51
|
Thomson LM, Mancuso CA, Wolfe KR, Khailova L, Niemiec S, Ali E, DiMaria M, Mitchell M, Twite M, Morgan G, Frank BS, Davidson JA. The proteomic fingerprint in infants with single ventricle heart disease in the interstage period: evidence of chronic inflammation and widespread activation of biological networks. Front Pediatr 2023; 11:1308700. [PMID: 38143535 PMCID: PMC10748388 DOI: 10.3389/fped.2023.1308700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Children with single ventricle heart disease (SVHD) experience significant morbidity across systems and time, with 70% of patients experiencing acute kidney injury, 33% neurodevelopmental impairment, 14% growth failure, and 5.5% of patients suffering necrotizing enterocolitis. Proteomics is a method to identify new biomarkers and mechanisms of injury in complex physiologic states. Methods Infants with SVHD in the interstage period were compared to similar-age healthy controls. Serum samples were collected, stored at -80°C, and run on a panel of 1,500 proteins in single batch analysis (Somalogic Inc., CO). Partial Least Squares-Discriminant Analysis (PLS-DA) was used to compare the proteomic profile of cases and controls and t-tests to detect differences in individual proteins (FDR <0.05). Protein network analysis with functional enrichment was performed in STRING and Cytoscape. Results PLS-DA readily discriminated between SVHD cases (n = 33) and controls (n = 24) based on their proteomic pattern alone (Accuracy = 0.96, R2 = 0.97, Q2 = 0.80). 568 proteins differed between groups (FDR <0.05). We identified 25 up-regulated functional clusters and 13 down-regulated. Active biological systems fell into six key groups: angiogenesis and cell proliferation/turnover, immune system activation and inflammation, altered metabolism, neural development, gastrointestinal system, and cardiac physiology and development. Conclusions We report a clear differentiation in the circulating proteome of patients with SVHD and healthy controls with >500 circulating proteins distinguishing the groups. These proteomic data identify widespread protein dysregulation across multiple biologic systems with promising biological plausibility as drivers of SVHD morbidity.
Collapse
Affiliation(s)
- Lindsay M. Thomson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher A. Mancuso
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly R. Wolfe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eiman Ali
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael DiMaria
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Max Mitchell
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark Twite
- Department of Anesthesia, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gareth Morgan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin S. Frank
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jesse A. Davidson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
52
|
Mayer AR, Meier TB, Ling JM, Dodd AB, Brett BL, Robertson-Benta CR, Huber DL, Van der Horn HJ, Broglio SP, McCrea MA, McAllister T. Increased brain age and relationships with blood-based biomarkers following concussion in younger populations. J Neurol 2023; 270:5835-5848. [PMID: 37594499 PMCID: PMC10632216 DOI: 10.1007/s00415-023-11931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harm J Van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, USA
| |
Collapse
|
53
|
Datta D, Gopinadhan A, Soto A, Bangirana P, Opoka RO, Conroy AL, Saykin AJ, Kawata K, John CC. Blood biomarkers of neuronal injury in paediatric cerebral malaria and severe malarial anaemia. Brain Commun 2023; 5:fcad323. [PMID: 38075948 PMCID: PMC10710298 DOI: 10.1093/braincomms/fcad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/04/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024] Open
Abstract
Persistent neurodisability is a known complication in paediatric survivors of cerebral malaria and severe malarial anaemia. Tau, ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein have proven utility as biomarkers that predict adverse neurologic outcomes in adult and paediatric disorders. In paediatric severe malaria, elevated tau is associated with mortality and neurocognitive complications. We aimed to investigate whether a multi-analyte panel including ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein can serve as biomarkers of brain injury associated with mortality and neurodisability in cerebral malaria and severe malarial anaemia. In a prospective cohort study of Ugandan children, 18 months to 12 years of age with cerebral malaria (n = 182), severe malarial anaemia (n = 158), and asymptomatic community children (n = 118), we measured admission blood levels of ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein. We investigated differences in biomarker levels, associations with mortality, blood-brain barrier integrity, neurodeficits and cognitive Z-scores in survivors up to 24-month follow-up. Admission ubiquitin C-terminal hydrolase-L1 levels were elevated >95th percentile of community children in 71 and 51%, and neurofilament-light chain levels were elevated >95th percentile of community children in 40 and 37% of children with cerebral malaria and severe malarial anaemia, respectively. Glial fibrillary acidic protein was not elevated in disease groups compared with controls. In cerebral malaria, elevated neurofilament-light chain was observed in 16 children who died in hospital compared with 166 survivors (P = 0.01); elevations in ubiquitin C-terminal hydrolase-L1 levels were associated with degree of blood-brain barrier disruption (P = 0.01); and the % predictive value for neurodeficits over follow-up (discharge, 6-, 12-, and 24 months) increased for ubiquitin C-terminal hydrolase-L1 (60, 67, 72, and 83), but not neurofilament-light chain (65, 68, 60, and 67). In cerebral malaria, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse memory scores in children <5 years at malaria episode who crossed to over 5 years old during follow-up cognitive testing [β -1.13 (95% confidence interval -2.05, -0.21), P = 0.02], and elevated neurofilament-light chain was associated with worse attention in children ≥5 years at malaria episode and cognitive testing [β -1.08 (95% confidence interval -2.05, -1.05), P = 0.03]. In severe malarial anaemia, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse attention in children <5 years at malaria episode and cognitive testing [β -0.42 (95% confidence interval -0.76, -0.07), P = 0.02]. Ubiquitin C-terminal hydrolase-L1 and neurofilament-light chain levels are elevated in paediatric cerebral malaria and severe malarial anaemia. In cerebral malaria, elevated neurofilament-light chain is associated with mortality whereas elevated ubiquitin C-terminal hydrolase-L1 is associated with blood-brain barrier dysfunction and neurodeficits over follow-up. In cerebral malaria, both markers are associated with worse cognition, while in severe malarial anaemia, only ubiquitin C-terminal hydrolase-L1 is associated with worse cognition.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alejandro Soto
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
- Global Health Uganda, P.O. Box 33842, Kampala, Uganda
| | - Robert O Opoka
- Global Health Uganda, P.O. Box 33842, Kampala, Uganda
- Aga Khan University Medical College, P.O. Box 30270, Nairobi, Kenya
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Indiana Alzheimer’s Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN 47405, USA
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
54
|
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int J Mol Sci 2023; 24:16267. [PMID: 38003454 PMCID: PMC10671762 DOI: 10.3390/ijms242216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetic, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| |
Collapse
|
55
|
Harris G, Stickland CA, Lim M, Goldberg Oppenheimer P. Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury. Cells 2023; 12:2589. [PMID: 37998324 PMCID: PMC10670390 DOI: 10.3390/cells12222589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.
Collapse
Affiliation(s)
- Georgia Harris
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Clarissa A. Stickland
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Lim
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
56
|
Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, Moriguchi S, Boileau I, Chao T, Nasser Z, Ishrat Husain M, Faiz K, Braga J, Meyer JH. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain 2023; 146:4469-4475. [PMID: 37602426 PMCID: PMC10629767 DOI: 10.1093/brain/awad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.
Collapse
Affiliation(s)
- Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Michael D Cusimano
- Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Erica L Vieira
- Molecular Neurobiology and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Sho Moriguchi
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
57
|
Rauchman SH, Pinkhasov A, Gulkarov S, Placantonakis DG, De Leon J, Reiss AB. Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury. Diagnostics (Basel) 2023; 13:3330. [PMID: 37958226 PMCID: PMC10650880 DOI: 10.3390/diagnostics13213330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
Collapse
Affiliation(s)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | | | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| |
Collapse
|
58
|
Graham NS, Sharp DJ. Dementia after traumatic brain injury. BMJ 2023; 383:2065. [PMID: 37857435 DOI: 10.1136/bmj.p2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Neil Sn Graham
- UK DRI Centre for Care Research and Technology, Imperial College London
- Department of Brain Sciences, Imperial College London
| | - David J Sharp
- UK DRI Centre for Care Research and Technology, Imperial College London
- Department of Brain Sciences, Imperial College London
| |
Collapse
|
59
|
Bernick C, Shan G, Ritter A, Ashton NJ, Blennow K, Lantero-Rodriguez J, Snellman A, Zetterberg H. Blood biomarkers and neurodegeneration in individuals exposed to repetitive head impacts. Alzheimers Res Ther 2023; 15:173. [PMID: 37828595 PMCID: PMC10571311 DOI: 10.1186/s13195-023-01310-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND It is unknown if fluid biomarkers reflective of brain pathologies are useful in detecting and following a neurodegenerative process in individuals exposed to repetitive head impacts. This study explores the relationship between blood biomarkers and longitudinal change in cognitive function and regional brain volumes in a cohort of professional fighters. METHODS Participants are drawn from a convenience sample of active and retired professional boxers and Mixed Martial Arts fighters and a control group with no prior exposure to head impacts. 3 T MRI brain imaging, plasma samples, and computerized cognitive testing were obtained at baseline and, for a subset, annually. MRI regional volumes were extracted, along with plasma levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), p-tau231, and N-terminal tau (NTA). Statistical analyses were performed to assess the relationship between plasma levels and regional brain volumes and cognitive performance at baseline and longitudinally. RESULTS One hundred forty active boxers (mean age: 31 with standard deviation (SD) of 8), 211 active MMA (mean age of 30 with SD of 5), 69 retired boxers (mean age 49 with SD of 9), and 52 control participants (mean age 36 with SD of 12) were included in the analyses. Baseline GFAP levels were highest in the retired boxers (retired boxers v. active MMA: p = 0.0191), whereas active boxers had higher levels of NfL (active boxers v. MMA: p = 0.047). GFAP showed an increase longitudinally in retired boxers that was associated with decreasing volumes of multiple cortical and subcortical structures (e.g., hippocampus: B = - 1.25, 95% CI, - 1.65 to - 0.85) and increase in lateral ventricle size (B = 1.75, 95% CI, 1.46 to 2.04). Furthermore, performance on cognitive domains including memory, processing speed, psychomotor speed, and reaction time declined over time with increasing GFAP (e.g., processing speed: B = - 0.04, 95% CI, - 0.07 to - 0.02; reaction time: B = 0.52, 95% CI, 0.28 to 0.76). Among active fighters, increasing levels of GFAP were correlated with lower thalamic (B = - 1.42, 95% CI, - 2.34 to -0.49) and corpus callosum volumes, along with worsening scores on psychomotor speed (B = 0.14, 95% CI, 0.01 to 0.27). CONCLUSION Longitudinal plasma GFAP levels may have a role in identifying individuals exposed to repetitive head impacts who are at risk of showing progressive regional atrophy and cognitive decline.
Collapse
Affiliation(s)
- Charles Bernick
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA.
| | - Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Aaron Ritter
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
60
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
61
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
62
|
Li C, Chen S, Siedhoff HR, Grant D, Liu P, Balderrama A, Jackson M, Zuckerman A, Greenlief CM, Kobeissy F, Wang KW, DePalma RG, Cernak I, Cui J, Gu Z. Low-intensity open-field blast exposure effects on neurovascular unit ultrastructure in mice. Acta Neuropathol Commun 2023; 11:144. [PMID: 37674234 PMCID: PMC10481586 DOI: 10.1186/s40478-023-01636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shanyan Chen
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Pei Liu
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ashley Balderrama
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Marcus Jackson
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
| | - Amitai Zuckerman
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomic Center, University of Missouri, Columbia, MO, 65211, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Kevin W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30310-1458, USA
- Atlanta VA Medical and Rehab Center, Decatur, GA, 30033, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, 31207, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Medical Science Building, M741, Columbia, MO, 65212, USA.
- Truman VA Hospital Research Service, Columbia, MO, 65201, USA.
| |
Collapse
|
63
|
Gard A, Vedung F, Piehl F, Khademi M, Wernersson MP, Rorsman I, Tegner Y, Pessah-Rasmussen H, Ruscher K, Marklund N. Cerebrospinal fluid levels of neuroinflammatory biomarkers are increased in athletes with persistent post-concussive symptoms following sports-related concussion. J Neuroinflammation 2023; 20:189. [PMID: 37592277 PMCID: PMC10433539 DOI: 10.1186/s12974-023-02864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
A sports-related concussion (SRC) is often caused by rapid head rotation at impact, leading to shearing and stretching of axons in the white matter and initiation of secondary inflammatory processes that may exacerbate the initial injury. We hypothesized that athletes with persistent post-concussive symptoms (PPCS) display signs of ongoing neuroinflammation, as reflected by altered profiles of cerebrospinal fluid (CSF) biomarkers, in turn relating to symptom severity. We recruited athletes with PPCS preventing sports participation as well as limiting work, school and/or social activities for ≥ 6 months for symptom rating using the Sport Concussion Assessment Tool, version 5 (SCAT-5) and for cognitive assessment using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Following a spinal tap, we analysed 27 CSF inflammatory biomarkers (pro-inflammatory chemokines and cytokine panels) by a multiplex immunoassay using antibodies as electrochemiluminescent labels to quantify concentrations in PPCS athletes, and in healthy age- and sex-matched controls exercising ≤ 2 times/week at low-to-moderate intensity. Thirty-six subjects were included, 24 athletes with PPCS and 12 controls. The SRC athletes had sustained a median of five concussions, the most recent at a median of 17 months prior to the investigation. CSF cytokines and chemokines levels were significantly increased in eight (IL-2, TNF-α, IL-15, TNF-β, VEGF, Eotaxin, IP-10, and TARC), significantly decreased in one (Eotaxin-3), and unaltered in 16 in SRC athletes when compared to controls, and two were un-detectable. The SRC athletes reported many and severe post-concussive symptoms on SCAT5, and 10 out of 24 athletes performed in the impaired range (Z < - 1.5) on cognitive testing. Individual biomarker concentrations did not strongly correlate with symptom rating or cognitive function. Limitations include evaluation at a single post-injury time point in relatively small cohorts, and no control group of concussed athletes without persisting symptoms was included. Based on CSF inflammatory marker profiling we find signs of ongoing neuroinflammation persisting months to years after the last SRC in athletes with persistent post-concussive symptoms. Since an ongoing inflammatory response may exacerbate the brain injury these results encourage studies of treatments targeting the post-injury inflammatory response in sports-related concussion.
Collapse
Affiliation(s)
- Anna Gard
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ia Rorsman
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Hélène Pessah-Rasmussen
- Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital EA-Blocket Plan 4, Klinikgatan 17A7, 221 85 Lund, Sweden
| |
Collapse
|
64
|
Hossain I, Mohammadian M, Maanpää HR, Takala RSK, Tenovuo O, van Gils M, Hutchinson P, Menon DK, Newcombe VF, Tallus J, Hirvonen J, Roine T, Kurki T, Blennow K, Zetterberg H, Posti JP. Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury. BMC Neurol 2023; 23:304. [PMID: 37582732 PMCID: PMC10426141 DOI: 10.1186/s12883-023-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. METHODS Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. RESULTS The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. CONCLUSION In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland.
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland.
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Intensive Care Medicine and Pain Management, Perioperative Services, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Turku, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
65
|
Xie L, Li W, Ye WM, Xiao Y, Ke WJ, Niu JJ, Yang TC. Serum Ubiquitin C-Terminal Hydrolase-L1, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain Are Good Entry Points and Biomarker Candidates for Neurosyphilis Diagnosis Among Patients Without Human Immunodeficiency Virus to Avoid Lumbar Puncture. Clin Infect Dis 2023; 77:472-479. [PMID: 36929815 DOI: 10.1093/cid/ciad158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Laboratory tests to diagnose neurosyphilis using cerebrospinal fluid (CSF) are currently disadvantageous as a lumbar puncture is required, which may result in patients with neurosyphilis missing an opportunity for early diagnosis. Thus, blood biomarker candidates that are more convenient and minimally invasive to collect for diagnosing neurosyphilis is urgently needed. METHODS This observational study aimed to analyze serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NF-L) levels in 153 patients without human immunodeficiency virus (HIV) and to evaluate their diagnostic performance in neurosyphilis compared with CSF. RESULTS Serum UCH-L1, GFAP, and NF-L levels were significantly higher in patients with neurosyphilis compared with patients with uncomplicated syphilis or non-syphilis. For the diagnosis of neurosyphilis, serum UCH-L1, GFAP, and NF-L revealed sensitivities of 90.20%, 80.40%, and 88.24%, and specificities of 92.16%, 78.43%, and 80.39%, respectively, at cutoff levels of 814.50 pg/mL, 442.70 pg/mL, and 45.19 pg/mL, respectively. In patients with syphilis, serum UCH-L1, GFAP, and NF-L levels correlated strongly or moderately with those in the CSF, with similar or better diagnostic performance than those in the CSF. The testing algorithms' sensitivity and specificity increased to 98.04% and 96.08%, respectively, when subjected to parallel and combination testing, respectively. CONCLUSIONS To avoid lumbar puncture, each serum UCH-L1, GFAP, and NF-L is a good entry point and biomarker candidate for the diagnosis of neurosyphilis among patients without HIV. These proteins used in concerto can further improve the diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei-Ming Ye
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Xiao
- Department of Hospital Infection Management, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Wu-Jian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen, China
| |
Collapse
|
66
|
Halicki MJ, Hind K, Chazot PL. Blood-Based Biomarkers in the Diagnosis of Chronic Traumatic Encephalopathy: Research to Date and Future Directions. Int J Mol Sci 2023; 24:12556. [PMID: 37628736 PMCID: PMC10454393 DOI: 10.3390/ijms241612556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease consistently associated with repetitive traumatic brain injuries (TBIs), which makes multiple professions, such as contact sports athletes and the military, especially susceptible to its onset. There are currently no approved biomarkers to diagnose CTE, thus it can only be confirmed through a post-mortem brain autopsy. Several imaging and cerebrospinal fluid biomarkers have shown promise in the diagnosis. However, blood-based biomarkers can be more easily obtained and quantified, increasing their clinical feasibility and potential for prophylactic use. This article aimed to comprehensively review the studies into potential blood-based biomarkers of CTE, discussing common themes and limitations, as well as suggesting future research directions. While the interest in blood-based biomarkers of CTE has recently increased, the research is still in its early stages. The main issue for many proposed biomarkers is their lack of selectivity for CTE. However, several molecules, such as different phosphorylated tau isoforms, were able to discern CTE from different neurodegenerative diseases. Further, the results from studies on exosomal biomarkers suggest that exosomes are a promising source of biomarkers, reflective of the internal environment of the brain. Nonetheless, more longitudinal studies combining imaging, neurobehavioral, and biochemical approaches are warranted to establish robust biomarkers for CTE.
Collapse
Affiliation(s)
| | - Karen Hind
- Durham Wolfson Research Institute for Health and Wellbeing, Stockton-on-Tees TS17 6BH, UK;
| | - Paul L. Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
67
|
Wu YC, Wen Q, Thukral R, Yang HC, Gill JM, Gao S, Lane KA, Meier TB, Riggen LD, Harezlak J, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, Saykin AJ, McAllister TW, McCrea MA. Longitudinal Associations Between Blood Biomarkers and White Matter MRI in Sport-Related Concussion: A Study of the NCAA-DoD CARE Consortium. Neurology 2023; 101:e189-e201. [PMID: 37328299 PMCID: PMC10351550 DOI: 10.1212/wnl.0000000000207389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To study longitudinal associations between blood-based neural biomarkers (including total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1) and white matter neuroimaging biomarkers in collegiate athletes with sport-related concussion (SRC) from 24 hours postinjury to 1 week after return to play. METHODS We analyzed clinical and imaging data of concussed collegiate athletes in the Concussion Assessment, Research, and Education (CARE) Consortium. The CARE participants completed same-day clinical assessments, blood draws, and diffusion tensor imaging (DTI) at 3 time points: 24-48 hours postinjury, point of becoming asymptomatic, and 7 days after return to play. DTI probabilistic tractography was performed for each participant at each time point to render 27 participant-specific major white matter tracts. The microstructural organization of these tracts was characterized by 4 DTI metrics. Mixed-effects models with random intercepts were applied to test whether white matter microstructural abnormalities are associated with the blood-based biomarkers at the same time point. An interaction model was used to test whether the association varies across time points. A lagged model was used to test whether early blood-based biomarkers predict later microstructural changes. RESULTS Data from 77 collegiate athletes were included in the following analyses. Among the 4 blood-based biomarkers, total tau had significant associations with the DTI metrics across the 3 time points. In particular, high tau level was associated with high radial diffusivity (RD) in the right corticospinal tract (β = 0.25, SE = 0.07, p FDR-adjusted = 0.016) and superior thalamic radiation (β = 0.21, SE = 0.07, p FDR-adjusted = 0.042). NfL and GFAP had time-dependent associations with the DTI metrics. NfL showed significant associations only at the asymptomatic time point (|β|s > 0.12, SEs <0.09, psFDR-adjusted < 0.05) and GFAP showed a significant association only at 7 days after return to play (βs > 0.14, SEs <0.06, psFDR-adjusted < 0.05). The p values for the associations of early tau and later RD were not significant after multiple comparison adjustment, but were less than 0.1 in 7 white matter tracts. DISCUSSION This prospective study using data from the CARE Consortium demonstrated that in the early phase of SRC, white matter microstructural integrity detected by DTI neuroimaging was associated with elevated levels of blood-based biomarkers of traumatic brain injury. Total tau in the blood showed the strongest association with white matter microstructural changes.
Collapse
Affiliation(s)
- Yu-Chien Wu
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis.
| | - Qiuting Wen
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Rhea Thukral
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Ho-Ching Yang
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jessica M Gill
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Sujuan Gao
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Kathleen A Lane
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Timothy B Meier
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Larry D Riggen
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jaroslaw Harezlak
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Christopher C Giza
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Joshua Goldman
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Kevin M Guskiewicz
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Jason P Mihalik
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Stephen M LaConte
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Stefan M Duma
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Steven P Broglio
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Andrew J Saykin
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Thomas Walker McAllister
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| | - Michael A McCrea
- From the Department of Radiology and Imaging Sciences (Y.-C.W., Q.W., R.T., H.-C.Y., A.J.S.), Indiana University School of Medicine, Indianapolis; School of Nursing (J.M.G.), Johns Hopkins University, Baltimore, MD; Department of Biostatistics and Health Data Science (S.G., K.A.L., L.D.R.), Indiana University School of Medicine, Indianapolis; Department of Neurosurgery (T.B.M., M.A.M.), Medical College of Wisconsin, Milwaukee; Department of Epidemiology and Biostatistics (J.H.), School of Public Health, Indiana University, Bloomington; Department of Neurosurgery (C.C.G.), David Geffen School of Medicine at University of California Los Angeles; Family Medicine (J.G.), Ronald Reagan UCLA Medical Center, UCLA Health-Santa Monica Medical Center; Matthew Gfeller Center (K.M.G., J.P.M.), Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; School of Biomedical Engineering and Sciences (S.M.L., S.M.D.), Wake-Forest and Virginia Tech University, Blacksburg; Michigan Concussion Center (S.P.B.), University of Michigan, Ann Arbor; and Department of Psychiatry (T.W.M.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
68
|
van Velkinburgh JC, Herbst MD, Casper SM. Diffusion tensor imaging in the courtroom: Distinction between scientific specificity and legally admissible evidence. World J Clin Cases 2023; 11:4477-4497. [PMID: 37469746 PMCID: PMC10353495 DOI: 10.12998/wjcc.v11.i19.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
Interest and uptake of science and medicine peer-reviewed literature by readers outside of a paper’s topical subject, field or even discipline is ever-expanding. While the application of knowledge from one field or discipline to others can stimulate innovative solutions to problems facing modern society, it is also fraught with danger for misuse. In the practice of law in the United States, academic papers are submitted to the courts as evidence in personal injury litigation from both the plaintiff (complainant) and defendant. Such transcendence of an academic publication over disciplinary boundaries is immediately met with the challenge of application by a group that inherently lacks in-depth knowledge on the scientific method, the practice of evidence-based medicine, or the publication process as a structured and internationally synthesized process involving peer review and guided by ethical standards and norms. A modern-day example of this is the ongoing conflict between the sensitivity of diffusion tensor imaging (DTI) and the legal standards for admissibility of evidence in litigation cases of mild traumatic brain injury (mTBI). In this review, we amalgamate the peer-reviewed research on DTI in mTBI with the court’s rationale underlying decisions to admit or exclude evidence of DTI abnormalities to support claims of brain injury. We found that the papers which are critical of the use of DTI in the courtroom reflect a primary misunderstanding about how diagnostic biomarkers differ legally from relevant and admissible evidence. The clinical use of DTI to identify white matter abnormalities in the brain at the chronic stage is a valid methodology both clinically as well as forensically, contributes data that may or may not corroborate the existence of white matter damage, and should be admitted into evidence in personal injury trials if supported by a clinician. We also delve into an aspect of science publication and peer review that can be manipulated by scientists and clinicians to publish an opinion piece and misrepresent it as an unbiased, evidence-based, systematic research article in court cases, the decisions of which establish precedence for future cases and have implications on future legislation that will impact the lives of every citizen and erode the integrity of science and medicine practitioners.
Collapse
Affiliation(s)
| | - Mark D Herbst
- Diagnostic Radiology, Independent Diagnostic Radiology Inc, St Petersburg, FL 33711, United States
| | - Stewart M Casper
- Personal Injury Law, Casper & DeToledo LLC, Stamford, CT 06905, United States
| |
Collapse
|
69
|
Saletti PG, Mowrey WB, Liu W, Li Q, McCullough J, Aniceto R, Lin I, Eklund M, Casillas‐Espinosa PM, Ali I, Santana‐Gomez C, Coles L, Shultz SR, Jones N, Staba R, O'Brien TJ, Moshé SL, Agoston DV, Galanopoulou AS. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open 2023; 8:586-608. [PMID: 37026764 PMCID: PMC10235584 DOI: 10.1002/epi4.12738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.
Collapse
Affiliation(s)
- Patricia G. Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wenzhu B. Mowrey
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jesse McCullough
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - I‐Hsuan Lin
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Michael Eklund
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Pablo M. Casillas‐Espinosa
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Idrish Ali
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Lisa Coles
- University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Sandy R. Shultz
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Nigel Jones
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Terence J. O'Brien
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Denes V. Agoston
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | | |
Collapse
|
70
|
McBride WR, Eltman NR, Swanson RL. Blood-Based Biomarkers in Traumatic Brain Injury: A Narrative Review With Implications for the Legal System. Cureus 2023; 15:e40417. [PMID: 37325684 PMCID: PMC10266433 DOI: 10.7759/cureus.40417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Traumatic brain injury (TBI) is an increasingly recognized diagnosis with significant, and often costly, associated consequences. Yet, despite their increased recognition, TBIs remain underdiagnosed. This issue is especially prominent in the context of mild TBI (mTBI), where there often exists little to no objective evidence of brain injury. In recent years, considerable effort has been made to better define and interpret known objective markers of TBI, as well as identify and explore new ones. An area of particular interest has focused on research related to blood-based biomarkers of TBI. Advancements in our understanding of TBI-related biomarkers can make it possible to characterize the severity of TBI with greater accuracy, improve our understanding of staging within both the injury process and the recovery process, and help us develop quantifiable metrics representative of reversal and recovery from a brain injury following trauma. Proteomic and non-proteomic blood-based biomarkers are being studied extensively and have shown promise for these purposes. Developments in this realm have significant implications not only for clinical care but also for legislation, as well as civil and criminal litigation. Despite their substantial potential, most of these biomarkers are not yet ready for use within the clinical setting, and therefore, are not appropriate for use within the legal or policy-making systems at this time. Given that existing standardization for the accurate and reliable use of TBI biomarkers is currently insufficient for use within either the clinical or legal realms, such data can be vulnerable to misuse and can even result in the abuse of the legal system for unwarranted gain. Courts will need to carefully evaluate the information presented in their role as gatekeepers of the admissibility of scientific evidence within the legal process. Ultimately, the development of biomarkers should lead to improved clinical care following TBI exposure, coherent and informed laws surrounding TBI, and more accurate and just results in litigation surrounding TBI-related sequelae.
Collapse
Affiliation(s)
- William R McBride
- Forensic Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Nicholas R Eltman
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Physical Medicine and Rehabilitation, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
71
|
Kim HJ, Lee EJ, Kim SY, Kim H, Kim KW, Kim S, Kim H, Seo D, Lee BJ, Lim HT, Kim KK, Lim YM. Serum proteins for monitoring and predicting visual function in patients with recent optic neuritis. Sci Rep 2023; 13:5609. [PMID: 37019946 PMCID: PMC10076295 DOI: 10.1038/s41598-023-32748-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
It is unclear whether serum proteins can serve as biomarkers to reflect pathological changes and predict recovery in inflammation of optic nerve. We evaluated whether serum proteins could monitor and prognosticate optic neuritis (ON). We prospectively recruited consecutive patients with recent ON, classified as ON with anti-aquaporin-4 antibody (AQP4-ON), ON with anti-myelin oligodendrocyte glycoprotein antibody (MOG-ON), and double-seronegative ON (DSN-ON). Using ultrasensitive single-molecule array assays, we measured serum neurofilament light chain and glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF). We analyzed the markers according to disease group, state, severity, and prognosis. We enrolled 60 patients with recent ON (15 AQP4-ON; 14 MOG-ON; 31 DSN-ON). At baseline, AQP4-ON group had significantly higher serum GFAP levels than did other groups. In AQP4-ON group, serum GFAP levels were significantly higher in the attack state than in the remission state and correlated with poor visual acuity. As a prognostic indicator, serum BDNF levels were positively correlated with follow-up visual function in the AQP4-ON group (r = 0.726, p = 0.027). Serum GFAP reflected disease status and severity, while serum BDNF was identified as a prognostic biomarker in AQP4-ON. Serum biomarkers are potentially helpful for patients with ON, particularly those with AQP4-ON.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Meidcal Center, Seoul, South Korea.
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Keon-Woo Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunji Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
72
|
Margraf NG, Dargvainiene J, Theel E, Leypoldt F, Lieb W, Franke A, Berger K, Kuhle J, Kuhlenbaeumer G. Neurofilament light (NfL) as biomarker in serum and CSF in status epilepticus. J Neurol 2023; 270:2128-2138. [PMID: 36624182 PMCID: PMC10025237 DOI: 10.1007/s00415-022-11547-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We explored the potential of neurofilament light chain (NfL) in serum and cerebrospinal fluid as a biomarker for neurodestruction in status epilepticus. METHODS In a retrospective analysis, we measured NfL in serum and cerebrospinal fluid samples of patients with status epilepticus using a highly sensitive single-molecule array technique (Simoa). Status epilepticus was diagnosed according to ILAE criteria. Additionally, we employed an alternative classification with more emphasis on the course of status epilepticus. We used data from three large control groups to compare NfL in status epilepticus versus neurologically healthy controls. RESULTS We included 28 patients (mean age: 69.4 years, SD: 15 years) with a median status duration of 44 h (IQR: 80 h). Twenty-one patients (75%) suffered from convulsive status epilepticus and seven (25%) from non-convulsive status epilepticus. Six patients died (21%). Cerebrospinal fluid and serum NfL concentrations showed a high correlation (r = 0.73, p < 0.001, Pearson). The main determinant of NfL concentration was the status duration. NfL concentrations did not differ between convulsive status epilepticus and convulsive status epilepticus classified according to the ILAE or to the alternative classification without and with adjusting for status duration and time between status onset and sampling. We found no association of NfL concentration with death, treatment refractoriness, or prognostic scores. CONCLUSION The results suggest that neurodestruction in status epilepticus measured by NfL is mainly determined by status duration, not status type nor therapy refractoriness. Therefore, our results suggest that regarding neurodestruction convulsive and non-convulsive status epilepticus are both neurological emergencies of comparable urgency.
Collapse
Affiliation(s)
- Nils G Margraf
- Department of Neurology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Kiel, Germany
| | - Emily Theel
- Department of Neurology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Gregor Kuhlenbaeumer
- Department of Neurology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts-University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| |
Collapse
|
73
|
Gugger JJ, Sinha N, Huang Y, Walter AE, Lynch C, Kalyani P, Smyk N, Sandsmark D, Diaz-Arrastia R, Davis KA. Structural brain network deviations predict recovery after traumatic brain injury. Neuroimage Clin 2023; 38:103392. [PMID: 37018913 PMCID: PMC10122019 DOI: 10.1016/j.nicl.2023.103392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE Traumatic brain injury results in diffuse axonal injury and the ensuing maladaptive alterations in network function are associated with incomplete recovery and persistent disability. Despite the importance of axonal injury as an endophenotype in TBI, there is no biomarker that can measure the aggregate and region-specific burden of axonal injury. Normative modeling is an emerging quantitative case-control technique that can capture region-specific and aggregate deviations in brain networks at the individual patient level. Our objective was to apply normative modeling in TBI to study deviations in brain networks after primarily complicated mild TBI and study its relationship with other validated measures of injury severity, burden of post-TBI symptoms, and functional impairment. METHOD We analyzed 70 T1-weighted and diffusion-weighted MRIs longitudinally collected from 35 individuals with primarily complicated mild TBI during the subacute and chronic post-injury periods. Each individual underwent longitudinal blood sampling to characterize blood protein biomarkers of axonal and glial injury and assessment of post-injury recovery in the subacute and chronic periods. By comparing the MRI data of individual TBI participants with 35 uninjured controls, we estimated the longitudinal change in structural brain network deviations. We compared network deviation with independent measures of acute intracranial injury estimated from head CT and blood protein biomarkers. Using elastic net regression models, we identified brain regions in which deviations present in the subacute period predict chronic post-TBI symptoms and functional status. RESULTS Post-injury structural network deviation was significantly higher than controls in both subacute and chronic periods, associated with an acute CT lesion and subacute blood levels of glial fibrillary acid protein (r = 0.5, p = 0.008) and neurofilament light (r = 0.41, p = 0.02). Longitudinal change in network deviation associated with change in functional outcome status (r = -0.51, p = 0.003) and post-concussive symptoms (BSI: r = 0.46, p = 0.03; RPQ: r = 0.46, p = 0.02). The brain regions where the node deviation index measured in the subacute period predicted chronic TBI symptoms and functional status corresponded to areas known to be susceptible to neurotrauma. CONCLUSION Normative modeling can capture structural network deviations, which may be useful in estimating the aggregate and region-specific burden of network changes induced by TAI. If validated in larger studies, structural network deviation scores could be useful for enrichment of clinical trials of targeted TAI-directed therapies.
Collapse
Affiliation(s)
- James J Gugger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nishant Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yiming Huang
- Interdisciplinary Computing and Complex BioSystems, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cillian Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka Kalyani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan Smyk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle Sandsmark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
74
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
75
|
Graham NSN, Blissitt G, Zimmerman K, Friedland D, Dumas ME, Coady E, Heslegrave A, Zetterberg H, Escott-Price V, Schofield S, Fear NT, Boos C, Bull AMJ, Cullinan P, Bennett A, Sharp DJ. ADVANCE-TBI study protocol: traumatic brain injury outcomes in UK military personnel serving in Afghanistan between 2003 and 2014 - a longitudinal cohort study. BMJ Open 2023; 13:e069243. [PMID: 36944467 PMCID: PMC10032415 DOI: 10.1136/bmjopen-2022-069243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Outcomes of traumatic brain injury (TBI) are highly variable, with cognitive and psychiatric problems often present in survivors, including an increased dementia risk in the long term. Military personnel are at an increased occupational risk of TBI, with high rates of complex polytrauma including TBI characterising the UK campaign in Afghanistan. The ArmeD SerVices TrAuma and RehabilitatioN OutComE (ADVANCE)-TBI substudy will describe the patterns, associations and long-term outcomes of TBI in the established ADVANCE cohort. METHODS AND ANALYSIS The ADVANCE cohort comprises 579 military personnel exposed to major battlefield trauma requiring medical evacuation, and 566 matched military personnel without major trauma. TBI exposure has been captured at baseline using a standardised interview and registry data, and will be refined at first follow-up visit with the Ohio State Method TBI interview (a National Institute of Neurological Disorders and Stroke TBI common data element). Participants will undergo blood sampling, MRI and detailed neuropsychological assessment longitudinally as part of their follow-up visits every 3-5 years over a 20-year period. Biomarkers of injury, neuroinflammation and degeneration will be quantified in blood, and polygenic risk scores calculated for neurodegeneration. Age-matched healthy volunteers will be recruited as controls for MRI analyses. We will describe TBI exposure across the cohort, and consider any relationship with advanced biomarkers of injury and clinical outcomes including cognitive performance, neuropsychiatric symptom burden and function. The influence of genotype will be assessed. This research will explore the relationship between military head injury exposure and long-term outcomes, providing insights into underlying disease mechanisms and informing prevention interventions. ETHICS AND DISSEMINATION The ADVANCE-TBI substudy has received a favourable opinion from the Ministry of Defence Research Ethics Committee (ref: 2126/MODREC/22). Findings will be disseminated via publications in peer-reviewed journals and presentations at conferences.
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Grace Blissitt
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Emma Coady
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Amanda Heslegrave
- Institute of Neurology, UCL Queen Square, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Henrik Zetterberg
- Institute of Neurology, UCL Queen Square, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Susie Schofield
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicola T Fear
- King's Centre for Military Health Research, King's College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Christopher Boos
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Anthony M J Bull
- Centre for Injury Studies, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Bennett
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| |
Collapse
|
76
|
Stukas S, Cooper J, Gill J, Fallah N, Skinnider MA, Belanger L, Ritchie L, Tsang A, Dong K, Streijger F, Street J, Paquette S, Ailon T, Dea N, Charest-Morin R, Fisher CG, Bailey CS, Dhall S, Mac-Thiong JM, Wilson JR, Christie S, Dvorak MF, Wellington CL, Kwon BK. Association of CSF and Serum Neurofilament Light and Glial Fibrillary Acidic Protein, Injury Severity, and Outcome in Spinal Cord Injury. Neurology 2023; 100:e1221-e1233. [PMID: 36599698 PMCID: PMC10033160 DOI: 10.1212/wnl.0000000000206744] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic spinal cord injury (SCI) is highly heterogeneous, and tools to better delineate pathophysiology and recovery are needed. Our objective was to profile the response of 2 biomarkers, neurofilament light (NF-L) and glial fibrillary acidic protein (GFAP), in the serum and CSF of patients with acute SCI to evaluate their ability to objectively characterize injury severity and predict neurologic recovery. METHODS Blood and CSF samples were obtained from prospectively enrolled patients with acute SCI through days 1-4 postinjury, and the concentration of NF-L and GFAP was quantified using Simoa technology. Neurologic assessments defined the ASIA Impairment Scale (AIS) grade and motor score (MS) at presentation and 6 months postinjury. RESULTS One hundred eighteen patients with acute SCI (78 AIS A, 20 AIS B, and 20 AIS C) were enrolled, with 113 (96%) completing 6-month follow-up. NF-L and GFAP levels were strongly associated between paired serum and CSF specimens, were both increased with injury severity, and distinguished among baseline AIS grades. Serum NF-L and GFAP were significantly (p = 0.02 to <0.0001) higher in AIS A patients who did not improve at 6 months, predicting AIS grade conversion with a sensitivity and specificity (95% CI) of 76% (61, 87) and 77% (55, 92) using NF-L and 72% (57, 84) and 77% (55, 92) using GFAP at 72 hours, respectively. Independent of clinical baseline assessment, a serum NF-L threshold of 170 pg/mL at 72 hours predicted those patients who would be classified as motor complete (AIS A/B) compared with motor incomplete (AIS C/D) at 6 months with a sensitivity of 87% (76, 94) and specificity of 84% (69, 94); a serum GFAP threshold of 13,180 pg/mL at 72 hours yielded a sensitivity of 90% (80, 96) and specificity of 84% (69, 94). DISCUSSION The potential for NF-L and GFAP to classify injury severity and predict outcome after acute SCI will be useful for patient stratification and prognostication in clinical trials and inform communication of prognosis. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that higher serum NF-L and GFAP are associated with worse neurological outcome after acute SCI. TRIAL REGISTRATION INFORMATION Registered on ClinicalTrials.gov: NCT00135278 (March 2006) and NCT01279811 (January 2012).
Collapse
Affiliation(s)
- Sophie Stukas
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jennifer Cooper
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jasmine Gill
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Nader Fallah
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Michael A Skinnider
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Lise Belanger
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Leanna Ritchie
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Angela Tsang
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Kevin Dong
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Femke Streijger
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - John Street
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Scott Paquette
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Tamir Ailon
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Nicolas Dea
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Raphaele Charest-Morin
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Charles G Fisher
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Christopher S Bailey
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Sanjay Dhall
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jean-Marc Mac-Thiong
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Jefferson R Wilson
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Sean Christie
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Marcel F Dvorak
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Cheryl L Wellington
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada
| | - Brian K Kwon
- From the Djavad Mowafaghian Centre for Brain Health (S.S., J.C., J.G., C.L.W.), Department of Pathology and Laboratory Medicine (S.S, J,C, J.G.,C.L.W.) Division of Neurology, Department of Medicine (N.F.), Division of Neurosurgery (S.P., T.A., N.D.), Michael Smith Laboratories (M.A.S.), and School of Biomedical Engineering (C.L.W.), University of British Columbia, Vancouver, British Columbia; Praxis Spinal Cord Institute (N.F.), and Vancouver Spine Research Program (L.B., L.R., A.T.), Vancouver General Hospital, Blusson Spinal Cord Center, Vancouver, British Columbia; International Collaboration on Repair Discoveries (ICORD) (K.D., F.S., J.S., M.F.D., C.L.W., B.K.K.) and Vancouver Spine Surgery Institute, Department of Orthopaedics (J.S., R.C.-M., C.G.F., M.F.D., B.K.K.), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia; Division of Orthopaedics (C.S.B.), Schulich School of Medicine, University of Western Ontario, London, Canada; Department of Neurosurgery (S.D.), University of California San Francisco; Department of Surgery (J-M., M-T.), Hôpital du Sacré-Coeur de Montréal, Quebec; Department of Surgery (J.-M., M.-T.), Chu Sainte-Justine, University of Montreal, Quebec; Division of Neurosurgery (J.R.W.), University of Toronto, St. Michael's Hospital, Ontario; and Division of Neurosurgery (S.C.), Halifax Infirmary, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
77
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
78
|
Conroy AL, Datta D, Hoffmann A, Wassmer SC. The kidney-brain pathogenic axis in severe falciparum malaria. Trends Parasitol 2023; 39:191-199. [PMID: 36737313 PMCID: PMC11071448 DOI: 10.1016/j.pt.2023.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Severe falciparum malaria is a medical emergency and a leading cause of death and neurodisability in endemic areas. Common complications include acute kidney injury (AKI) and cerebral malaria, and recent studies have suggested links between kidney and brain dysfunction in Plasmodium falciparum infection. Here, we review these new findings and present the hypothesis of a pivotal pathogenic crosstalk between the kidneys and the brain in severe falciparum malaria. We highlight the evidence of a role for distant organ involvement in the development of cerebral malaria and subsequent neurocognitive impairment post-recovery, describe the challenges associated with current diagnostic shortcomings for both AKI and brain involvement in severe falciparum malaria, and explore novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angelika Hoffmann
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
79
|
Lange RT, Lippa S, Brickell TA, Gill J, French LM. Serum Tau, Neurofilament Light Chain, Glial Fibrillary Acidic Protein, and Ubiquitin Carboxyl-Terminal Hydrolase L1 Are Associated with the Chronic Deterioration of Neurobehavioral Symptoms after Traumatic Brain Injury. J Neurotrauma 2023; 40:482-492. [PMID: 36170576 DOI: 10.1089/neu.2022.0249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the association of serum tau, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase L1 (UCHL-1) concentrations evaluated within the first 12 months after a military-related TBI, with longitudinal changes in neurobehavioral functioning extending two or more years post-injury. Participants were 84 United States service members and veterans (SMVs) prospectively enrolled in the Defense and Veterans Brain Injury Center of Excellence/Traumatic Brain Injury Center 15-Year Longitudinal TBI Study, separated into three discreet groups: (a) uncomplicated mild TBI (MTBI; n = 28), (b) complicated mild, moderate, severe, and penetrating TBI combined (STBI; n = 29], and (c) non-injured controls (NIC, n = 27). Participants completed a battery of self-report neurobehavioral symptom measures (e.g., depression, post-traumatic stress disorder [PTSD], post-concussion, anxiety, somatic, cognitive, and neurological symptoms) within 12 months of injury (baseline), and then again at two or more years post-injury (follow-up). At baseline, participants also completed a blood draw to determine serum concentrations of tau, NFL, GFAP, and UCHL-1 using an ultra-sensitivity assay method. In the MTBI and STBI groups (using hierarchical regression analyses), (1) baseline tau concentrations predicted the deterioration of neurobehavioral symptoms from baseline to follow-up on measures of anxiety, PTSD, depression, post-concussion, somatic, and neurological symptoms (accounting for 10-28% of the variance); (2) NFL predicted the deterioration of depression, post-concussion, somatic, cognitive, and neurological symptoms (10-32% variance); (3) GFAP predicted the deterioration of post-concussion, PTSD, depression, anxiety, somatic, neurological, and cognitive symptoms (11-43% variance); and (4) UCHL-1 predicted the deterioration of anxiety, somatic, and neurological symptoms (10-16% variance). In the NIC group, no meaningful associations were found between baseline biomarker concentrations and the deterioration of neurobehavioral symptoms on the majority of measures. This study reports that elevated tau, NFL, GFAP, and UCHL-1 concentrations within the first 12 months of injury are associated with the deterioration of neurobehavioral symptoms that extends to the chronic phase of recovery after a TBI. These findings suggest that a blood-based panel including these biomarkers could be a useful prognostic tool to identifying those individuals at risk of poor future outcome after TBI.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Bethesda, Maryland, USA.,Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA.,University of British Columbia, Vancouver, Briish Columbia, Canada.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sara Lippa
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tracey A Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Bethesda, Maryland, USA.,Contractor, General Dynamics Information Technology, Silver Spring, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jessica Gill
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Louis M French
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
80
|
Amrein M, Meier S, Schäfer I, Schaedelin S, Willemse E, Benkert P, Walter J, Puelacher C, Zimmermann T, Median D, Egli C, Leppert D, Twerenbold R, Zellweger M, Kuhle J, Mueller C. Serum neurofilament light chain in functionally relevant coronary artery disease and adverse cardiovascular outcomes. Biomarkers 2023; 28:341-351. [PMID: 36714921 DOI: 10.1080/1354750x.2023.2172211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Functionally relevant coronary artery disease (fCAD), causing symptoms of myocardial ischemia, can currently only be reliably detected with advanced cardiac imaging. Serum neurofilament light chain (sNfL) is a biomarker for neuro-axonal injury known to be elevated by cardiovascular (CV) risk factors and cerebrovascular small-vessel diseases. Due to their pathophysiological similarities with fCAD and the link to CV risk factors, we hypothesised that sNfL may have diagnostic and prognostic value for fCAD and adverse cardiovascular outcomes.Methods: Of the large prospective Basel VIII study (NCT01838148), 4'016 consecutive patients undergoing cardiac work-up for suspected fCAD were included (median age 68 years, 32.5% women, 46.9% with history of CAD). The presence of fCAD was adjudicated using myocardial perfusion imaging single-photon emission tomography (MPI-SPECT) and coronary angiography. sNfL was measured using a high-sensitive single-molecule array assay. All-cause and cardiovascular death, myocardial infarction (MI), and stroke/transient ischaemic attack (TIA) during 5-year follow-up were the prognostic endpoints.Results: The diagnostic accuracy of sNfL for fCAD as quantified by the area under the curve (AUC) was low (0.58, 95%CI 0.56-0.60). sNfL was strongly associated with age, renal dysfunction, and body mass index and was a strong and independent predictor of all-cause death, cardiovascular death, and stroke/TIA but not MI. Time-dependent AUC for cardiovascular-death at 1-year was 0.85, 95%CI 0.80-0.89, and 0.81, 95%CI 0.77-0.86 at 2-years.Conclusion: While sNfL concentrations did not show a diagnostic role for fCAD, in contrast, sNfL was a strong and independent predictor of cardiovascular outcomes, including all-cause death, cardiovascular death and stroke/TIA.
Collapse
Affiliation(s)
- Melissa Amrein
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Eline Willemse
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Joan Walter
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Puelacher
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias Zimmermann
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Median
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Caroline Egli
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Raphael Twerenbold
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland.,University Center of Cardiovascular Science & Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Michael Zellweger
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
81
|
Lin B, Fu ZY, Chen MH. Effect of Red Cell Distribution Width on the Prognosis of Patients with Traumatic Brain Injury: A Retrospective Cohort Study. World Neurosurg 2023; 170:e744-e754. [PMID: 36574569 DOI: 10.1016/j.wneu.2022.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The link between red cell distribution width (RDW) and prognosis of traumatic brain injury (TBI) is controversial. Whether RDW can increase the prognostic value of established predictors remains unknown. This study aimed to provide supportive evidence for the prognostic value of RDW. METHODS Clinical data of 1488 patients with TBI were extracted from the Multiparameter Intelligent Monitoring in Intensive Care III database and classified into 2 groups: 1) one with RDW <14.5% (n = 1061) and 2) the other with RDW ≥14.5% (n = 427). Multivariable logistic regression models were used to estimate the relationship between RDW and outcomes. Stratified analyses and interactions were also performed. We compared the area under the receiver operating characteristic curve of the International Mission for Prognoses and Clinical Trial Design in TBI (IMPACT) core and extended models with and without RDW. RESULTS After adjusting for confounding factors, RDW was an independent risk consideration for TBI prognoses; the odds ratios were 1.62 (95% confidence interval (CI): 1.05, 2.50) and 1.89 (95% CI: 1.35, 2.64) for hospital mortality and 6-month mortality, respectively. This association was crucial for patients with a Glasgow Coma Score of 3-12 (odds ratio, 2.79; 95% CI: 1.33, 5.87). For 6-month mortality, when RDW was added to the core and extended IMPACT models, the area under the receiver operating characteristic curve increased from 0.833 to 0.851 (P = 0.001) and from 0.842 to 0.855 (P = 0.002), respectively. CONCLUSIONS Elevated RDW is an independent risk consideration for hospital and 6-month mortality rates. When RDW was added to the IMPACT core and extended models, it improved its predictive ability for 6-month mortality in patients with TBI.
Collapse
Affiliation(s)
- Bing Lin
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao-Yin Fu
- Department of Critical Care Medicine, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Meng-Hua Chen
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
82
|
Castaño-Leon AM, Sánchez Carabias C, Hilario A, Ramos A, Navarro-Main B, Paredes I, Munarriz PM, Panero I, Eiriz Fernández C, García-Pérez D, Moreno-Gomez LM, Esteban-Sinovas O, Garcia Posadas G, Gomez PA, Lagares A. Serum assessment of traumatic axonal injury: the correlation of GFAP, t-Tau, UCH-L1, and NfL levels with diffusion tensor imaging metrics and its prognosis utility. J Neurosurg 2023; 138:454-464. [PMID: 35901687 DOI: 10.3171/2022.5.jns22638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Diagnosis of traumatic axonal injury (TAI) is challenging because of its underestimation by conventional MRI and the technical requirements associated with the processing of diffusion tensor imaging (DTI). Serum biomarkers seem to be able to identify patients with abnormal CT scanning findings, but their potential role to assess TAI has seldomly been explored. METHODS Patients with all severities of traumatic brain injury (TBI) were prospectively included in this study between 2016 and 2021. They underwent blood extraction within 24 hours after injury and imaging assessment, including DTI. Serum concentrations of glial fibrillary acidic protein, total microtubule-associated protein (t-Tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and neurofilament light chain (NfL) were measured using an ultrasensitive Simoa multiplex assay panel, a digital form of enzyme-linked immunosorbent assay. The Glasgow Outcome Scale-Extended score was determined at 6 months after TBI. The relationships between biomarker concentrations, volumetric analysis of corpus callosum (CC) lesions, and fractional anisotropy (FA) were analyzed by nonparametric tests. The prognostic utility of the biomarker was determined by calculating the C-statistic and an ordinal regression analysis. RESULTS A total of 87 patients were included. Concentrations of all biomarkers were significantly higher for patients compared with controls. Although the concentration of the biomarkers was affected by the presence of mass lesions, FA of the CC was an independent factor influencing levels of UCH-L1 and NfL, which positioned these two biomarkers as better surrogates of TAI. Biomarkers also performed well in determining patients who would have had unfavorable outcome. NfL and the FA of the CC are independent complementary factors related to outcome. CONCLUSIONS UCH-L1 and NfL seem to be the biomarkers more specific to detect TAI. The concentration of NfL combined with the FA of the CC might help predict long-term outcome.
Collapse
Affiliation(s)
- Ana M Castaño-Leon
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | | | - Amaya Hilario
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Ana Ramos
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Blanca Navarro-Main
- 4Department of Psychiatry, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid; and
| | - Igor Paredes
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pablo M Munarriz
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Irene Panero
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Carla Eiriz Fernández
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Daniel García-Pérez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Luis Miguel Moreno-Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Olga Esteban-Sinovas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Guillermo Garcia Posadas
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Pedro A Gomez
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid
| | - Alfonso Lagares
- 1Department of Neurosurgery, Research Institute i+12-CIBERESP, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid.,5Department of Surgery, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
83
|
Chen R, Lin LR, Xiao Y, Ke WJ, Yang TC. Evaluation of cerebrospinal fluid ubiquitin C-terminal hydrolase-L1, glial fibrillary acidic protein, and neurofilament light protein as novel markers for the diagnosis of neurosyphilis among HIV-negative patients. Int J Infect Dis 2023; 127:36-44. [PMID: 36400375 DOI: 10.1016/j.ijid.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To evaluate the possibility of using cerebrospinal fluid (CSF) ubiquitin C-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light protein (NF-L) for the diagnosis of neurosyphilis (NS). METHODS A cross-sectional study of 576 subjects was conducted at Zhongshan Hospital from January 2021 to August 2022 to evaluate the diagnostic accuracy of CSF UCH-L1, GFAP, and NF-L for NS and analyze their correlations with CSF rapid plasma reagin (RPR), white blood cells (WBCs), and protein. RESULTS Patients with NS had higher CSF UCH-L1, GFAP, and NF-L levels than patients with syphilis/non-NS and nonsyphilis. Using a cut-off point of 652.25 pg/ml, 548.89 pg/ml, and 48.38 pg/ml, CSF UCH-L1, GFAP, and NF-L had a sensitivity of 85.11%, 76.60%, and 82.98%, with a specificity of 92.22%, 85.56%, and 91.11%, respectively, for NS diagnosis. Moreover, parallel and serial testing algorithms improved their sensitivity and specificity to 93.62% and 98.89%, respectively. Interestingly, levels between patients with NS who are CSF RPR-positive and -negative did not differ and showed a weak or moderate correlation with WBC and CSF protein in patients with syphilis. CONCLUSION CSF UCH-L1, GFAP, and NF-L can be used as novel markers for the diagnosis of NS, independent of CSF RPR, WBC, and proteins.
Collapse
Affiliation(s)
- Rui Chen
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Xiao
- Department of Hospital Infection Management, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wu-Jian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China; Xiamen Clinical Laboratory Quality Control Center, Xiamen, China.
| |
Collapse
|
84
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
85
|
Jacobs Sariyar A, van Pesch V, Nassogne MC, Moniotte S, Momeni M. Usefulness of serum neurofilament light in the assessment of neurologic outcome in the pediatric population: a systematic literature review. Eur J Pediatr 2023; 182:1941-1948. [PMID: 36602623 DOI: 10.1007/s00431-022-04793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 01/06/2023]
Abstract
Children undergoing general anesthesia and surgery in the early years of life are exposed to the possible neurotoxicity of anesthetic agents. Prospective studies have shown deficits in behavior, executive function, social communication, and motor function in children undergoing anesthesia and surgery. Different biomarkers of neuronal injury have been evaluated neuronal injury in the pediatric population, among which neurofilaments represent a significant advantage as they are proteins exclusively expressed in neuronal tissue. Our aim was to evaluate the utility of serum neurofilament light (NfL) as a prognostic biomarker of neuronal injury in the pediatric population. A literature search was performed on PubMed, Embase, and Cochrane Databases in November 2022 for studies concerning serum NfL in the pediatric population in addition to a neurological assessment. Inclusion criteria were as follows: (1) prospective or retrospective studies, (2) studies including pediatric population until the age of 18 years, (3) serum NfL sampling, and (4) evaluation of neurological outcome. Data collection regarding study design, pediatric age, serum NfL levels, and results for neurological assessment were extracted from each study. Four manuscripts met the inclusion criteria and evaluated the prognostic utility of serum NfL in neonatal encephalopathy in correlation with the neurodevelopmental outcome that was assessed by the Bayley Scales of Infant Development until the age of 2 years. Children with neonatal encephalopathy showed significantly higher serum NfL vs. healthy controls and high serum NfL levels predicted an adverse neurological outcome. The decrease of serum NfL to a nadir point between 10 and 15 years old reflects the brain growth in healthy controls. No studies were available in the perioperative period. Conclusions: Serum NfL is a valuable biomarker in evaluating neuronal injury in the pediatric population. Further studies with perioperative serial sampling of serum NfL combined with standardized neurodevelopmental tests should be conducted to evaluate the neurotoxicity of anesthetic agents and monitor the effectiveness of specific neuroprotective strategies in pediatric patients undergoing anesthesia and surgery. What is Known: • Preclinical animal data have shown neurotoxicity of the anesthetic agents in the developing brain. • Data regarding anesthetic neurotoxicity in humans show limitations and no objective tools are available. What is New: • This systematic review showed that serum NfL is a valuable biomarker of neuronal injury in the pediatric population. • Perioperative use of serum NfL may be considered in future trials evaluating anesthetic neurotoxicity in the pediatric population and in monitoring neuroprotective strategies.
Collapse
Affiliation(s)
- Aurélie Jacobs Sariyar
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatrics, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Stéphane Moniotte
- Department of Pediatrics, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Mona Momeni
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| |
Collapse
|
86
|
McDonald SJ, Piantella S, O'Brien WT, Hale MW, O'Halloran P, Kinsella G, Horan B, O'Brien TJ, Maruff P, Shultz SR, Wright BJ. Clinical and Blood Biomarker Trajectories after Concussion: New Insights from a Longitudinal Pilot Study of Professional Flat-Track Jockeys. J Neurotrauma 2023; 40:52-62. [PMID: 35734899 DOI: 10.1089/neu.2022.0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is a recognized need for objective tools for detecting and tracking clinical and neuropathological recovery after sports-related concussion (SRC). Although computerized neurocognitive testing has been shown to be sensitive to cognitive deficits after SRC, and some blood biomarkers have shown promise as indicators of axonal and glial damage, the potential utility of these measures in isolation and combination for assisting SRC diagnosis and tracking recovery is not well understood. To provide new insights, we conducted a prospective study of 64 male and female professional flat-track jockeys (49 non-SRC, 15 SRC), with each jockey undergoing symptom evaluation, cognitive testing using the CogSport battery, and serum biomarker quantification of glial fibrillary acidic protein (GFAP), tau, and neurofilament light (NfL) using a Simoa HD-X Analyzer. Measures were performed at baseline (i.e., pre-injury), and 2 and 7 days and 1 and 12 months after SRC. Symptoms were most pronounced at 2 days and had largely resolved by either 7 days or 1 month. CogSport testing at 2 days revealed cognitive impairments relative to both non-concussed peers and their own pre-injury baselines, with SRC classification utility found at 2 days, and to a slightly lesser extent, at 7 days. Relatively prolonged changes in serum NfL were observed, with elevated levels and classification utility persisting beyond the resolution of SRC symptoms and cognitive deficits. Finally, SRC classification performance throughout the 1st month after SRC was optimized through the combination of cognitive testing and serum biomarkers. Considered together, these findings provide further evidence for a role of computerized cognitive testing and fluid biomarkers of neuropathology as objective measures to assist in the identification of SRC and the monitoring of clinical and neuropathological recovery.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Stefan Piantella
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul O'Halloran
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Glynda Kinsella
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Ben Horan
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Wright
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
87
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
88
|
Yue JK, Kobeissy FH, Jain S, Sun X, Phelps RR, Korley FK, Gardner RC, Ferguson AR, Huie JR, Schneider AL, Yang Z, Xu H, Lynch CE, Deng H, Rabinowitz M, Vassar MJ, Taylor SR, Mukherjee P, Yuh EL, Markowitz AJ, Puccio AM, Okonkwo DO, Diaz-Arrastia R, Manley GT, Wang KK. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep 2023; 4:171-183. [PMID: 36974122 PMCID: PMC10039275 DOI: 10.1089/neur.2022.0060] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The relationship between systemic inflammation and secondary injury in traumatic brain injury (TBI) is complex. We investigated associations between inflammatory markers and clinical confirmation of TBI diagnosis and prognosis. The prospective TRACK-TBI Pilot (Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot) study enrolled TBI patients triaged to head computed tomography (CT) and received blood draw within 24 h of injury. Healthy controls (HCs) and orthopedic controls (OCs) were included. Thirty-one inflammatory markers were analyzed from plasma. Area under the receiver operating characteristic curve (AUC) was used to evaluate discriminatory ability. AUC >0.7 was considered acceptable. Criteria included: TBI diagnosis (vs. OC/HC); moderate/severe vs. mild TBI (Glasgow Coma Scale; GCS); radiographic TBI (CT positive vs. CT negative); 3- and 6-month Glasgow Outcome Scale-Extended (GOSE) dichotomized to death/greater relative disability versus less relative disability (GOSE 1-4/5-8); and incomplete versus full recovery (GOSE <8/ = 8). One-hundred sixty TBI subjects, 28 OCs, and 18 HCs were included. Markers discriminating TBI/OC: HMGB-1 (AUC = 0.835), IL-1b (0.795), IL-16 (0.784), IL-7 (0.742), and TARC (0.731). Markers discriminating GCS 3-12/13-15: IL-6 (AUC = 0.747), CRP (0.726), IL-15 (0.720), and SAA (0.716). Markers discriminating CT positive/CT negative: SAA (AUC = 0.767), IL-6 (0.757), CRP (0.733), and IL-15 (0.724). At 3 months, IL-15 (AUC = 0.738) and IL-2 (0.705) discriminated GOSE 5-8/1-4. At 6 months, IL-15 discriminated GOSE 1-4/5-8 (AUC = 0.704) and GOSE <8/ = 8 (0.711); SAA discriminated GOSE 1-4/5-8 (0.704). We identified a profile of acute circulating inflammatory proteins with potential relevance for TBI diagnosis, severity differentiation, and prognosis. IL-15 and serum amyloid A are priority markers with acceptable discrimination across multiple diagnostic and outcome categories. Validation in larger prospective cohorts is needed. ClinicalTrials.gov Registration: NCT01565551.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Address correspondence to: John K. Yue, MD, Department of Neurosurgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94143, USA.
| | - Firas H. Kobeissy
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Sonia Jain
- Division of Biostatistics and Bioinformatics, Departments of Family Medicine and Public Health, University of California, San Diego, San Diego, California, USA
| | - Xiaoying Sun
- Division of Biostatistics and Bioinformatics, Departments of Family Medicine and Public Health, University of California, San Diego, San Diego, California, USA
| | - Ryan R.L. Phelps
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raquel C. Gardner
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Adam R. Ferguson
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - J. Russell Huie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Andrea L.C. Schneider
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhihui Yang
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Cillian E. Lynch
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Miri Rabinowitz
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mary J. Vassar
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Sabrina R. Taylor
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Esther L. Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Amy J. Markowitz
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Ava M. Puccio
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Geoffrey T. Manley
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Kevin K.W. Wang
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
89
|
Hansson C, Zetterberg H, Snellman A, Blennow K, Jonsdottir IH. Biomarkers of brain injury in patients with stress-related exhaustion: A longitudinal study. Psychoneuroendocrinology 2022; 146:105929. [PMID: 36174450 DOI: 10.1016/j.psyneuen.2022.105929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Exhaustion Disorder (ED) is a stress-induced disorder, characterized by extreme fatigue, cognitive impairments, and intolerance to stress. These symptoms can be long-lasting, suggesting that the long-term stress may have initiated pathophysiological processes in the brains of patients with ED. The aims of the study were I) to investigate if plasma levels of neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau (p-tau181) differ between patients with ED and healthy controls, and II) to investigate if these differences persist over time. METHOD Plasma NfL, GFAP and p-tau181 were quantified in 150 patients with ED at the time of diagnosis (baseline), 149 patients at long-term follow-up (7-12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. RESULTS Plasma levels of NfL and GFAP were significantly higher in the ED group at baseline compared with controls (mean difference of NfL 0.167, 95 % CI 0.055-0.279; mean difference of GFAP 0.132, 95 % CI 0.008-0.257), while p-tau181 did not differ between the groups. Plasma levels of NfL were significantly lower in the ED group at follow-up than in the same group at baseline (mean difference -0.115, 95 % CI -0.186-(-0.045)), while plasma levels of GFAP did not differ between the groups, and plasma levels of p-tau181 were significantly higher in the ED group at follow-up than in the same group at baseline (mean difference 0.083, 95 % CI 0.016-0.151). At follow-up, there were no significant differences between the ED group and the control group for any of the proteins. CONCLUSION Plasma levels of NfL and GFAP were increased in patients with ED during the first months of the disease, indicative of axonal and glial pathophysiological processes, but had normalized at long-term follow-up.
Collapse
Affiliation(s)
- Caroline Hansson
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingibjörg H Jonsdottir
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
90
|
Shahub S, Lin KC, Muthukumar S, Prasad S. A Proof-of-Concept Electrochemical Skin Sensor for Simultaneous Measurement of Glial Fibrillary Acidic Protein (GFAP) and Interleukin-6 (IL-6) for Management of Traumatic Brain Injuries. BIOSENSORS 2022; 12:bios12121095. [PMID: 36551062 PMCID: PMC9775589 DOI: 10.3390/bios12121095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 05/28/2023]
Abstract
This work demonstrates the use of a noninvasive, sweat-based dual biomarker electrochemical sensor for continuous, prognostic monitoring of a Traumatic Brain Injury (TBI) with the aim of enhancing patient outcomes and reducing the time to treatment after injury. A multiplexed SWEATSENSER was used for noninvasive continuous monitoring of glial fibrillary acidic protein (GFAP) and Interleukin-6 (IL-6) in a human sweat analog and in human sweat. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to measure the sensor response. The assay chemistry was characterized using Fourier Transform Infrared Spectroscopy (FTIR). The SWEATSENSER was able to detect GFAP and IL-6 in sweat over a dynamic range of 3 log orders for GFAP and 2 log orders for IL-6. The limit of detection (LOD) for GFAP detection in the sweat analog was estimated to be 14 pg/mL using EIS and the LOD for IL-6 was estimated to be 10 pg/mL using EIS. An interference study was performed where the specific signal was significantly higher than the non-specific signal. Finally, the SWEATSENSER was able to distinguish between GFAP and IL-6 in simulated conditions of a TBI in human sweat. This work demonstrates the first proof-of-feasibility of a multiplexed TBI marker combined with cytokine and inflammatory marker detection in passively expressed sweat in a wearable form-factor that can be utilized toward better management of TBIs. This is the first step toward demonstrating a noninvasive enabling technology that can enable baseline tracking of an inflammatory response.
Collapse
Affiliation(s)
- Sarah Shahub
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- EnLiSense LLC, Allen, TX 75013, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
91
|
Morgan JE, Gaynor-Metzinger SA, Beck SD, Scobercea IC, Austin IJ, Blankenship HE, Baker JS, Knox A, Serrador JM, Rogatzki MJ. Serum Amyloid Beta Precursor Protein, Neurofilament Light, and Visinin-like Protein-1 in Rugby Players: An Exploratory Study. Sports (Basel) 2022; 10:sports10120194. [PMID: 36548491 PMCID: PMC9782676 DOI: 10.3390/sports10120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Concussion diagnosis is difficult and may be improved with the addition of a blood-based biomarker that indicates concussion. The purpose of this research was to investigate the capability of serum amyloid beta precursor protein (APP), neurofilament light (NfL), and visinin-like protein-1 (VILIP-1) to distinguish athletes who were diagnosed with a concussion pitch-side. An observational cross-sectional study design was used to replicate sideline concussion diagnosis. Subjects included mutually exclusive pre-match (n = 9), post-match (n = 15), and SRC (n = 7) groups. Six paired pre-and post-match subjects were analyzed for APP. APP increased significantly from pre-match (mean = 57.98 pg·mL−1, SD = 63.21 pg·mL−1) to post-match (mean = 111.37 pg·mL−1, SD = 106.89 pg·mL−1, p = 0.048) in the paired subjects. NfL was lower in the SRC group (median = 8.71 pg·mL−1, IQR = 6.09 pg·mL−1) compared to the post-match group (median = 29.60 pg·mL−1, IQR = 57.45 pg·mL−1, p < 0.001). VILIP-1 was higher in the post-match group (median = 212.18 pg·mL−1, IQR = 345.00 pg·mL−1) compared to both the pre-match (median = 32.63 pg·mL−1, IQR = 52.24 pg·mL−1), p = 0.001) and SRC (median = 30.21 pg·mL−1, IQR = 47.20 pg·mL−1), p = 0.003) groups. APP, NfL, and VILIP-1 were all able to distinguish between pre-match and post-match groups (AUROC > 0.700) but not from the SRC group (AUROC < 0.660). Our results show that APP, NfL, and VILIP-1 were not helpful in differentiating concussed from non-concussed athletes pitch-side in this study.
Collapse
Affiliation(s)
- Jessica E. Morgan
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | | | - Steven D. Beck
- Cardio-Renal Physiology Laboratory, Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Iustin C. Scobercea
- College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24515, USA
| | - India J. Austin
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Hannah E. Blankenship
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Allan Knox
- Exercise Science Department, California Lutheran University, Thousand Oaks, CA 91360, USA
| | - Jorge M. Serrador
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, NSW 2751, Australia
- Rehabilitation and Movement Sciences, School of Health Professions, Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Matthew J. Rogatzki
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
- Correspondence:
| |
Collapse
|
92
|
Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM. Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 2022; 13:960741. [PMID: 36484020 PMCID: PMC9723459 DOI: 10.3389/fneur.2022.960741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,UK Dementia Research Institute at University College London, London, United Kingdom,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland,Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland,*Correspondence: Teemu M. Luoto
| |
Collapse
|
93
|
Mafuika SN, Naicker T, Harrichandparsad R, Lazarus L. The potential of serum S100 calcium-binding protein B and glial fibrillary acidic protein as biomarkers for traumatic brain injury. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
94
|
Hicks C, Dhiman A, Barrymore C, Goswami T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering (Basel) 2022; 9:612. [PMID: 36354523 PMCID: PMC9687153 DOI: 10.3390/bioengineering9110612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
This paper reviews the predictive capabilities of blood-based biomarkers to quantify traumatic brain injury (TBI). Biomarkers for concussive conditions also known as mild, to moderate and severe TBI identified along with post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) that occur due to repeated blows to the head during one's lifetime. Since the pathways of these biomarkers into the blood are not fully understood whether there is disruption in the blood-brain barrier (BBB) and the time it takes after injury for the expression of the biomarkers to be able to predict the injury effectively, there is a need to understand the protein biomarker structure and other physical properties. The injury events in terms of brain and mechanics are a result of external force with or without the shrapnel, in the wake of a wave result in local tissue damage. Thus, these mechanisms express specific biomarkers kinetics of which reaches half-life within a few hours after injury to few days. Therefore, there is a need to determine the concentration levels that follow injury. Even though current diagnostics linking biomarkers with TBI severity are not fully developed, there is a need to quantify protein structures and their viability after injury. This research was conducted to fully understand the structures of 12 biomarkers by performing molecular dynamics simulations involving atomic movement and energies of forming hydrogen bonds. Molecular dynamics software, NAMD and VMD were used to determine and compare the approximate thermodynamic stabilities of the biomarkers and their bonding energies. Five biomarkers used clinically were S100B, GFAP, UCHL1, NF-L and tau, the kinetics obtained from literature show that the concentration values abruptly change with time after injury. For a given protein length, associated number of hydrogen bonds and bond energy describe a lower bound region where proteins self-dissolve and do not have long enough half-life to be detected in the fluids. However, above this lower bound, involving higher number of bonds and energy, we hypothesize that biomarkers will be viable to disrupt the BBB and stay longer to be modeled for kinetics for diagnosis and therefore may help in the discoveries of new biomarkers.
Collapse
Affiliation(s)
- Celeste Hicks
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Akshima Dhiman
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Chauntel Barrymore
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Tarun Goswami
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| |
Collapse
|
95
|
Association between Brain Injury Markers and Testosterone in Critically-Ill COVID-19 Male Patients. Microorganisms 2022; 10:microorganisms10112095. [PMID: 36363686 PMCID: PMC9697553 DOI: 10.3390/microorganisms10112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Accumulating data suggest that various neurologic manifestations are reported in critically-ill COVID-19 patients. Although low testosterone levels were associated with poor outcomes, the relationship between testosterone levels and indices of brain injury are still poorly understood. Therefore, we aimed to explore whether testosterone levels are associated with glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), biomarkers of brain injury, in patients with a severe form of COVID-19. The present study was conducted on 65 male patients aged 18−65 with severe COVID-19. Blood samples were collected at three time points: upon admission to ICU, 7 days after, and 14 days after. In patients with neurological sequels (n = 20), UCH-L1 serum concentrations at admission were markedly higher than in patients without them (240.0 (155.4−366.4) vs. 146.4 (92.5−243.9) pg/mL, p = 0.022). GFAP concentrations on admission did not differ between the groups (32.2 (24.2−40.1) vs. 29.8 (21.8−39.4) pg/mL, p = 0.372). Unlike GFAP, UCH-L1 serum concentrations exhibited a negative correlation with serum testosterone in all three time points (r = −0.452, p < 0.001; r = −0.430, p < 0.001 and r = −0.476, p = 0.001, respectively). The present study suggests that the traumatic brain injury biomarker UCH-L1 may be associated with neurological impairments seen in severe COVID-19. Moreover, a negative correlation between UCH-L1 and serum testosterone concentrations implies that testosterone may have a role in the development of neurological sequels in critically-ill COVID-19 patients.
Collapse
|
96
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
97
|
Papa L, Walter AE, Wilkes JR, Clonts HS, Johnson B, Slobounov SM. Effect of Player Position on Serum Biomarkers during Participation in a Season of Collegiate Football. J Neurotrauma 2022; 39:1339-1348. [PMID: 35615873 PMCID: PMC9529311 DOI: 10.1089/neu.2022.0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This prospective cohort study examined the relationship between a panel of four serum proteomic biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], total Tau, and neurofilament light chain polypeptide [NF-L]) in 52 players from two different cohorts of male collegiate student football athletes from two different competitive seasons of Division I National Collegiate Athletic Association Football Bowl Subdivision. This study evaluated changes in biomarker concentrations (as indicators of brain injury) over the course of the playing season (pre- and post-season) and also assessed biomarker concentrations by player position using two different published classification systems. Player positions were divided into: 1) speed (quarterbacks, running backs, halfbacks, fullbacks, wide receivers, tight ends, defensive backs, safety, and linebackers) versus non-speed (offensive and defensive linemen), and 2) "Profile 1" (low frequency/high strain magnitudes positions including quarterbacks, wide receivers, and defensive backs), "Profile 2" (mid-range impact frequency and strain positions including linebackers, running backs, and tight ends), and "Profile 3" (high frequency/low strains positions including defensive and offensive linemen). There were significant increases in GFAP 39.3 to 45.6 pg/mL and NF-L 3.5 to 5.4 pg/mL over the course of the season (p < 0.001) despite only five players being diagnosed with concussion. UCH-L1 decreased significantly, and Tau was not significantly different. In both the pre- and post-season blood samples Tau and NF-L concentrations were significantly higher in speed versus non-speed positions. Concentrations of GFAP, Tau, and NF-L increased incrementally from "Profile 3," to "Profile 2" to "Profile 1" in the post-season. UCH-L1 did not. GFAP increased (by Profiles 3, 2, 1) from 42.4 to 49.6 to 78.2, respectively (p = 0.051). Tau increased from 0.37 to 0.61 to 0.67, respectively (p = 0.024). NF-L increased from 3.5 to 4.9 to 8.2, respectively (p < 0.001). Although GFAP and Tau showed similar patterns of elevations by profile in the pre-season samples they were not statistically significant. Only NF-L showed significant differences between profiles 2.7 to 3.1 to 4.2 in the pre-season (p = 0.042). GFAP, Tau, and NF-L concentrations were significantly associated with different playing positions with the highest concentrations in speed and "Profile 1" positions and the lowest concentrations were in non-speed and "Profile 3" positions. Blood-based biomarkers (GFAP, Tau, NF-L) provide an additional layer of injury quantification that could contribute to a better understanding of the risks of playing different positions.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexa E. Walter
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James R. Wilkes
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hunter S. Clonts
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA
| | - Brian Johnson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Semyon M. Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
98
|
Raikes AC, Hernandez GD, Mullins VA, Wang Y, Lopez C, Killgore WDS, Chilton FH, Brinton RD. Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: Exploratory neuroimaging findings from a pilot RCT. Front Neurol 2022; 13:891531. [PMID: 36188406 PMCID: PMC9521411 DOI: 10.3389/fneur.2022.891531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Context Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration ClinicalTrials.gov-NCT04796207.
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Veronica A. Mullins
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Claudia Lopez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Social, Cognitive, and Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Floyd H. Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
99
|
Stem Cell Therapy for Sequestration of Traumatic Brain Injury-Induced Inflammation. Int J Mol Sci 2022; 23:ijms231810286. [PMID: 36142198 PMCID: PMC9499317 DOI: 10.3390/ijms231810286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.
Collapse
|
100
|
Mao M, Wang LY, Zhu LY, Wang F, Ding Y, Tong JH, Sun J, Sun Q, Ji MH. Higher serum PGE2 is a predicative biomarker for postoperative delirium following elective orthopedic surgery in elderly patients. BMC Geriatr 2022; 22:685. [PMID: 35982410 PMCID: PMC9389800 DOI: 10.1186/s12877-022-03367-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Postoperative delirium (POD), one of the most common complications following major surgery, imposes a heavy burden on patients and society. The objective of this exploratory study was to conduct a secondary analysis to identify whether there exist novel and reliable serum biomarkers for the prediction of POD. Methods A total of 131 adult patients (≥ 65 years) undergoing lower extremity orthopedic surgery with were enrolled in this study. Cognitive function was assessed preoperatively with Mini-Mental State Examination (MMSE). Delirium was diagnosed according to the Confusion Assessment Method (CAM) criteria on preoperative day and postoperative days 1–3. The preoperative serum levels of a panel of 16 biochemical parameters were measured by ELISA. Results Thirty-five patients developed POD, with an incidence of 26.7%. Patients in POD group were older (P = 0.001) and had lower preoperative MMSE scores (P = 0.001). Preoperative serum levels of prostaglandin E2 (PGE2, P < 0.001), S100β (P < 0.001), glial fibrillary acidic protein (P < 0.001) and neurofilament light (P = 0.002) in POD group were significantly increased. Logistic regression analysis showed that advanced age (OR = 1.144, 95%CI: 1.008 ~ 1.298, P = 0.037), higher serum neurofilament light (OR = 1.003, 95%CI: 1.000 ~ 1.005, P = 0.036) and PGE2 (OR = 1.031, 95%CI: 1.018 ~ 1.044, P < 0.001) levels were associated with the development of POD. In addition, serum level of PGE2 yielded an area under the ROC curve (AUC) of 0.897 to predict POD (P < 0.001), with a sensitivity of 80% and a specificity of 83.3%. Conclusions Our study showed that higher preoperative serum PGE2 level might be a biomarker to predict the occurrence of POD in elderly patients undergoing elective orthopedic surgery. Trial registration NCT03792373 www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Meng Mao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Anesthesiology, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei-Yuan Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Lan-Yue Zhu
- Department of Anesthesiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Fei Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Ying Ding
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jian-Hua Tong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qiang Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Anesthesiology, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Mu-Huo Ji
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.
| |
Collapse
|