51
|
Katsumi Y, Putcha D, Eckbo R, Wong B, Quimby M, McGinnis S, Touroutoglou A, Dickerson BC. Anterior dorsal attention network tau drives visual attention deficits in posterior cortical atrophy. Brain 2023; 146:295-306. [PMID: 36237170 PMCID: PMC10060714 DOI: 10.1093/brain/awac245] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Posterior cortical atrophy (PCA), usually an atypical clinical syndrome of Alzheimer's disease, has well-characterized patterns of cortical atrophy and tau deposition that are distinct from typical amnestic presentations of Alzheimer's disease. However, the mechanisms underlying the cortical spread of tau in PCA remain unclear. Here, in a sample of 17 biomarker-confirmed (A+/T+/N+) individuals with PCA, we sought to identify functional networks with heightened vulnerability to tau pathology by examining the cortical distribution of elevated tau as measured by 18F-flortaucipir (FTP) PET. We then assessed the relationship between network-specific FTP uptake and visuospatial cognitive task performance. As predicted, we found consistent and prominent localization of tau pathology in the dorsal attention network and visual network of the cerebral cortex. Elevated FTP uptake within the dorsal attention network (particularly the ratio of FTP uptake between the anterior and posterior nodes) was associated with poorer visuospatial attention in PCA; associations were also identified in other functional networks, although to a weaker degree. Furthermore, using functional MRI data collected from each patient at wakeful rest, we found that a greater anterior-to-posterior ratio in FTP uptake was associated with stronger intrinsic functional connectivity between anterior and posterior nodes of the dorsal attention network. Taken together, we conclude that our cross-sectional marker of anterior-to-posterior FTP ratio could indicate tau propagation from posterior to anterior dorsal attention network nodes, and that this anterior progression occurs in relation to intrinsic functional connectivity within this network critical for visuospatial attention. Our findings help to clarify the spatiotemporal pattern of tau propagation in relation to visuospatial cognitive decline and highlight the key role of the dorsal attention network in the disease progression of PCA.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
52
|
Young CB, Johns E, Kennedy G, Belloy ME, Insel PS, Greicius MD, Sperling RA, Johnson KA, Poston KL, Mormino EC. APOE effects on regional tau in preclinical Alzheimer's disease. Mol Neurodegener 2023; 18:1. [PMID: 36597122 PMCID: PMC9811772 DOI: 10.1186/s13024-022-00590-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND APOE variants are strongly associated with abnormal amyloid aggregation and additional direct effects of APOE on tau aggregation are reported in animal and human cell models. The degree to which these effects are present in humans when individuals are clinically unimpaired (CU) but have abnormal amyloid (Aβ+) remains unclear. METHODS We analyzed data from CU individuals in the Anti-Amyloid Treatment in Asymptomatic AD (A4) and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) studies. Amyloid PET data were available for 4486 participants (3163 Aβ-, 1323 Aβ+) and tau PET data were available for a subset of 447 participants (55 Aβ-, 392 Aβ+). Linear models examined APOE (number of e2 and e4 alleles) associations with global amyloid and regional tau burden in medial temporal lobe (entorhinal, amygdala) and early neocortical regions (inferior temporal, inferior parietal, precuneus). Consistency of APOE4 effects on regional tau were examined in 220 Aβ + CU and mild cognitive impairment (MCI) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS APOE2 and APOE4 were associated with lower and higher amyloid positivity rates, respectively. Among Aβ+ CU, e2 and e4 were associated with reduced (-12 centiloids per allele) and greater (+15 centiloids per allele) continuous amyloid burden, respectively. APOE2 was associated with reduced regional tau in all regions (-0.05 to -0.09 SUVR per allele), whereas APOE4 was associated with greater regional tau (+0.02 to +0.07 SUVR per allele). APOE differences were confirmed by contrasting e3/e3 with e2/e3 and e3/e4. Mediation analyses among Aβ+ s showed that direct effects of e2 on regional tau were present in medial temporal lobe and early neocortical regions, beyond an indirect pathway mediated by continuous amyloid burden. For e4, direct effects on regional tau were only significant in medial temporal lobe. The magnitude of protective e2 effects on regional tau was consistent across brain regions, whereas detrimental e4 effects were greatest in medial temporal lobe. APOE4 patterns were confirmed in Aβ+ ADNI participants. CONCLUSIONS APOE influences early regional tau PET burden, above and beyond effects related to cross-sectional amyloid PET burden. Therapeutic strategies targeting underlying mechanisms related to APOE may modify tau accumulation among Aβ+ individuals.
Collapse
Affiliation(s)
- Christina B Young
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA.
| | - Emily Johns
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Gabriel Kennedy
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Michael E Belloy
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Philip S Insel
- University of California San Francisco, San Francisco, CA, USA
| | - Michael D Greicius
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Reisa A Sperling
- Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen L Poston
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Elizabeth C Mormino
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| |
Collapse
|
53
|
Kang JM, Shin JH, Kim WR, Seo S, Seo H, Lee SY, Park KH, Na DL, Okamura N, Seong JK, Noh Y. Effects of the APOEɛ4 Allele on the Relationship Between Tau and Amyloid-β in Early- and Late-Onset Alzheimer's Disease. J Alzheimers Dis 2023; 94:1233-1246. [PMID: 37393505 DOI: 10.3233/jad-230339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Little is known regarding the differential effects of the apolipoprotein E (APOE) ɛ4 on the regional topography of amyloid and tau in patients with both early-onset (EOAD) and late-onset Alzheimer's disease (LOAD). OBJECTIVE To compare the distribution and association of tau, amyloid, and cortical thickness among groups classified by the presence of APOEɛ4 allele and onset age. METHODS A total of 165 participants including 54 EOAD patients (29 ɛ4-; 25 ɛ4+), 45 LOAD patients (21 ɛ4-; 24 ɛ4+), and 66 age-matched controls underwent 3T MRI, 18F-THK5351 (THK) and 18F-flutemetamol (FLUTE) PET scans, APOE genotyping, and neuropsychological tests. Data for voxel-wise and standardized uptake values from PET scans were analyzed in the context of APOE and age at onset. RESULTS EOAD ɛ4- patients showed greater THK retention in the association cortices, whereas their EOAD ɛ4+ counterparts had more retention in medial temporal areas. THK topography of LOAD ɛ4+ was similar to EOAD ɛ4 + . THK correlated positively with FLUTE and conversely with mean cortical thickness, being lowest in EOAD ɛ4-, highest in LOAD ɛ4-, and modest in ɛ4+ groups. Even in the APOEɛ4+ groups, THK tended to correlate with FLUTE and mean cortical thickness in the inferior parietal region in EOAD and in the medial temporal region in LOAD. LOAD ɛ4- manifested with prevalent small vessel disease markers and the lowest correlation between THK retention and cognition. CONCLUSION Our observations suggest the differential effects of the APOEɛ4 on the relationship between tau and amyloid in EOAD and LOAD.
Collapse
Affiliation(s)
- Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Hyeon Shin
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory, Daegu, Republic of Korea
| | - Woo-Ram Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seongho Seo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Haeun Seo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Republic of Korea; Happymind Clinic, Seoul, Republic of Korea
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Joon-Kyoung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
54
|
Shuping JL, Matthews DC, Adamczuk K, Scott D, Rowe CC, Kreisl WC, Johnson SC, Lukic AS, Johnson KA, Rosa‐Neto P, Andrews RD, Van Laere K, Cordes L, Ward L, Wilde CL, Barakos J, Purcell DD, Devanand DP, Stern Y, Luchsinger JA, Sur C, Price JC, Brickman AM, Klunk WE, Boxer AL, Mathotaarachchi SS, Lao PJ, Evelhoch JL. Development, initial validation, and application of a visual read method for [ 18F]MK-6240 tau PET. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12372. [PMID: 36873926 PMCID: PMC9983143 DOI: 10.1002/trc2.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 02/15/2023]
Abstract
Background The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.
Collapse
Affiliation(s)
| | | | | | | | - Christopher C. Rowe
- Department of Molecular Imaging and TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - William C. Kreisl
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Sterling C. Johnson
- Department of MedicineDivision of GeriatricsAlzheimer's Disease Research Center, University of WisconsinMadisonWisconsinUSA
| | | | - Keith A. Johnson
- The Gordon Center for Medical ImagingDepartment of NeurologyCenter for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro Rosa‐Neto
- Montreal Neurological InstituteMcGill UniversityMontréalQuebecCanada
| | | | - Koen Van Laere
- Nuclear Medicine and Molecular ImagingDepartment of Imaging and Pathology KU LeuvenLeuvenBelgium
| | | | - Larry Ward
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | | | | | | | - Davangere P. Devanand
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaakov Stern
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Jose A. Luchsinger
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of Medicine and EpidemiologyColumbia University Irving Medical CenterNew York, NY, 10032 USA For Dr. LuchsingerUSA
| | | | - Julie C. Price
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Adam M. Brickman
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Patrick J. Lao
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
55
|
Pascoal TA, Leuzy A, Therriault J, Chamoun M, Lussier F, Tissot C, Strandberg O, Palmqvist S, Stomrud E, Ferreira PCL, Ferrari‐Souza JP, Smith R, Benedet AL, Gauthier S, Hansson O, Rosa‐Neto P. Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12390. [PMID: 36733847 PMCID: PMC9886860 DOI: 10.1002/dad2.12390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
Introduction The optimal combination of amyloid-β/tau/neurodegeneration (A/T/N) biomarker profiles for the diagnosis of Alzheimer's disease (AD) dementia is unclear. Methods We examined the discriminative accuracy of A/T/N combinations assessed with neuroimaging biomarkers for the differentiation of AD from cognitively unimpaired (CU) elderly and non-AD neurodegenerative diseases in the TRIAD, BioFINDER-1 and BioFINDER-2 cohorts (total n = 832) using area under the receiver operating characteristic curves (AUC). Results For the diagnosis of AD dementia (vs. CU elderly), T biomarkers performed as well as the complete A/T/N system (AUC range: 0.90-0.99). A and T biomarkers in isolation performed as well as the complete A/T/N system in differentiating AD dementia from non-AD neurodegenerative diseases (AUC range; A biomarker: 0.84-1; T biomarker: 0.83-1). Discussion In diagnostic settings, the use of A or T neuroimaging biomarkers alone can reduce patient burden and medical costs compared with using their combination, without significantly compromising accuracy.
Collapse
Affiliation(s)
- Tharick A. Pascoal
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Joseph Therriault
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Firoza Lussier
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Cecile Tissot
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Olof Strandberg
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Erik Stomrud
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pamela C. L. Ferreira
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - João Pedro Ferrari‐Souza
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Ruben Smith
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Andrea Lessa Benedet
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Serge Gauthier
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
56
|
Daly T, Henry V, Bourdenx M. From Association to Intervention: The Alzheimer's Disease-Associated Processes and Targets (ADAPT) Ontology. J Alzheimers Dis 2023; 94:S87-S96. [PMID: 36683508 PMCID: PMC10473068 DOI: 10.3233/jad-221004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Many putative causes and risk factors have been associated with outcomes in Alzheimer's disease (AD) but all attempts at disease-modifying treatment have failed to be clinically significant. Efforts to address this "association-intervention" mismatch have tended to focus on the novel design of interventions. OBJECTIVE Here, we instead deal with the notion of association in depth. We introduce the concept of disease-associated process (DAP) as a flexible concept that can unite different areas of study of AD from genetics to epidemiology to identify disease-modifying targets. METHODS We sort DAPs using three properties: specificity for AD, frequency in patients, and pathogenic intensity for dementia before using a literature review to apply these properties in three ways. Firstly, we describe and visualize known DAPs. Secondly, we exemplify qualitative specificity analysis with the DAPs of tau protein pathology and autophagy to reveal their differential implication in AD. Finally, we use DAP properties to define the terms "risk factor," "cause," and "biomarker." RESULTS We show how DAPs fit into our collaborative disease ontology, the Alzheimer's Disease-Associated Processes and Targets (ADAPT) ontology. We argue that our theoretical system can serve as a democratic research forum, offering a more biologically adequate view of dementia than reductionist models. CONCLUSION The ADAPT ontology is a tool that could help to ground debates around priority setting using objective criteria for the identifying of targets in AD. Further efforts are needed to address issues of how biomedical research into AD is prioritized and funded.
Collapse
Affiliation(s)
- Timothy Daly
- Sorbonne Université, Science Norms Democracy UMR, Paris, France
| | - Vincent Henry
- Sorbonne Université, Brain and Spine Institute, Paris, France
| | - Mathieu Bourdenx
- University College London, UK Dementia Research Institute, London, UK
| |
Collapse
|
57
|
Tort‐Merino A, Falgàs N, Allen IE, Balasa M, Olives J, Contador J, Castellví M, Juncà‐Parella J, Guillén N, Borrego‐Écija S, Bosch B, Fernández‐Villullas G, Ramos‐Campoy O, Antonell A, Rami L, Sánchez‐Valle R, Lladó A. Early-onset Alzheimer's disease shows a distinct neuropsychological profile and more aggressive trajectories of cognitive decline than late-onset. Ann Clin Transl Neurol 2022; 9:1962-1973. [PMID: 36398437 PMCID: PMC9735361 DOI: 10.1002/acn3.51689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Early- and late-onset Alzheimer's disease (EOAD and LOAD) share the same neuropathological traits but show distinct cognitive features. We aimed to explore baseline and longitudinal outcomes of global and domain-specific cognitive function in a well characterized cohort of patients with a biomarker-based diagnosis. METHODS In this retrospective cohort study, 195 participants were included and classified according to their age, clinical status, and CSF AD biomarker profile: 89 EOAD, 37 LOAD, 46 young healthy controls (age ≤ 65 years), and 23 old healthy controls (>65 years). All subjects underwent clinical and neuropsychological assessment, neuroimaging, APOE genotyping and lumbar puncture. RESULTS We found distinct neuropsychological profiles between EOAD and LOAD at the time of diagnosis. Both groups showed similar performances on memory and language domains, but the EOAD patients displayed worsened deficits in visual perception, praxis, and executive tasks (p < 0.05). Longitudinally, cognitive decline in EOAD was more pronounced than LOAD in the global outcomes at the expense of these non-amnestic domains. We found that years of education significantly influenced the decline in most of the neuropsychological tests. Besides, the APOE ε4 status showed a significant effect on the decline of memory-related tasks within the EOAD cohort (p < 0.05). INTERPRETATION Age of onset is a main factor shaping the cognitive trajectories in AD patients, with younger age driving to a steeper decline of the non-memory domains. Years of education are related to a transversal decline in all cognitive domains and APOE ε4 status to a specific decline in memory performance in EOAD.
Collapse
Affiliation(s)
- Adrià Tort‐Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain,Department of Neurology & Neurological SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA,Global Brain Health Institute, University of California San Francisco ‐ Trinity College DublinSan Francisco, California, USA ‐ Dublin, Irleand
| | - Isabel E. Allen
- Global Brain Health Institute, University of California San Francisco ‐ Trinity College DublinSan Francisco, California, USA ‐ Dublin, Irleand,Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain,Global Brain Health Institute, University of California San Francisco ‐ Trinity College DublinSan Francisco, California, USA ‐ Dublin, Irleand
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - José Contador
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Jordi Juncà‐Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Sergi Borrego‐Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Bea Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Guadalupe Fernández‐Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Oscar Ramos‐Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca BiomèdicaUniversity of BarcelonaBarcelonaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
58
|
Dincer A, Chen CD, McKay NS, Koenig LN, McCullough A, Flores S, Keefe SJ, Schultz SA, Feldman RL, Joseph-Mathurin N, Hornbeck RC, Cruchaga C, Schindler SE, Holtzman DM, Morris JC, Fagan AM, Benzinger TLS, Gordon BA. APOE ε4 genotype, amyloid-β, and sex interact to predict tau in regions of high APOE mRNA expression. Sci Transl Med 2022; 14:eabl7646. [PMID: 36383681 PMCID: PMC9912474 DOI: 10.1126/scitranslmed.abl7646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The apolipoprotein E (APOE) ε4 allele is strongly linked with cerebral β-amyloidosis, but its relationship with tauopathy is less established. We investigated the relationship between APOE ε4 carrier status, regional amyloid-β (Aβ), magnetic resonance imaging (MRI) volumetrics, tau positron emission tomography (PET), APOE messenger RNA (mRNA) expression maps, and cerebrospinal fluid phosphorylated tau (CSF ptau181). Three hundred fifty participants underwent imaging, and 270 had ptau181. We used computational models to evaluate the main effect of APOE ε4 carrier status on regional neuroimaging values and then the interaction of ε4 status and global Aβ on regional tau PET and brain volumes as well as CSF ptau181. Separately, we also examined the additional interactive influence of sex. We found that, for the same degree of Aβ burden, APOE ε4 carriers showed greater tau PET signal relative to noncarriers in temporal regions, but no interaction was present for MRI volumes or CSF ptau181. This potentiation of tau aggregation irrespective of sex occurred in brain regions with high APOE mRNA expression, suggesting local vulnerabilities to tauopathy. There were greater effects of APOE genotype in females, although the interactive sex effects did not strongly mirror mRNA expression. Pathology is not homogeneously expressed throughout the brain but mirrors underlying biological patterns such as gene expression.
Collapse
Affiliation(s)
- Aylin Dincer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nicole S McKay
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lauren N Koenig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Austin McCullough
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah J Keefe
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephanie A Schultz
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rebecca L Feldman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Russ C Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Suzanne E Schindler
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - David M Holtzman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anne M Fagan
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammie LS Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA.,Department of Psychological & Brain Sciences, Washington University, Saint Louis, MO, USA
| |
Collapse
|
59
|
Pelak VS, Mahmood A, Abe-Ridgway K. Perspectives and a Systematic Scoping Review on Longitudinal Profiles of Posterior Cortical Atrophy Syndrome. Curr Neurol Neurosci Rep 2022; 22:803-812. [PMID: 36242715 DOI: 10.1007/s11910-022-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To provide perspectives on the importance of understanding longitudinal profiles of posterior cortical atrophy (PCA) and report results of a scoping review to identify data and knowledge gaps related to PCA survival and longitudinal clinical and biomarker outcomes. RECENT FINDINGS Thirteen longitudinal studies were identified; all but two had fewer than 30 participants with PCA. Relatively few longitudinal data exist, particularly for survival. In PCA, posterior cortical dysfunction and atrophy progress at faster rates compared to non-posterior regions, potentially up to a decade after symptom onset. Unlike typical AD, PCA phenotype-defined cognitive dysfunction and atrophy remain relatively more severe compared to other regions throughout the PCA course. Select cognitive tests hold promise as PCA outcome measures and for staging. Further longitudinal investigations are critically needed to enable PCA inclusion in treatment trials and to provide appropriate care to patients and enhance our understanding of the pathophysiology of dementing diseases.
Collapse
Affiliation(s)
- Victoria S Pelak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Asher Mahmood
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathryn Abe-Ridgway
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
60
|
Frontzkowski L, Ewers M, Brendel M, Biel D, Ossenkoppele R, Hager P, Steward A, Dewenter A, Römer S, Rubinski A, Buerger K, Janowitz D, Binette AP, Smith R, Strandberg O, Carlgren NM, Dichgans M, Hansson O, Franzmeier N. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat Commun 2022; 13:4899. [PMID: 35987901 PMCID: PMC9392750 DOI: 10.1038/s41467-022-32592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/08/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn Alzheimer’s disease (AD), younger symptom onset is associated with accelerated disease progression and tau spreading, yet the mechanisms underlying faster disease manifestation are unknown. To address this, we combined resting-state fMRI and longitudinal tau-PET in two independent samples of controls and biomarker-confirmed AD patients (ADNI/BioFINDER, n = 240/57). Consistent across both samples, we found that younger symptomatic AD patients showed stronger tau-PET in globally connected fronto-parietal hubs, i.e., regions that are critical for maintaining cognition in AD. Stronger tau-PET in hubs predicted faster subsequent tau accumulation, suggesting that tau in globally connected regions facilitates connectivity-mediated tau spreading. Further, stronger tau-PET in hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients, which predicted faster cognitive decline. These independently validated findings suggest that younger AD symptom onset is associated with stronger tau pathology in brain hubs, and accelerated tau spreading throughout connected brain regions and cognitive decline.
Collapse
|
61
|
Dumurgier J, Sabia S, Zetterberg H, Teunissen CE, Hanseeuw B, Orellana A, Schraen S, Gabelle A, Boada M, Lebouvier T, Willemse EAJ, Cognat E, Ruiz A, Hourregue C, Lilamand M, Bouaziz-Amar E, Laplanche JL, Lehmann S, Pasquier F, Scheltens P, Blennow K, Singh-Manoux A, Paquet C. A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging. Neurology 2022; 99:e669-e678. [PMID: 35970577 PMCID: PMC9484605 DOI: 10.1212/wnl.0000000000200735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF β-amyloid (Aβ) peptide biomarkers. These Aβ cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification.
Collapse
Affiliation(s)
- Julien Dumurgier
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom.
| | - Séverine Sabia
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Henrik Zetterberg
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Charlotte E Teunissen
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Bernard Hanseeuw
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Adelina Orellana
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Susanna Schraen
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Audrey Gabelle
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Mercè Boada
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Thibaud Lebouvier
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Eline A J Willemse
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Emmanuel Cognat
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Agustin Ruiz
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Claire Hourregue
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Matthieu Lilamand
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Elodie Bouaziz-Amar
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Jean-Louis Laplanche
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Sylvain Lehmann
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Florence Pasquier
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Philip Scheltens
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Kaj Blennow
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Archana Singh-Manoux
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| | - Claire Paquet
- From the Université de Paris (J.D., S. Sabia, A.S.-M.), Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases; Cognitive Neurology Center (J.D., E.C., C.H., M.L., C.P.), Lariboisiere-Fernand Widal Hospital, AP-HP, Université de Paris, France; Department of Psychiatry and Neurochemistry (H.Z., K.B.), University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London; Dementia Research Institute (H.Z.), London, United Kingdom; Neurochemistry Laboratory (C.E.T., E.A.J.W.), Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Neurology (B.H.), Cliniques Universitaires Saint-Luc, and Institute of Neuroscience (B.H.), Université Catholique de Louvain, Brussels, Belgium; Gordon Center for Medical Imaging (B.H.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Research Center and Memory Clinic (A.O., M.B., A.R.), Fundació ACE, Institut Català de Neurciències Aplicades, Universitat International de Catalunya, Barcelona; Centro de Investigación biomédica en Red de Enfermedades Neurodegerenativas (CIBERNED) (A.O., A.R.), Madrid, Spain; Univ. Lille (S. Schraen, T.L., F.P.), CHU Lille, Inserm UMR-S 1172, LilNCog (JPARC)-Lille Neurosciences & Cognition, DISTAlz, LiCEND; Department of Neurology (A.G.), Memory Research and Resources Centre, University of Montpellier; Department of Biochemistry and Molecular Biology (E.B.-A., J.-L.L.), Lariboisière Hospital, APHP, Paris; Department of Biochemistry (S.L.), University of Montpellier, France; Alzheimer Center (P.S.), Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, the Netherlands; and Department of Epidemiology and Public Health (A.S.-M.), University College London, United Kingdom
| |
Collapse
|
62
|
Krishnadas N, Huang K, Schultz SA, Doré V, Bourgeat P, Goh AM, Lamb F, Bozinovski S, Burnham SC, Robertson JS, Laws SM, Maruff P, Masters CL, Villemagne VL, Rowe CC. Visually Identified Tau 18F-MK6240 PET Patterns in Symptomatic Alzheimer’s Disease. J Alzheimers Dis 2022; 88:1627-1637. [PMID: 35811517 PMCID: PMC9484111 DOI: 10.3233/jad-215558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In Alzheimer’s disease, heterogeneity has been observed in the postmortem distribution of tau neurofibrillary tangles. Visualizing the topography of tau in vivo may facilitate clinical trials and clinical practice. Objective: This study aimed to investigate whether tau distribution patterns that are limited to mesial temporal lobe (MTL)/limbic regions, and those that spare MTL regions, can be visually identified using 18F-MK6240, and whether these patterns are associated with different demographic and cognitive profiles. Methods: Tau 18F-MK6240 PET images of 151 amyloid-β positive participants with mild cognitive impairment (MCI) and dementia were visually rated as: tau negative, limbic predominant (LP), MTL-sparing, and Typical by two readers. Groups were evaluated for differences in age, APOE ɛ4 carriage, hippocampal volumes, and cognition (MMSE, composite memory and non-memory scores). Voxel-wise contrasts were also performed. Results: Visual rating resulted in 59.6% classified as Typical, 17.9% as MTL-sparing, 9.9% LP, and 12.6% as tau negative. Intra-rater and inter-rater reliability was strong (Cohen’s kappa values of 0.89 and 0.86 respectively). Tracer retention in a “hook”-like distribution on sagittal sequences was observed in the LP and Typical groups. The visually classified MTL-sparing group had lower APOE ɛ4 carriage and relatively preserved hippocampal volumes. Higher MTL tau was associated with greater amnestic cognitive impairment. High cortical tau was associated with greater impairments on non-memory domains of cognition, and individuals with high cortical tau were more likely to have dementia than MCI. Conclusion: Tau distribution patterns can be visually identified using 18F-MK6240 PET and are associated with differences in APOE ɛ4 carriage, hippocampal volumes, and cognition.
Collapse
Affiliation(s)
- Natasha Krishnadas
- Florey Department of Neurosciences & Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Kun Huang
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Stephanie A. Schultz
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Melbourne, Victoria, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Brisbane, QLD, Australia
| | - Anita M.Y. Goh
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- National Ageing Research Institute, Parkville, VIC, Australia
| | - Fiona Lamb
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Svetlana Bozinovski
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Samantha C. Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Melbourne, Victoria, Australia
| | - Joanne S. Robertson
- Florey Institute of Neurosciences & Mental Health, Parkville, VIC, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Perth, WA, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Paul Maruff
- Florey Institute of Neurosciences & Mental Health, Parkville, VIC, Australia
| | - Colin L. Masters
- Florey Institute of Neurosciences & Mental Health, Parkville, VIC, Australia
| | - Victor L. Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher C. Rowe
- Florey Department of Neurosciences & Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC, Australia
- Florey Institute of Neurosciences & Mental Health, Parkville, VIC, Australia
| |
Collapse
|
63
|
Buckley RF, O'Donnell A, McGrath ER, Jacobs HI, Lois C, Satizabal CL, Ghosh S, Rubinstein ZB, Murabito JM, Sperling RA, Johnson KA, Seshadri S, Beiser AS. Menopause Status Moderates Sex Differences in Tau Burden: A Framingham PET Study. Ann Neurol 2022; 92:11-22. [PMID: 35471588 PMCID: PMC9233144 DOI: 10.1002/ana.26382] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Women have a higher lifetime risk of Alzheimer's disease (AD) than men. Among cognitively normal (CN) older adults, women exhibit elevated tau positron emission tomography (PET) signal compared with men. We explored whether menopause exacerbates sex differences in tau deposition in middle-aged adults. METHODS 328 CN participants from the Framingham Study (mean age = 57 years (±10 years), 161 women, of whom, 104 were post-menopausal) underwent tau and β-amyloid (Aβ)-PET neuroimaging. We examined global Aβ-PET, and tau-PET signal in 5 regions identified a priori as demonstrating significant sex differences in older adults (in temporal, inferior parietal, middle frontal, and lateral occipital regions). We examined sex and menopause status-related differences in each region-of-interest, using linear regressions, as well as interactions with Aβ and APOEε4 genotype. RESULTS Women exhibited higher tau-PET signal (p < 0.002), and global Aβ-PET (p = 0.010), than men in inferior parietal, rostral middle frontal, and lateral occipital regions. Compared with age-matched men, post-menopausal women showed significantly higher tau-PET signal in parieto-occipital regions (p < 0.0001). By contrast, no differences in tau-PET signal existed between pre-menopausal women and men. Aβ-PET was not associated with menopausal status or age. Neither Aβ-PET nor APOEε4 status moderated sex or menopause associations with tau-PET. INTERPRETATION Clear divergence in tauopathy between the sexes are apparent approximately 20 years earlier than previously reported. Menopause status moderated sex differences in Aβ and tau-PET burden, with tau first appearing post-menopause. Sex and menopause differences consistently appeared in middle frontal and parieto-occipital regions but were not moderated by Aβ burden or APOEε4, suggesting that menopause-related tau vulnerability may be independent of AD-related pathways. ANN NEUROL 2022;92:11-22.
Collapse
Affiliation(s)
- Rachel F. Buckley
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Center for Alzheimer Research and Treatment, Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Melbourne School of Psychological Science and Florey InstitutesUniversity of MelbourneParkvilleVICAustralia
| | - Adrienne O'Donnell
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
- Framingham Heart StudyFraminghamMAUSA
| | - Emer R. McGrath
- Framingham Heart StudyFraminghamMAUSA
- HRB Clinical Research FacilityNational University of Ireland GalwayGalwayIreland
| | - Heidi I.L. Jacobs
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre LimburgMaastricht UniversityMaastrichtThe Netherlands
| | - Cristina Lois
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Claudia L. Satizabal
- Framingham Heart StudyFraminghamMAUSA
- Glen Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Department of NeurologyBoston University School of MedicineBostonMAUSA
| | | | - Zoe B. Rubinstein
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | | | - Reisa A. Sperling
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Center for Alzheimer Research and Treatment, Department of NeurologyBrigham and Women's HospitalBostonMAUSA
| | - Keith A. Johnson
- Center for Alzheimer Research and Treatment, Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Gordon Center for Medical Imaging, Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMAUSA
| | - Sudha Seshadri
- Framingham Heart StudyFraminghamMAUSA
- Glen Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Department of NeurologyBoston University School of MedicineBostonMAUSA
| | - Alexandra S. Beiser
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
- Framingham Heart StudyFraminghamMAUSA
- Department of NeurologyBoston University School of MedicineBostonMAUSA
| |
Collapse
|
64
|
Atherton K, Han X, Chung J, Cherry JD, Baucom Z, Saltiel N, Nair E, Abdolmohammadi B, Uretsky M, Khan MM, Shea C, Durape S, Martin BM, Palmisano JN, Farrell K, Nowinski CJ, Alvarez VE, Dwyer B, Daneshvar DH, Katz DI, Goldstein LE, Cantu RC, Kowall NW, Alosco ML, Huber BR, Tripodis Y, Crary JF, Farrer L, Stern RA, Stein TD, McKee AC, Mez J. Association of APOE Genotypes and Chronic Traumatic Encephalopathy. JAMA Neurol 2022; 79:787-796. [PMID: 35759276 PMCID: PMC9237800 DOI: 10.1001/jamaneurol.2022.1634] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Repetitive head impact (RHI) exposure is the chief risk factor for chronic traumatic encephalopathy (CTE). However, the occurrence and severity of CTE varies widely among those with similar RHI exposure. Limited evidence suggests that the APOEε4 allele may confer risk for CTE, but previous studies were small with limited scope. Objective To test the association between APOE genotype and CTE neuropathology and related endophenotypes. Design, Setting, and Participants This cross-sectional genetic association study analyzed brain donors from February 2008 to August 2019 from the Veterans Affairs-Boston University-Concussion Legacy Foundation Brain Bank. All donors had exposure to RHI from contact sports or military service. All eligible donors were included. Analysis took place between June 2020 and April 2022. Exposures One or more APOEε4 or APOEε2 alleles. Main Outcomes and Measures CTE neuropathological status, CTE stage (0-IV), semiquantitative phosphorylated tau (p-tau) burden in 11 brain regions (0-3), quantitative p-tau burden in the dorsolateral frontal lobe (log-transformed AT8+ pixel count per mm2), and dementia. Results Of 364 consecutive brain donors (100% male; 53 [14.6%] self-identified as Black and 311 [85.4%] as White; median [IQR] age, 65 [47-77] years) 20 years or older, there were 294 individuals with CTE and 70 controls. Among donors older than 65 years, APOEε4 status was significantly associated with CTE stage (odds ratio [OR], 2.34 [95% CI, 1.30-4.20]; false discovery rate [FDR]-corrected P = .01) and quantitative p-tau burden in the dorsolateral frontal lobe (β, 1.39 [95% CI, 0.83-1.94]; FDR-corrected P = 2.37 × 10-5). There was a nonsignificant association between APOEε4 status and dementia (OR, 2.64 [95% CI, 1.06-6.61]; FDR-corrected P = .08). Across 11 brain regions, significant associations were observed for semiquantitative p-tau burden in the frontal and parietal cortices, amygdala, and entorhinal cortex (OR range, 2.45-3.26). Among football players, the APOEε4 association size for CTE stage was similar to playing more than 7 years of football. Associations were significantly larger in the older half of the sample. There was no significant association for CTE status. Association sizes were similar when donors with an Alzheimer disease neuropathological diagnosis were excluded and were reduced but remained significant after adjusting for neuritic and diffuse amyloid plaques. No associations were observed for APOEε2 status. Models were adjusted for age at death and race. Conclusions and Relevance APOEε4 may confer increased risk for CTE-related neuropathological and clinical outcomes among older individuals with RHI exposure. Further work is required to validate these findings in an independent sample.
Collapse
Affiliation(s)
- Kathryn Atherton
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts
| | - Xudong Han
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts.,Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Zachary Baucom
- Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Evan Nair
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | | | - Conor Shea
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts
| | - Shruti Durape
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts
| | - Brett M Martin
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Biostatistics & Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Biostatistics & Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Kurt Farrell
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Concussion Legacy Foundation, Boston, Massachusetts
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Brigid Dwyer
- Braintree Rehabilitation Hospital, Braintree, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel H Daneshvar
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Douglas I Katz
- Braintree Rehabilitation Hospital, Braintree, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Lee E Goldstein
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert C Cantu
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Neil W Kowall
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lindsay Farrer
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts.,Boston University Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Veterans Affairs Medical Center, Bedford, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
65
|
Sible IJ, Nation DA. Visit-to-Visit Blood Pressure Variability and CSF Alzheimer Disease Biomarkers in Cognitively Unimpaired and Mildly Impaired Older Adults. Neurology 2022; 98:e2446-e2453. [PMID: 35418462 PMCID: PMC9231834 DOI: 10.1212/wnl.0000000000200302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Blood pressure variability is an emerging risk factor for cognitive decline and dementia, but mechanisms remain unclear. The current study examined whether visit-to-visit blood pressure variability is related to CSF Alzheimer disease biomarker levels over time and whether associations differed by APOE ε4 carrier status. METHODS In this retrospective analysis of a prospective cohort study, cognitively unimpaired or mildly impaired older adults from the Alzheimer's Disease Neuroimaging Initiative underwent 3 to 4 blood pressure measurements over a 12-month period and ≥1 lumbar puncture for evaluation of CSF phosphorylated tau, total tau, and β-amyloid levels at follow-up (6-108 months later). APOE ε4 carriers were defined as having ≥1 ε4 allele. Visit-to-visit blood pressure variability was determined over 12 months as variability independent of mean. Only CSF samples collected after the final blood pressure measurement were analyzed. Bayesian linear growth modeling investigated the role of blood pressure variability, APOE ε4, and the passage of time on CSF biomarker levels after controlling for several variables, including average blood pressure and baseline hypertension. RESULTS Four hundred sixty-six participants (mean 76.7 [SD 7.1] years of age) were included in the study. Elevated blood pressure variability was associated with increased CSF phosphorylated tau (β = 0.81 [95% CI 0.74, 0.97]), increased total tau (β = 0.98 [95% CI 0.71, 1.31]), and decreased β-amyloid levels (β = -1.52 [95% CI -3.55, -0.34]) at follow-up. APOE ε4 carriers with elevated blood pressure variability had the fastest increase in phosphorylated tau levels (β = 9.03 [95% CI 1.67, 16.36]). Blood pressure variability was not significantly related to total tau or β-amyloid levels over time according to APOE ε4 carrier status. DISCUSSION Older adults with elevated blood pressure variability exhibit increased CSF phosphorylated tau, increased total tau, and decreased β-amyloid over time, suggesting that blood pressure variability may correlate with alterations in Alzheimer disease biomarkers. Findings warrant further study of the relationship between blood pressure variability and the development of Alzheimer disease. APOE ε4 carrier status moderated relationships between blood pressure variability and CSF phosphorylated tau but not total tau or β-amyloid, consistent with other studies relating hemodynamic factors to tau changes.
Collapse
Affiliation(s)
- Isabel J Sible
- From the Department of Psychology (I.J.S.), University of Southern California, Los Angeles; and Institute for Memory Impairments and Neurological Disorders (D.A.N.) and Department of Psychological Science (D.A.N.), University of California Irvine
| | - Daniel A Nation
- From the Department of Psychology (I.J.S.), University of Southern California, Los Angeles; and Institute for Memory Impairments and Neurological Disorders (D.A.N.) and Department of Psychological Science (D.A.N.), University of California Irvine.
| |
Collapse
|
66
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
67
|
Young CB, Winer JR, Younes K, Cody KA, Betthauser TJ, Johnson SC, Schultz A, Sperling RA, Greicius MD, Cobos I, Poston KL, Mormino EC. Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease. JAMA Neurol 2022; 79:592-603. [PMID: 35435938 PMCID: PMC9016616 DOI: 10.1001/jamaneurol.2022.0676] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Characterization of early tau deposition in individuals with preclinical Alzheimer disease (AD) is critical for prevention trials that aim to select individuals at risk for AD and halt the progression of disease. Objective To evaluate the prevalence of cortical tau positron emission tomography (PET) heterogeneity in a large cohort of clinically unimpaired older adults with elevated β-amyloid (A+). Design, Setting, and Participants This cross-sectional study examined prerandomized tau PET, amyloid PET, structural magnetic resonance imaging, demographic, and cognitive data from the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study from April 2014 to December 2017. Follow-up analyses used observational tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Harvard Aging Brain Study (HABS), and the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center (together hereinafter referred to as Wisconsin) to evaluate consistency. Participants were clinically unimpaired at the study visit closest to the tau PET scan and had available amyloid and tau PET data (A4 Study, n = 447; ADNI, n = 433; HABS, n = 190; and Wisconsin, n = 328). No participants who met eligibility criteria were excluded. Data were analyzed from May 11, 2021, to January 25, 2022. Main Outcomes and Measures Individuals with preclinical AD with heterogeneous cortical tau PET patterns (A+T cortical+) were identified by examining asymmetrical cortical tau signal and disproportionate cortical tau signal relative to medial temporal lobe (MTL) tau. Voxelwise tau patterns, amyloid, neurodegeneration, cognition, and demographic characteristics were examined. Results The 447 A4 participants (A+ group, 392; and normal β-amyloid group, 55), with a mean (SD) age of 71.8 (4.8) years, included 239 women (54%). A total of 36 individuals in the A+ group (9% of the A+ group) exhibited heterogeneous cortical tau patterns and were further categorized into 3 subtypes: asymmetrical left, precuneus dominant, and asymmetrical right. A total of 116 individuals in the A+ group (30% of the A+ group) showed elevated MTL tau (A+T MTL+). Individuals in the A+T cortical+ group were younger than those in the A+T MTL+ group (t61.867 = -2.597; P = .03). Across the A+T cortical+ and A+T MTL+ groups, increased regional tau was associated with reduced hippocampal volume and MTL thickness but not with cortical thickness. Memory scores were comparable between the A+T cortical+ and A+T MTL+ groups, whereas executive functioning scores were lower for the A+T cortical+ group than for the A+T MTL+ group. The prevalence of the A+T cortical+ group and tau patterns within the A+T cortical+ group were consistent in ADNI, HABS, and Wisconsin. Conclusions and Relevance This study suggests that early tau deposition may follow multiple trajectories during preclinical AD and may involve several cortical regions. Staging procedures, especially those based on neuropathology, that assume a uniform trajectory across individuals are insufficient for disease monitoring with tau imaging.
Collapse
Affiliation(s)
- Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kyan Younes
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Karly A Cody
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
68
|
Imaging Clinical Subtypes and Associated Brain Networks in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12020146. [PMID: 35203910 PMCID: PMC8869882 DOI: 10.3390/brainsci12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) does not present uniform symptoms or a uniform rate of progression in all cases. The classification of subtypes can be based on clinical symptoms or patterns of pathological brain alterations. Imaging techniques may allow for the identification of AD subtypes and their differentiation from other neurodegenerative diseases already at an early stage. In this review, the strengths and weaknesses of current clinical imaging methods are described. These include positron emission tomography (PET) to image cerebral glucose metabolism and pathological amyloid or tau deposits. Magnetic resonance imaging (MRI) is more widely available than PET. It provides information on structural or functional changes in brain networks and their relation to AD subtypes. Amyloid PET provides a very early marker of AD but does not distinguish between AD subtypes. Regional patterns of pathology related to AD subtypes are observed with tau and glucose PET, and eventually as atrophy patterns on MRI. Structural and functional network changes occur early in AD but have not yet provided diagnostic specificity.
Collapse
|
69
|
Josephs KA, Pham NTT, Graff-Radford J, Machulda MM, Lowe VJ, Whitwell JL. Medial Temporal Atrophy in Posterior Cortical Atrophy and Its Relationship to the Cingulate Island Sign. J Alzheimers Dis 2022; 86:491-498. [DOI: 10.3233/jad-215263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: It has been hypothesized that medial temporal sparing may be related to preserved posterior cingulate metabolism and the cingulate island sign (CIS) on [18F]fluorodeoxyglucose (FDG) PET in posterior cortical atrophy (PCA). Objective: To assess the severity of medial temporal atrophy in PCA and determine whether the presence of a CIS is related to medial temporal sparing. Methods: Fifty-five PCA patients underwent MRI and FDG-PET. The degree and symmetry of medial temporal atrophy on MRI was visually assessed using a five-point scale for both hemispheres. Visual assessments of FDG-PET coded the presence/absence of a CIS and whether the CIS was symmetric or asymmetric. Hippocampal volumes and a quantitative CIS were also measured. Results: Medial temporal atrophy was most commonly mild or moderate, was symmetric in 55% of patients, and when asymmetric was most commonly worse on the right (76%). Older age and worse memory performance were associated with greater medial temporal atrophy. The CIS was observed in 44% of the PCA patients and was asymmetric in 50% of these. The patients with a CIS showed greater medial temporal asymmetry, but did not show lower medial temporal atrophy scores, compared to those without a CIS. Hippocampal volumes were not associated with quantitative CIS. Conclusion: Mild medial temporal atrophy is a common finding in PCA and is associated with memory impairment. However, medial temporal sparing was not related to the presence of a CIS in PCA.
Collapse
Affiliation(s)
| | | | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
70
|
Weinstein G, O’Donnell A, Davis-Plourde K, Zelber-Sagi S, Ghosh S, DeCarli CS, Thibault EG, Sperling RA, Johnson KA, Beiser AS, Seshadri S. Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, and Regional Amyloid-β and Tau Pathology in Middle-Aged Adults: The Framingham Study. J Alzheimers Dis 2022; 86:1371-1383. [PMID: 35213373 PMCID: PMC11323287 DOI: 10.3233/jad-215409] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Liver steatosis and fibrosis are emerging as risk factors for multiple extrahepatic health conditions; however, their relationship with Alzheimer's disease pathology is unclear. OBJECTIVE To examine whether non-alcoholic fatty liver disease (NAFLD) and FIB-4, a non-invasive index of advanced fibrosis, are associated with brain amyloid-β (Aβ) and tau pathology. METHODS The study sample included Framingham Study participants from the Offspring and Third generation cohorts who attended exams 9 (2011-2014) and 2 (2008-2011), respectively. Participants underwent 11C-Pittsburgh Compound-B amyloid and 18F-Flortaucipir tau positron emission tomography (PET) imaging and abdomen computed tomography, or had information on all components of the FIB-4 index. Linear regression models were used to assess the relationship of NAFLD and FIB-4 with regional tau and Aβ, adjusting for potential confounders and multiple comparisons. RESULTS Of the subsample with NAFLD information (N = 169; mean age 52±9 y; 57% males), 57 (34%) had NAFLD. Of the subsample with information on liver fibrosis (N = 177; mean age 50±10 y; 51% males), 34 (19%) had advanced fibrosis (FIB-4 > 1.3). Prevalent NAFLD was not associated with Aβ or tau PET. However, FIB-4 index was significantly associated with increased rhinal tau (β= 1.03±0.33, p = 0.002). Among individuals with prevalent NAFLD, FIB-4 was related to inferior temporal, parahippocampal gyrus, entorhinal and rhinal tau (β= 2.01±0.47, p < 0.001; β= 1.60±0.53, p = 0.007, and β= 1.59±0.47, p = 0.003 and β= 1.60±0.42, p = 0.001, respectively) and to Aβ deposition overall and in the inferior temporal and parahippocampal regions (β= 1.93±0.47, p < 0.001; β= 1.59±0.38, p < 0.001, and β= 1.52±0.54, p = 0.008, respectively). CONCLUSION This study suggests a possible association between liver fibrosis and early Alzheimer's disease pathology, independently of cardio-metabolic risk factors.
Collapse
Affiliation(s)
| | - Adrienne O’Donnell
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Kendra Davis-Plourde
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Saptaparni Ghosh
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Emma G. Thibault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A. Sperling
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A. Johnson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa S. Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
71
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
72
|
Iaccarino L, La Joie R, Koeppe R, Siegel BA, Hillner BE, Gatsonis C, Whitmer RA, Carrillo MC, Apgar C, Camacho MR, Nosheny R, Rabinovici GD. rPOP: Robust PET-only processing of community acquired heterogeneous amyloid-PET data. Neuroimage 2021; 246:118775. [PMID: 34890793 DOI: 10.1016/j.neuroimage.2021.118775] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The reference standard for amyloid-PET quantification requires structural MRI (sMRI) for preprocessing in both multi-site research studies and clinical trials. Here we describe rPOP (robust PET-Only Processing), a MATLAB-based MRI-free pipeline implementing non-linear warping and differential smoothing of amyloid-PET scans performed with any of the FDA-approved radiotracers (18F-florbetapir/FBP, 18F-florbetaben/FBB or 18F-flutemetamol/FLUTE). Each image undergoes spatial normalization based on weighted PET templates and data-driven differential smoothing, then allowing users to perform their quantification of choice. Prior to normalization, users can choose whether to automatically reset the origin of the image to the center of mass or proceed with the pipeline with the image as it is. We validate rPOP with n = 740 (514 FBP, 182 FBB, 44 FLUTE) amyloid-PET scans from the Imaging Dementia-Evidence for Amyloid Scanning - Brain Health Registry sub-study (IDEAS-BHR) and n = 1,518 scans from the Alzheimer's Disease Neuroimaging Initiative (n = 1,249 FBP, n = 269 FBB), including heterogeneous acquisition and reconstruction protocols. After running rPOP, a standard quantification to extract Standardized Uptake Value ratios and the respective Centiloids conversion was performed. rPOP-based amyloid status (using an independent pathology-based threshold of ≥24.4 Centiloid units) was compared with either local visual reads (IDEAS-BHR, n = 663 with complete valid data and reads available) or with amyloid status derived from an MRI-based PET processing pipeline (ADNI, thresholds of >20/>18 Centiloids for FBP/FBB). Finally, within the ADNI dataset, we tested the linear associations between rPOP- and MRI-based Centiloid values. rPOP achieved accurate warping for N = 2,233/2,258 (98.9%) in the first pass. Of the N = 25 warping failures, 24 were rescued with manual reorientation and origin reset prior to warping. We observed high concordance between rPOP-based amyloid status and both visual reads (IDEAS-BHR, Cohen's k = 0.72 [0.7-0.74], ∼86% concordance) or MRI-pipeline based amyloid status (ADNI, k = 0.88 [0.87-0.89], ∼94% concordance). rPOP- and MRI-pipeline based Centiloids were strongly linearly related (R2:0.95, p<0.001), with this association being significantly modulated by estimated PET resolution (β= -0.016, p<0.001). rPOP provides reliable MRI-free amyloid-PET warping and quantification, leveraging widely available software and only requiring an attenuation-corrected amyloid-PET image as input. The rPOP pipeline enables the comparison and merging of heterogeneous datasets and is publicly available at https://github.com/leoiacca/rPOP.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Barry A Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO, United States
| | - Bruce E Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, United States; Department of Biostatistics, Brown University School of Public Health, Providence, RI, United States
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, CA, United States; Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Maria C Carrillo
- Medical and Scientific Relations Division, Alzheimer's Association, Chicago, IL, United States
| | - Charles Apgar
- American College of Radiology, Reston, VA, United States
| | - Monica R Camacho
- San Francisco VA Medical Center, San Francisco, CA, United States; Northern California Institute for Research and Education (NCIRE), San Francisco, CA, United States
| | - Rachel Nosheny
- San Francisco VA Medical Center, San Francisco, CA, United States; Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| | | |
Collapse
|
73
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|
74
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
75
|
Whitwell JL, Tosakulwong N, Weigand SD, Graff-Radford J, Ertekin-Taner N, Machulda MM, Duffy JR, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA. Relationship of APOE, age at onset, amyloid and clinical phenotype in Alzheimer disease. Neurobiol Aging 2021; 108:90-98. [PMID: 34551374 DOI: 10.1016/j.neurobiolaging.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The apolipoprotein E (APOE) ε4 allele is the most well-established risk factor for Alzheimer's disease (AD), although its relationship to age at onset and clinical phenotype is unclear. We aimed to assess relationships between APOE genotype and age at onset, amyloid-beta (Aβ) deposition and typical versus atypical clinical presentations in AD. Frequency of APOE ε4 carriers by age at onset was assessed in 447 AD patients, 138 atypical AD patients recruited by the Neurodegenerative Research Group at Mayo Clinic, and 309 with typical AD from ADNI. APOE ε4 frequency increased with age at onset in atypical AD but showed a bell-shaped curve in typical AD where highest frequencies were observed between 65 and 70 years. Typical AD showed higher APOE ε4 frequencies than atypical AD only between the ages of 57 and 69 years. Global Aβ standard uptake value ratios did not differ according to APOE e4 status in either group. APOE genotype varies by both age at onset and clinical phenotype in AD, highlighting the heterogeneous nature of AD.
Collapse
Affiliation(s)
| | | | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
76
|
Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:73-99. [PMID: 34460318 DOI: 10.1146/annurev-pathmechdis-030421-112756] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Maxine R Nelson
- Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Antara Rao
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Yadong Huang
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
77
|
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, Baker SL, Landau S, Jagust WJ, Miller BL, Rosen HJ, Gorno-Tempini ML, Rabinovici GD, La Joie R. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease. Brain 2021; 145:713-728. [PMID: 34373896 PMCID: PMC9014741 DOI: 10.1093/brain/awab294] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Posterior cortical hypometabolism measured with [18F]-Fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts (University of California, San Francisco, UCSF, and Alzheimer's Disease Neuroimaging Initiative, ADNI) underwent MRI and PET with FDG, amyloid-PET using [11C]-Pittsburgh Compound B, [18F]-Florbetapir, or [18F]-Florbetaben, and [18F]-Flortaucipir tau-PET within one year. Standard uptake value ratios (SUVR) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG SUVR. On average, ADNI patients were older and were less impaired than UCSF patients. Regional patterns of hypometabolism were similar between cohorts, though there were cohort differences in regional gray matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVR (ΔR2 = .09 to .21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in ADNI (ΔR2 = .04, p = .008) but not UCSF (ΔR2 < .01, p = .52), and did not improve the inferior parietal models (ΔR2s < .01, ps > .37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVR at earlier disease stages (p = .06 in UCSF, p = .046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal, and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology.
Collapse
Affiliation(s)
- Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
78
|
Dautricourt S, de Flores R, Landeau B, Poisnel G, Vanhoutte M, Delcroix N, Eustache F, Vivien D, de la Sayette V, Chételat G. Longitudinal Changes in Hippocampal Network Connectivity in Alzheimer's Disease. Ann Neurol 2021; 90:391-406. [PMID: 34279043 PMCID: PMC9291910 DOI: 10.1002/ana.26168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/05/2022]
Abstract
Objective The hippocampus is connected to 2 distinct cortical brain networks, the posterior–medial and the anterior–temporal networks, involving different medial temporal lobe (MTL) subregions. The aim of this study was to assess the functional alterations of these 2 networks, their changes over time, and links to cognition in Alzheimer's disease. Methods We assessed MTL connectivity in 53 amyloid‐β–positive patients with mild cognitive impairment and AD dementia and 68 healthy elderly controls, using resting‐state functional magnetic resonance imaging, cross‐sectionally and longitudinally. First, we compared the functional connectivity of the posterior–medial and anterior–temporal networks within the control group to highlight their specificities. Second, we compared the connectivity of these networks between groups, and between baseline and 18‐month follow‐up in patients. Third, we assessed the association in the connectivity changes between the 2 networks, and with cognitive performance. Results We found decreased connectivity in patients specifically between the hippocampus and the posterior–medial network, together with increased connectivity between several MTL subregions and the anterior–temporal network. Moreover, changes in the posterior–medial and anterior–temporal networks were interrelated such that decreased MTL–posterior–medial connectivity was associated with increased MTL–anterior–temporal connectivity. Finally, both MTL–posterior–medial decrease and MTL–anterior–temporal increase predicted cognitive decline. Interpretation Our findings demonstrate that longitudinal connectivity changes in the posterior–medial and anterior–temporal hippocampal networks are linked together and that they both contribute to cognitive decline in Alzheimer's disease. These results shed light on the critical role of the posterior–medial and anterior–temporal networks in Alzheimer's disease pathophysiology and clinical symptoms. ANN NEUROL 2021;90:391–406
Collapse
Affiliation(s)
- Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, PhIND.,Neurology Department, Caen-Normandie University Hospital, Caen, France
| | | | | | | | | | - Nicolas Delcroix
- CNRS, Unité Mixte de Service-3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Vincent de la Sayette
- Neurology Department, Caen-Normandie University Hospital, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | |
Collapse
|
79
|
Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, La Joie R, Aksman LM, Grothe MJ, Iturria-Medina Y, Pontecorvo MJ, Devous MD, Rabinovici GD, Alexander DC, Lyoo CH, Evans AC, Hansson O. Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nat Med 2021; 27:871-881. [PMID: 33927414 PMCID: PMC8686688 DOI: 10.1038/s41591-021-01309-6] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/04/2021] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These 'subtypes' were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of 'typical AD' and a revisiting of tau pathological staging.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Neil P Oxtoby
- Centre for Medical Image Computing, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Leon M Aksman
- Centre for Medical Image Computing, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | | | | | | | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | - Chul Hyoung Lyoo
- Departments of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
80
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
81
|
Palmqvist S, Eshaghi A. Spatial Distribution of Tau and β-Amyloid Pathologies and Their Role in Different Alzheimer Disease Phenotypes. Neurology 2020; 96:191-192. [PMID: 33262229 DOI: 10.1212/wnl.0000000000011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sebastian Palmqvist
- From the Clinical Memory Research Unit (S.P.), Department of Clinical Sciences, Lund University, Memory Clinic (S.P.), Skåne University Hospital, Malmö, Sweden; and Queen Square Multiple Sclerosis Centre (A.E.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, and Centre for Medical Image Computing (A.E.), Department of Computer Science, University College London. UK.
| | - Arman Eshaghi
- From the Clinical Memory Research Unit (S.P.), Department of Clinical Sciences, Lund University, Memory Clinic (S.P.), Skåne University Hospital, Malmö, Sweden; and Queen Square Multiple Sclerosis Centre (A.E.), UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, and Centre for Medical Image Computing (A.E.), Department of Computer Science, University College London. UK
| |
Collapse
|