continuous monitoring are crucial for early intervention, symptomatic treatment, monitoring of the efficacy of intervention and improved patient function. Beta-amyloid peptide, tau, and phosphorylated tau are useful for screening and diagnosis; meanwhile, simultaneous assessment of multiple biomarkers is of paramount importance for accurate disease diagnosis. Methods: Herein, we report a direct, inexpensive and ultrasensitive aptamer-based multiplex assay for the quantification of trace amounts of AD biomarkers in both human serum and cerebrospinal fluid (CSF) samples. In this newly developed assay, molecular recognition of an antibody-aptamer pair provides high specificity in target detection, and the use of a DNA amplification strategy affords high sensitivity, allowing quantification of AD biomarkers in both biological fluids in 1.5 h with only a diminutive amount of the sample consumed. A tailor-made turn-on fluorophore, namely, SPOH, was employed to label the antibody-aptamer hybrids and provide a strong fluorescence signal, which was then detected with a total internal reflection fluorescence microscopy electron-multiplying charge-coupled device (TIRFM-EMCCD) imaging system. The simultaneous detection of biomarkers was achieved by a direct shape-coded method in which the nanoplatforms can be distinguished from one another by their morphologies. Results: This assay demonstrated a lower detection limit (in the femtomolar range) for AD biomarkers than the previously reported antibody-antibody method. Conclusion: The developed assay holds tremendous clinical potential for early diagnosis of AD and monitoring of its progression.
Collapse
|
75
|
Prediction of Alzheimer's Pathological Changes in Subjective Cognitive Decline Using the Self-report Questionnaire and Neuroimaging Biomarkers. Dement Neurocogn Disord 2019; 18:19-29. [PMID: 31097969 PMCID: PMC6494779 DOI: 10.12779/dnd.2019.18.1.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Subjective cognitive decline (SCD) may be the first symptomatic stage of Alzheimer's disease (AD). Hence, a screening tool to characterize the patients' complaints and assess the risk of AD is required. We investigated the SCD neuroimaging biomarker distributions and the relevance between the self-report questionnaire and Alzheimer's pathologic changes. Methods Individuals aged 50 and above with consistent cognitive complaints without any objective cognitive impairments were eligible for the study. The newly developed questionnaire consisted of 2 parts; 10 questions translated from the ‘SCD-plus criteria’ and a Korean version of the cognitive failure questionnaire by Broadbent. All the subjects underwent physical examinations such as blood work, detailed neuropsychological tests, the self-report questionnaire, brain magnetic resonance imagings, and florbetaben positron emission tomography (PET) scans. Amyloid PET findings were interpreted using both visual rating and quantitative analysis. Group comparisons and association analysis were performed using SPSS (version 18.0). Results A total of 31 participants with SCD completed the study and 25.8% showed positive amyloid depositions. The degree of periventricular white matter hyperintensities (WMH) and hippocampal atrophy were more severe in amyloid-positive SCDs compared to the amyloid-negative group. In the self-reported questionnaire, the ‘informant's report a decline’ and ‘symptom's onset after 65 years of age’ were associated with more Alzheimer's pathologic changes. Conclusions Amyloid-positive SCDs differed from amyloid-negative SCDs on WMH, hippocampal atrophy, and a few self-reported clinical features, which gave clues on the prediction of AD pathology.
Collapse
|
76
|
Association of IL1RAP-related genetic variation with cerebrospinal fluid concentration of Alzheimer-associated tau protein. Sci Rep 2019; 9:2460. [PMID: 30792413 PMCID: PMC6385252 DOI: 10.1038/s41598-018-36650-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
A possible involvement of the gene IL1RAP (interleukin-1 receptor-associated protein) in the pathogenesis of Alzheimer’s disease (AD) has been suggested in GWASs of cerebrospinal fluid (CSF) tau levels and longitudinal change in brain amyloid burden. The aim of this study was to examine previously implicated genetic markers in and near IL1RAP in relation to AD risk, CSF tau and Aβ biomarkers, as well as cognitive decline, in a case (AD)-control study and an age homogenous population-based cohort. Genotyping of IL1RAP-related single nucleotide polymorphisms (SNPs), selected based on previous GWAS results, was performed. 3446 individuals (1154 AD cases and 2292 controls) were included in the analyses of AD risk, 1400 individuals (cognitively normal = 747, AD = 653) in the CSF biomarker analyses, and 861 individuals in the analyses of cognitive decline. We found no relation between IL1RAP-related SNPs and AD risk. However, CSF total-tau and phospho-tau were associated with the SNP rs9877502 (p = 6 × 10−3 and p = 5 × 10−4). Further, nominal associations (p = 0.03–0.05) were found between three other SNPs and CSF biomarker levels, or levels of cognitive performance and decline in a sub-sample from the general population. These results support previous studies suggesting an association of IL1RAP with disease intensity of AD.
Collapse
|
77
|
Parnetti L, Chipi E, Salvadori N, D'Andrea K, Eusebi P. Prevalence and risk of progression of preclinical Alzheimer's disease stages: a systematic review and meta-analysis. ALZHEIMERS RESEARCH & THERAPY 2019; 11:7. [PMID: 30646955 PMCID: PMC6334406 DOI: 10.1186/s13195-018-0459-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
Abstract
Background Alzheimer’s disease (AD) pathology begins several years before the clinical onset. The long preclinical phase is composed of three stages according to the 2011National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria, followed by mild cognitive impairment (MCI), a featured clinical entity defined as “due to AD”, or “prodromal AD”, when pathophysiological biomarkers (i.e., cerebrospinal fluid or positron emission tomography with amyloid tracer) are positive. In the clinical setting, there is a clear need to detect the earliest symptoms not yet fulfilling MCI criteria, in order to proceed to biomarker assessment for diagnostic definition, thus offering treatment with disease-modifying drugs to patients as early as possible. According to the available evidence, we thus estimated the prevalence and risk of progression at each preclinical AD stage, with special interest in Stage 3. Methods Cross-sectional and longitudinal studies published from April 2008 to May 2018 were obtained through MEDLINE-PubMed, screened, and systematically reviewed by four independent reviewers. Data from included studies were meta-analyzed using random-effects models. Heterogeneity was assessed by I2 statistics. Results Estimated overall prevalence of preclinical AD was 22% (95% CI = 18–26%). Rate of biomarker positivity overlapped in cognitively normal individuals and people with subjective cognitive decline. The risk of progression increases across preclinical AD stages, with individuals classified as NIA-AA Stage 3 showing the highest risk (73%, 95% CI = 40–92%) compared to those in Stage 2 (38%, 95% CI = 21–59%) and Stage 1 (20%, 95% CI = 10–34%). Conclusion Available data consistently show that risk of progression increases across the preclinical AD stages, where Stage 3 shows a risk of progression comparable to MCI due to AD. Accordingly, an effort should be made to also operationalize the diagnostic work-up in subjects with subtle cognitive deficits not yet fulfilling MCI criteria. The possibility to define, in the clinical routine, a patient as “pre-MCI due to AD” could offer these subjects the opportunity to use disease-modifying drugs at best. Electronic supplementary material The online version of this article (10.1186/s13195-018-0459-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Elena Chipi
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Katia D'Andrea
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
78
|
Rafii MS. Tau PET Imaging for Staging of Alzheimer's Disease in Down Syndrome. Dev Neurobiol 2018; 79:711-715. [PMID: 30536948 DOI: 10.1002/dneu.22658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) pathology and early-onset dementia develop almost universally in Down syndrome (DS). AD is defined neuropathologically by the presence of extracellular plaques of aggregated amyloid β protein and intracellular neurofibrillary tangles (NFTs) of aggregated hyperphosphorylated tau protein. The development of radiolabeled positron emission tomography (PET) ligands for amyloid plaques and tau tangles enables the longitudinal assessment of the spatial pattern of their accumulation in relation to symptomatology. Recent work indicates that amyloid pathology develops 15-20 years before neurodegeneration and symptom onset in the sporadic and autosomal dominant forms of AD, while tau pathology correlates more closely with symptomatic stages evidenced by cognitive decline and dementia. Recent work on AD biomarkers in DS illustrates similarities between DS and sporadic AD. It may soon be possible to apply recently developed staging classifications to DS to obtain a more nuanced understanding of the development AD in DS and to provide more accurate diagnosis and prognosis in the clinic.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, San Diego, California
| |
Collapse
|