51
|
Ruest LB, Ranjbaran H, Tong EJ, Svoboda KKH, Feng JQ. Activation of Receptor Activator of Nuclear Factor-κB Ligand and Matrix Metalloproteinase Production in Periodontal Fibroblasts by Endothelin Signaling. J Periodontol 2015; 87:e1-8. [PMID: 26376946 DOI: 10.1902/jop.2015.150397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis is a group of inflammatory diseases affecting the tissues supporting the teeth that will progressively cause the loss of alveolar bone and periodontal ligaments and eventually the dentition. Activation of osteoclast activity by receptor activator of nuclear factor-κB ligand (RANKL) and released enzymes such as matrix metalloproteinases (MMPs) are among the factors involved in the breakdown of the periodontium. However, the mechanisms regulating their production in periodontitis are poorly understood. Endothelin signaling via the activation of the endothelin-A receptor (EDNRA) by endothelin-1 may play a role in the disease because the expression of the receptor and ligand is elevated in the periodontal tissues of patients with periodontitis. METHODS Cultured primary human periodontal fibroblasts were treated with 20 and 100 nM endothelin-1 for 6 and 24 hours and then collected to assess MMP and RANKL production by immunoblotting. Inhibitors were used to identify the molecular pathways activated by EDNRA in these cells. RESULTS Endothelin-1 stimulated the production of MMP1, MMP8, and RANKL in a dose- and time-dependent manner; blocking EDNRA function with the antagonist TBC3214 inhibited the response, although EDNRA activation had no effects on osteoprotegerin production. These mechanistic studies indicate that EDNRA activates phospholipase C, which then 1) increases the MMP1 protein levels through activation of the extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway and 2) upregulates RANKL by a different pathway. CONCLUSION These results suggest that EDNRA may function in the breakdown of the periodontal tissues associated with periodontitis by promoting the protein expression of MMPs and RANKL via the phospholipase C pathway.
Collapse
Affiliation(s)
- L Bruno Ruest
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Hamid Ranjbaran
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Eric J Tong
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX
| |
Collapse
|
52
|
Hu J, Verzi MP, Robinson AS, Tang PLF, Hua LL, Xu SM, Kwok PY, Black BL. Endothelin signaling activates Mef2c expression in the neural crest through a MEF2C-dependent positive-feedback transcriptional pathway. Development 2015; 142:2775-80. [PMID: 26160899 DOI: 10.1242/dev.126391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/30/2015] [Indexed: 11/20/2022]
Abstract
Endothelin signaling is essential for neural crest development, and dysregulated Endothelin signaling is associated with several neural crest-related disorders, including Waardenburg and other syndromes. However, despite the crucial roles of this pathway in neural crest development and disease, the transcriptional effectors directly activated by Endothelin signaling during neural crest development remain incompletely elucidated. Here, we establish that the MADS box transcription factor MEF2C is an immediate downstream transcriptional target and effector of Endothelin signaling in the neural crest. We show that Endothelin signaling activates Mef2c expression in the neural crest through a conserved enhancer in the Mef2c locus and that CRISPR-mediated deletion of this Mef2c neural crest enhancer from the mouse genome abolishes Endothelin induction of Mef2c expression. Moreover, we demonstrate that Endothelin signaling activates neural crest expression of Mef2c by de-repressing MEF2C activity through a Calmodulin-CamKII-histone deacetylase signaling cascade. Thus, these findings identify a MEF2C-dependent, positive-feedback mechanism for Endothelin induction and establish MEF2C as an immediate transcriptional effector and target of Endothelin signaling in the neural crest.
Collapse
Affiliation(s)
- Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Michael P Verzi
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Ashley S Robinson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Lisa L Hua
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
53
|
Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nat Commun 2015; 6:6853. [PMID: 25902370 PMCID: PMC4423235 DOI: 10.1038/ncomms7853] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023] Open
Abstract
The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution. The evolution of the amniote middle ear remains unclear. Here, the authors show that inactivation of the Edn1-Dlx5/6 cascade during development results in loss of the tympanic membrane in mouse and duplication in chicken, which suggests independent evolution of the tympanic membrane in different amniotes.
Collapse
|
54
|
Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat 2015; 226:420-33. [PMID: 25904546 DOI: 10.1111/joa.12291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Beatrice Thivichon-Prince
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
55
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
56
|
Kitazawa T, Fujisawa K, Narboux-Nême N, Arima Y, Kawamura Y, Inoue T, Wada Y, Kohro T, Aburatani H, Kodama T, Kim KS, Sato T, Uchijima Y, Maeda K, Miyagawa-Tomita S, Minoux M, Rijli FM, Levi G, Kurihara Y, Kurihara H. Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process. Dev Biol 2015; 402:162-74. [PMID: 25889273 DOI: 10.1016/j.ydbio.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.
Collapse
Affiliation(s)
- Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kou Fujisawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yumiko Kawamura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuyoshi Inoue
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takahide Kohro
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Translational Research for Healthcare and Clinical Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Sato
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiro Maeda
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sachiko Miyagawa-Tomita
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculté de chirurgie dentaire, 1, place de l'hôpital, 67 000 Strasbourg, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4056 Basel, Switzerland
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan.
| |
Collapse
|
57
|
Gordon C, Weaver K, Zechi-Ceide R, Madsen E, Tavares A, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschké P, Delrue MA, Lacombe D, Guion-Almeida M, Moura P, Garib D, Munnich A, Ernfors P, Hufnagel R, Hopkin R, Kurihara H, Saal H, Weaver D, Katsanis N, Lyonnet S, Golzio C, Clouthier D, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet 2015; 96:519-31. [PMID: 25772936 DOI: 10.1016/j.ajhg.2015.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws.
Collapse
|
58
|
Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders. Dev Biol 2015; 400:191-201. [PMID: 25725491 DOI: 10.1016/j.ydbio.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable chicken β-actin-Edn1 (CBA-Edn1) transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases.
Collapse
|
59
|
Edlund RK, Birol O, Groves AK. The role of foxi family transcription factors in the development of the ear and jaw. Curr Top Dev Biol 2015; 111:461-95. [PMID: 25662269 DOI: 10.1016/bs.ctdb.2014.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian outer, middle, and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm.
Collapse
Affiliation(s)
- Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
60
|
Miller KA, Tan TY, Welfare MF, White SM, Stark Z, Savarirayan R, Burgess T, Heggie AA, Caruana G, Bertram JF, Bateman JF, Farlie PG. A mouse splice-site mutant and individuals with atypical chromosome 22q11.2 deletions demonstrate the crucial role for crkl in craniofacial and pharyngeal development. Mol Syndromol 2014; 5:276-86. [PMID: 25565927 DOI: 10.1159/000368865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11DS) is thought to be a contiguous gene syndrome caused by haploinsufficiency for a variable number of genes with overlapping function during the development of the craniofacial, pharyngeal and cardiac structures. The complexity of genetic and developmental anomalies resulting in 22q11DS has made attributing causation to specific genes difficult. The CRKL gene resides within the common 3-Mb region, most frequently affected in 22q11DS, and has been shown to play an essential role in the development of tissues affected in 22q11DS. Here, we report the characterisation of a mouse strain we named 'snoopy', harbouring a novel Crkl splice-site mutation that results in a loss of Crkl expression. The snoopy strain exhibits a variable phenotype that includes micrognathia, pharyngeal occlusion, aglossia and holoprosencephaly, and altered retinoic acid and endothelin signalling. Together, these features are reminiscent of malformations occurring in auriculocondylar syndrome and agnathia-otocephaly complex, 2 conditions not previously associated with the CRKL function. Comparison of the features of a cohort of patients harbouring small 22q11.2 deletions centred over the CRKL gene, but sparing TBX1, highlights the role of CRKL in contributing to the craniofacial features of 22q11DS. These analyses demonstrate the central role of Crkl in regulating signalling events in the developing oropharyngeal complex and its potential to contribute to dysmorphology.
Collapse
Affiliation(s)
- Kerry A Miller
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia
| | - Tiong Y Tan
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Megan F Welfare
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia
| | - Susan M White
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia
| | - Zornitza Stark
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia
| | - Ravi Savarirayan
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Trent Burgess
- Victorian Clinical Genetics Services, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia
| | - Andrew A Heggie
- Section of Oral and Maxillofacial Surgery, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Georgina Caruana
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Vic., Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Vic., Australia
| | - John F Bateman
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia
| | - Peter G Farlie
- Murdoch Childrens Research Institute, Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Vic., Australia ; Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
61
|
Firulli BA, Fuchs RK, Vincentz JW, Clouthier DE, Firulli AB. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis. Development 2014; 141:3050-61. [PMID: 25053435 DOI: 10.1242/dev.107680] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning.
Collapse
Affiliation(s)
- Beth A Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Robyn K Fuchs
- Department of Physical Therapy and the Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Science, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E 17th Avenue, Rm. 11-109, MS 8120, Aurora, CO 80045, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
62
|
Frisdal A, Trainor PA. Development and evolution of the pharyngeal apparatus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:403-18. [PMID: 25176500 DOI: 10.1002/wdev.147] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023]
Abstract
The oral or pharyngeal apparatus facilitates the dual functions of respiration and feeding. It develops during embryogenesis from transient structures called pharyngeal arches (PAs), which comprise a reiterated series of outgrowths on the lateral side of the head. The PAs and their segmental arrangement are highly conserved throughout evolution from invertebrate chordates such as amphioxus, through to vertebrate agnathans including avians, squamates, and mammals. The structural organization of the PAs is also highly conserved and involves contributions from each of the three primary endoderm, mesoderm, and ectoderm germ layers. The endoderm is particularly important for PA formation and segmentation and also plays a critical role in tissue-specific differentiation. The ectoderm gives rise to neural crest cells (NCC) which provide an additional layer of complexity to PA development and differentiation in vertebrates compared to invertebrate chordates that do not possess NCC. Collectively, the PAs give rise to much of the neurovasculature and musculoskeletal systems in the head and neck. The complexity of development renders the pharyngeal apparatus prone to perturbation and subsequently the pathogenesis of birth defects. Hence it is important to understand the signals and mechanisms that govern the development and evolution of the pharyngeal complex.
Collapse
Affiliation(s)
- Aude Frisdal
- Stowers Institute for Medical Research, Kansas City, MO, USA; University Pierre and Marie Curie, Paris, France
| | | |
Collapse
|
63
|
Sharma H, Mavuduru RS, Singh SK, Prasad R. Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers. Mol Hum Reprod 2014; 20:827-35. [PMID: 24958810 DOI: 10.1093/molehr/gau047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is usually considered a rare disease in the Indian population. Two studies have reported on the frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Indian males with congenital absence of the vas deferens (CAVD), however, data on the spectrum of CFTR gene mutations are still lacking. Therefore, the present study was designed to identify the spectrum of CFTR gene mutations as well as to investigate an association of CF genetic modifiers in the penetrance of CAVD in infertile Indian men. A total of 60 consecutive infertile males with a diagnosis of CAVD were subjected to CFTR gene analysis which revealed 13 different CFTR gene mutations and 1 intronic variant that led to aberrant splicing. p.Phe508del (n = 16) and p.Arg117His (n = 4) were among the most common severe forms of CFTR mutations identified. The IVS8-T5 allele, which is considered as a mild form of CFTR mutation, was found with an allelic frequency of 28.3%. Eight novel mutations were also identified in the CFTR gene from our patient cohort. It is noteworthy that the spectrum of CFTR gene mutation is heterogeneous, with exon 4 and exon 11 as hot spot regions. Moreover, we also found an association of the CF genetic modifiers, viz., transforming growth factor (TGF)-β1 and endothelial receptor type-A (EDNRA) genes with the CAVD phenotype. The findings are of considerable clinical significance because men suffering from infertility due to CAVD can decide to use artificial reproduction technology. The children of men with CAVD are at risk of carrying CFTR mutations; therefore, genetic counseling is a crucial step for such patients. With special reference to developing countries, such as India, where whole gene sequencing is not feasible, the outcome of our study will make the screening procedure for CFTR gene simpler and more cost-effective as we have identified hot spot regions of the CFTR gene which are more prone to mutation in Indian males with CAVD. Moreover, this is the first study from the Indian population to investigate the association of CF genetic modifiers with penetrance of the CAVD phenotype. The observed association of the genetic modifiers TGF-β1 and EDNRA in the penetrance of CAVD further supports their involvement in genesis of the vas deferens.
Collapse
Affiliation(s)
- H Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - R S Mavuduru
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - S K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - R Prasad
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
64
|
Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect. Dev Biol 2014; 391:170-81. [PMID: 24785830 DOI: 10.1016/j.ydbio.2014.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/01/2023]
Abstract
Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.
Collapse
|
65
|
Gordon CT, Cunniff CM, Green GE, Zechi-Ceide RM, Johnson JM, Henderson A, Petit F, Kokitsu-Nakata NM, Guion-Almeida ML, Munnich A, Cunningham ML, Lyonnet S, Amiel J. Clinical evidence for a mandibular to maxillary transformation in Auriculocondylar syndrome. Am J Med Genet A 2014; 164A:1850-3. [PMID: 24677549 DOI: 10.1002/ajmg.a.36505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/25/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher T Gordon
- INSERM U1163, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Inman KE, Purcell P, Kume T, Trainor PA. Interaction between Foxc1 and Fgf8 during mammalian jaw patterning and in the pathogenesis of syngnathia. PLoS Genet 2013; 9:e1003949. [PMID: 24385915 PMCID: PMC3868537 DOI: 10.1371/journal.pgen.1003949] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/25/2013] [Indexed: 02/05/2023] Open
Abstract
Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. Approximately one-third of all babies born with congenital defects, exhibit malformations of the head and face. Anomalies can include cleft lip, cleft palate, and abnormal development of bones and muscles. Such defects result in significant infant mortality, as well as life-long physical and social consequences for patients. Improved repair and the development of prevention strategies requires a thorough understanding of the underlying genetic, molecular, and environmental factors that contribute to normal craniofacial development and the pathogenesis of disease. In this study, we report the first genetic model of syngnathia, a rare human craniofacial defect characterized by bony fusion of the upper and lower jaw. We discovered that Foxc1 is required for normal development of the bones and muscles of the jaw as well as the jaw joint. Our studies provide a mechanistic basis for understanding the cause of human syngnathia as well as the failure of jaw joint formation. Furthermore, our work enhances our knowledge of jaw development and may inform treatment strategies for patients with syngnathia and related craniofacial malformation conditions.
Collapse
Affiliation(s)
- Kimberly E. Inman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Patricia Purcell
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
67
|
Gordon C, Petit F, Kroisel P, Jakobsen L, Zechi-Ceide R, Oufadem M, Bole-Feysot C, Pruvost S, Masson C, Tores F, Hieu T, Nitschké P, Lindholm P, Pellerin P, Guion-Almeida M, Kokitsu-Nakata N, Vendramini-Pittoli S, Munnich A, Lyonnet S, Holder-Espinasse M, Amiel J. Mutations in endothelin 1 cause recessive auriculocondylar syndrome and dominant isolated question-mark ears. Am J Hum Genet 2013; 93:1118-25. [PMID: 24268655 DOI: 10.1016/j.ajhg.2013.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022] Open
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.
Collapse
|
68
|
Gitton Y, Narboux-Nême N, Levi G. Transitory expression of Dlx5 and Dlx6 in maxillary arch epithelial precursors is essential for upper jaw morphogenesis. F1000Res 2013; 2:261. [PMID: 25339984 PMCID: PMC4193393 DOI: 10.12688/f1000research.2-261.v3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 01/23/2023] Open
Abstract
Asymmetric, articulated jaws are characteristic of most vertebrate species; they derive from the first pharyngeal arch (PA1) which generates both maxillary and mandibular components. PA1 is colonized by cranial neural crest cells (CNCCs) which give rise to most bones and tendons of the jaws. The elements formed by different CNCCs contingents are specified by the combinatorial expression of
Dlx genes.
Dlx5 and
Dlx6 are predominantly expressed by mandibular CNCCs. Analysis of the phenotype of
Dlx5 and
Dlx6 double mutant mice has suggested that they are necessary and sufficient to specify mandibular identity. Here, using 3D reconstruction, we show that inactivation of
Dlx5 and
Dlx6 does not only affect the mandibular arch, but results in the simultaneous transformation of mandibular and maxillary skeletal elements which assume a similar morphology with gain of symmetry. As
Dlx5- and
Dlx6-expressing cells are not found in the maxillary bud, we have examined the lineage of
Dlx5-expressing progenitors using an
in vivo genetic approach. We find that a contingent of cells deriving from epithelial precursors transiently expressing
Dlx5 participate in the formation of the maxillary arch. These cells are mostly located in the distal part of the maxillary arch and might derive from its lambdoidal junction with the olfactory pit. Our observations provide the first genetic demonstration of the ‘Hinge and Caps’ model[1]. We support the notion that ‘cap’ signals could originate from epithelial derivatives of
Dlx5-expressing progenitors which migrate and colonize the maxillary arch epithelium. Our results imply that Dlx5 and Dlx6 control upper and lower jaw morphogenesis through different coordinated mechanisms to generate functional, articulated jaws.
Collapse
Affiliation(s)
- Yorick Gitton
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
69
|
Clouthier DE, Passos-Bueno MR, Tavares ALP, Lyonnet S, Amiel J, Gordon CT. Understanding the basis of auriculocondylar syndrome: Insights from human, mouse and zebrafish genetic studies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:306-17. [PMID: 24123988 DOI: 10.1002/ajmg.c.31376] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth defect syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis.
Collapse
|
70
|
Swiderski DL, Zelditch ML. The complex ontogenetic trajectory of mandibular shape in a laboratory mouse. J Anat 2013; 223:568-80. [PMID: 24111948 DOI: 10.1111/joa.12118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022] Open
Abstract
The mouse mandible is a popular model system that continues to be the focus of studies in evo-devo and other fields. Yet, little attention has been given to the role of postnatal growth in producing the adult form. Using cleared and stained specimens, we describe the timing of tooth and jaw development and changes in jaw size and shape from postnatal day 1 (p1) through weaning to adulthood. We found that tooth development is relatively advanced at birth, and that the functional adult dentition is in place by p15 (just before the start of weaning). Shape analysis showed that the trajectory of mandible shape changes direction at least twice between birth and adulthood, at p7 and p15. At each stage there are changes in shape to all tooth- and muscle-bearing regions and, at each change of direction, all of these regions change their pattern of growth. The timing of the changes in direction in Mus suggests there are signals that redirect growth patterns independently of changes in function and loading associated with weaning and jaw muscle growth. A better understanding of these signals and how they produce a functionally integrated mandible may help explain the mechanisms guiding evolutionary trends and patterns of plasticity and may also provide valuable clues to therapeutic manipulation of growth to alleviate the consequences of trauma or disease.
Collapse
Affiliation(s)
- Donald L Swiderski
- Kresge Hearing Research Institute and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
71
|
Kim KS, Arima Y, Kitazawa T, Nishiyama K, Asai R, Uchijima Y, Sato T, Levi G, Kitanaka S, Igarashi T, Kurihara Y, Kurihara H. Endothelin regulates neural crest deployment and fate to form great vessels through Dlx5/Dlx6-independent mechanisms. Mech Dev 2013; 130:553-66. [PMID: 23933587 DOI: 10.1016/j.mod.2013.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
Abstract
Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.
Collapse
Affiliation(s)
- Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One 2013; 8:e67522. [PMID: 23826316 PMCID: PMC3691169 DOI: 10.1371/journal.pone.0067522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 12/02/2022] Open
Abstract
Endothelin-1 (Edn1) signaling provides a critical input to development of the embryonic pharygneal arches and their skeletal derivatives, particularly the articulating joints and the ventral skeleton including the lower jaw. Previous work in zebrafish has mostly focused on the role of Edn1 in dorsal-ventral (DV) patterning, but Edn1 signaling must also regulate tissue size, for with severe loss of the pathway the ventral skeleton is not only mispatterned, but is also prominently hypoplastic – reduced in size. Here we use mutational analyses to show that in the early pharyngeal arches, ventral-specific edn1-mediated proliferation of neural crest derived cells is required for DV expansion and outgrowth, and that this positive regulation is counterbalanced by a negative one exerted through a pivotal, ventrally expressed Edn1-target gene, hand2. We also describe a new morphogenetic cell movement in the ventral first arch, sweeping cells anterior in the arch to the region where the lower jaw forms. This movement is negatively regulated by hand2 in an apparently edn1-independent fashion. These findings point to complexity of regulation by edn1 and hand2 at the earliest stages of pharyngeal arch development, in which control of growth and morphogenesis can be genetically separated.
Collapse
|
73
|
Zhang Y, Knutsen GR, Brown MD, Ruest LB. Control of endothelin-a receptor expression by progesterone is enhanced by synergy with Gata2. Mol Endocrinol 2013; 27:892-908. [PMID: 23592430 PMCID: PMC3656236 DOI: 10.1210/me.2012-1334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
The endothelin-A receptor (Ednra) is involved in several physiological, pathological, and developmental pathways. Known for its function in vasoconstriction after being activated by endothelin-1, Ednra also controls cephalic neural crest cell development and appears to play a role in several pathologies, including cancer and periodontitis. However, the mechanisms regulating Ednra expression have not been identified despite its important functions. In this study, we investigated the role progesterone plays in Ednra gene expression in vivo and in vitro. In mice, pregnancy promotes Ednra expression in the heart, kidney, lung, uterus, and placenta, and the up-regulation is mediated by progesterone. We determined that the conserved region between -5.7 and -4.2 kb upstream of the mouse Ednra gene is necessary for the progesterone response. We also found that progesterone mediates Ednra activation through progesterone receptor B activation by its recruitment to PRE6, one of the 6 progesterone response elements found in that locus. However, gene activation by means of a GATA2 site was also necessary for the progesterone response. The Gata2 transcription factor enhances the progesterone response mediated by the progesterone receptor B. Together these results indicate that progesterone regulates Ednra expression by synergizing with Gata2 activity, a previously unknown mechanism. This mechanism may have an impact on pathologies involving the endothelin signaling.
Collapse
Affiliation(s)
- Yanping Zhang
- Center for Craniofacial Research and Diagnosis and Department of Biomedical Sciences, Texas A&M University-Baylor College of Dentistry, Dallas, Texas 75246, USA
| | | | | | | |
Collapse
|
74
|
Yu W, Zhang Y, Ruest LB, Svoboda KKH. Analysis of Snail1 function and regulation by Twist1 in palatal fusion. Front Physiol 2013; 4:12. [PMID: 23424071 PMCID: PMC3575576 DOI: 10.3389/fphys.2013.00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 01/10/2013] [Indexed: 12/24/2022] Open
Abstract
Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal explants treated with Snail1 siRNA did not degrade the MES and E-cadherin was not repressed leading to failure of palatal fusion. Transforming growth factor beta 3 (Tgfβ3) regulated Snail1 mRNA, as Snail1 expression decreased in response to Tgfβ3 neutralizing antibody and a PI-3 kinase (PI3K) inhibitor. Twist1, in collaboration with E2A factors, regulated the expression of Snail1. Twist1/E47 dimers bond to the Snail1 promoter to activate expression. Without E47, Twist1 repressed Snail1 expression. These results support the hypothesis that Tgfβ3 may signal through Twist1 and then Snail1 to downregulate E-cadherin expression during palatal fusion.
Collapse
Affiliation(s)
- Wenli Yu
- Department of Biomedical Sciences, Center for Craniofacial Research and Diagnosis, Texas A&M University, Baylor College of Dentistry Dallas, TX, USA
| | | | | | | |
Collapse
|
75
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
76
|
Shaffer JR, Feingold E, Wang X, Lee M, Tcuenco K, Weeks DE, Weyant RJ, Crout R, McNeil DW, Marazita ML. GWAS of dental caries patterns in the permanent dentition. J Dent Res 2013; 92:38-44. [PMID: 23064961 PMCID: PMC3521449 DOI: 10.1177/0022034512463579] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022] Open
Abstract
The importance of susceptibility genes in the risk for dental caries has been clearly established. While many candidate caries genes have been proposed, to date, few of them have been rigorously validated through observational and experimental studies. Moreover, most genetic epidemiological studies have analyzed global caries phenotypes that ignore the possibility that genes may exert differential effects across tooth surfaces of the dentition. Therefore, we performed genome-wide association studies (GWAS) of 5 novel dental caries phenotypes (developed by clustering the permanent dentition into categories of tooth surfaces based on co-occurrence of caries) to nominate new candidate caries genes. GWAS was performed in 920 self-reported white participants, aged 18 to 75 years, with genotype data on 518,997 genetic variants. We identified a significant genetic association between dental caries of the anterior mandibular teeth and LYZL2 (p value = 9e-9), which codes a bacteriolytic agent thought to be involved in host defense. We also identified a significant genetic association between caries of the mid- dentition tooth surfaces and AJAP1 (p value = 2e-8), a gene possibly involved in tooth development. Suggestive genetic associations were also observed for ABCG2, PKD2, the dentin/bone SCPP sub-family, EDNRA, TJFBR1, NKX2-3, IFT88, TWSG1, IL17D, and SMAD7 (p values < 7e-6). We nominate these novel genes for future study.
Collapse
Affiliation(s)
- J R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012; 371:121-35. [PMID: 22960284 DOI: 10.1016/j.ydbio.2012.08.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Collapse
|
78
|
Tavares ALP, Garcia EL, Kuhn K, Woods CM, Williams T, Clouthier DE. Ectodermal-derived Endothelin1 is required for patterning the distal and intermediate domains of the mouse mandibular arch. Dev Biol 2012; 371:47-56. [PMID: 22902530 DOI: 10.1016/j.ydbio.2012.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/18/2012] [Accepted: 08/04/2012] [Indexed: 10/28/2022]
Abstract
Morphogenesis of the vertebrate head relies on proper dorsal-ventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches. Endothelin-1 (Edn1)-induced signaling through the endothelin-A receptor (Ednra) is crucial for cranial NCC patterning within the mandibular portion of the first pharyngeal arch, from which the lower jaw arises. Deletion of Edn1, Ednra or endothelin-converting enzyme in mice causes perinatal lethality due to severe craniofacial birth defects. These include homeotic transformation of mandibular arch-derived structures into more maxillary-like structures, indicating a loss of NCC identity. All cranial NCCs express Ednra whereas Edn1 expression is limited to the overlying ectoderm, core paraxial mesoderm and pharyngeal pouch endoderm of the mandibular arch as well as more caudal arches. To define the developmental significance of Edn1 from each of these layers, we used Cre/loxP technology to inactivate Edn1 in a tissue-specific manner. We show that deletion of Edn1 in either the mesoderm or endoderm alone does not result in cellular or molecular changes in craniofacial development. However, ectodermal deletion of Edn1 results in craniofacial defects with concomitant changes in the expression of early mandibular arch patterning genes. Importantly, our results also both define for the first time in mice an intermediate mandibular arch domain similar to the one defined in zebrafish and show that this region is most sensitive to loss of Edn1. Together, our results illustrate an integral role for ectoderm-derived Edn1 in early arch morphogenesis, particularly in the intermediate domain.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
79
|
Anthwal N, Joshi L, Tucker AS. Evolution of the mammalian middle ear and jaw: adaptations and novel structures. J Anat 2012; 222:147-60. [PMID: 22686855 DOI: 10.1111/j.1469-7580.2012.01526.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Having three ossicles in the middle ear is one of the defining features of mammals. All reptiles and birds have only one middle ear ossicle, the stapes or columella. How these two additional ossicles came to reside and function in the middle ear of mammals has been studied for the last 200 years and represents one of the classic example of how structures can change during evolution to function in new and novel ways. From fossil data, comparative anatomy and developmental biology it is now clear that the two new bones in the mammalian middle ear, the malleus and incus, are homologous to the quadrate and articular, which form the articulation for the upper and lower jaws in non-mammalian jawed vertebrates. The incorporation of the primary jaw joint into the mammalian middle ear was only possible due to the evolution of a new way to articulate the upper and lower jaws, with the formation of the dentary-squamosal joint, or TMJ in humans. The evolution of the three-ossicle ear in mammals is thus intricately connected with the evolution of a novel jaw joint, the two structures evolving together to create the distinctive mammalian skull.
Collapse
Affiliation(s)
- Neal Anthwal
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
80
|
Iklé JM, Artinger KB, Clouthier DE. Identification and characterization of the zebrafish pharyngeal arch-specific enhancer for the basic helix-loop-helix transcription factor Hand2. Dev Biol 2012; 368:118-26. [PMID: 22595513 DOI: 10.1016/j.ydbio.2012.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/27/2022]
Abstract
The development of the vertebrate jaw relies on a network of transcription factors that patterns the dorsal-ventral axis of the pharyngeal arches. Recent findings in both mouse and zebrafish illustrate that the basic-helix-loop-helix transcription factor, Hand2, is crucial in this patterning process. While Hand2 has functionally similar roles in these two species, little is known about the regulatory sequences controlling hand2 expression in zebrafish. Using bioinformatics and Tol2-mediated transgenesis, we have generated zebrafish transgenic reporter lines in which either the mouse or zebrafish arch-specific hand2 enhancer direct expression of a fluorescent reporter. We find that both the mouse and zebrafish enhancers drive early reporter expression in a hand2-specific pattern in the ventral pharyngeal arches of zebrafish embryos. These lines provide useful tools to follow ventral arch cells during vertebrate jaw development while also allowing dissection of hand2 transcriptional regulation during this process.
Collapse
Affiliation(s)
- Jennifer M Iklé
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
81
|
Rieder M, Green G, Park S, Stamper B, Gordon C, Johnson J, Cunniff C, Smith J, Emery S, Lyonnet S, Amiel J, Holder M, Heggie A, Bamshad M, Nickerson D, Cox T, Hing A, Horst J, Cunningham M. A human homeotic transformation resulting from mutations in PLCB4 and GNAI3 causes auriculocondylar syndrome. Am J Hum Genet 2012; 90:907-14. [PMID: 22560091 DOI: 10.1016/j.ajhg.2012.04.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/10/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022] Open
Abstract
Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic "question-mark" ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans.
Collapse
|
82
|
Zhang Y, Blackwell EL, McKnight MT, Knutsen GR, Vu WT, Ruest LB. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with hand2. Dev Dyn 2012; 241:924-40. [PMID: 22411303 DOI: 10.1002/dvdy.23776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factor Twist1 fulfills an essential function in neural crest cell formation, migration, and survival and is associated with the craniosynostic Saethre-Chotzen syndrome in humans. However, its functions during mandibular development, when it may interact with other bHLH transcription factors like Hand2, are unknown because mice homozygous for the Twist1 null mutation die in early embryogenesis. To determine the role of Twist1 during mandibular development, we used the Hand2-Cre transgene to conditionally inactivate the gene in the neural crest cells populating the mandibular pharyngeal arch. RESULTS The mutant mice exhibited a spectrum of craniofacial anomalies, including mandibular hypoplasia, altered middle ear development, and cleft palate. It appears that Twist1 is essential for the survival of the neural crest cells involved in the development of the mandibular ramal elements. Twist1 plays a role in molar development and cusp formation by participating in the reciprocal signaling needed for the formation of the enamel knot. This gene is also needed to control the ossification of the mandible, a redundant role shared with Hand2. CONCLUSION Twist1, along with Hand2, is essential for the proximodistal patterning and development of the mandible and ossification.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, TAMHSC-Baylor College of Dentistry, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
83
|
Bonilla-Claudio M, Wang J, Bai Y, Klysik E, Selever J, Martin JF. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 2012; 139:709-19. [PMID: 22219353 DOI: 10.1242/dev.073197] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Collapse
Affiliation(s)
- Margarita Bonilla-Claudio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
84
|
Zhang Y, Ruest LB. Analysis of neural crest cell fate during cardiovascular development using Cre-activated lacZ/β-galactosidase staining. Methods Mol Biol 2012; 843:125-138. [PMID: 22222527 DOI: 10.1007/978-1-61779-523-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is important to identify the mechanisms regulating cardiovascular development. However, complex genetic tools are often required, including transgenic animals that express the lacZ transgene encoding the β-galactosidase enzyme under the control of a specific promoter or following recombination with the Cre recombinase. The latter can be useful for identifying specific cell populations of the developing cardiovascular system, including neural crest cells. The tracking of these cells can help clarify their fate in mutant embryos and elucidate the etiology of some congenital cardiovascular birth defects. This chapter highlights the methods used to stain embryonic tissues in whole mount or sections to detect the expression of the lacZ transgene with a focus on tracking cardiac neural crest cells using the Wnt1-Cre and R26R mouse lines. We also provide a protocol using fluorescence-activated cell sorting for collecting neural crest cells for further analysis. These protocols can be used with any embryos expressing Cre and lacZ.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, Texas A&M Healthy Science Center-Baylor College of Dentistry, Dallas, TX, USA
| | | |
Collapse
|
85
|
Lei J, Howard MJ. Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development 2011; 138:4789-800. [PMID: 21989918 DOI: 10.1242/dev.060053] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted deletion of the bHLH DNA-binding protein Hand2 in the neural crest, impacts development of the enteric nervous system (ENS), possibly by regulating the transition from neural precursor cell to neuron. We tested this hypothesis by targeting Hand2 deletion in nestin-expressing neural precursor (NEP) cells. The mutant mice showed abnormal ENS development, resulting in lethal neurogenic pseudo-obstruction. Neurogenesis of neurons derived from NEP cells identified a second nestin non-expressing neural precursor (NNEP) cell in the ENS. There was substantial compensation for the loss of neurons derived from the NEP pool by the NNEP pool but this was insufficient to abrogate the negative impact of Hand2 deletion. Hand2-mediated regulation of proliferation affected both neural precursor and neuron numbers. Differentiation of glial cells derived from the NEP cells was significantly decreased with no compensation from the NNEP pool of cells. Our data indicate differential developmental potential of NEPs and NNEPs; NNEPs preferentially differentiate as neurons, whereas NEPs give rise to both neurons and glial cells. Deletion of Hand2 also resulted in complete loss of NOS and VIP and a significant decrease in expression of choline acetyltransferase and calretinin, demonstrating a role for Hand2 in neurotransmitter specification and/or expression. Loss of Hand2 resulted in a marked disruption of the developing neural network, exemplified by lack of a myenteric plexus and extensive overgrowth of fibers. Thus, Hand2 is essential for neurogenesis, neurotransmitter specification and neural network patterning in the developing ENS.
Collapse
Affiliation(s)
- Jun Lei
- Department of Neurosciences and Program in Neurosciences and Neurodegenerative Diseases, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| | | |
Collapse
|
86
|
Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, Zhang T, Cho KW, Crump JG, Schilling TF. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 2011; 138:5135-46. [PMID: 22031543 DOI: 10.1242/dev.067801] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zuniga E, Rippen M, Alexander C, Schilling TF, Crump JG. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development 2011; 138:5147-56. [PMID: 22031546 DOI: 10.1242/dev.067785] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterning of the upper versus lower face involves generating distinct pre-skeletal identities along the dorsoventral (DV) axes of the pharyngeal arches. Whereas previous studies have shown roles for BMPs, Endothelin 1 (Edn1) and Jagged1b-Notch2 in DV patterning of the facial skeleton, how these pathways are integrated to generate different skeletal fates has remained unclear. Here, we show that BMP and Edn1 signaling have distinct roles in development of the ventral and intermediate skeletons, respectively, of the zebrafish face. Using transgenic gain-of-function approaches and cell-autonomy experiments, we find that BMPs strongly promote hand2 and msxe expression in ventral skeletal precursors, while Edn1 promotes the expression of nkx3.2 and three Dlx genes (dlx3b, dlx5a and dlx6a) in intermediate precursors. Furthermore, Edn1 and Jagged1b pattern the intermediate and dorsal facial skeletons in part by inducing the BMP antagonist Gremlin 2 (Grem2), which restricts BMP activity to the ventral-most face. We therefore propose a model in which later cross-inhibitory interactions between BMP and Edn1 signaling, in part mediated by Grem2, separate an initially homogenous ventral region into distinct ventral and intermediate skeletal precursor domains.
Collapse
Affiliation(s)
- Elizabeth Zuniga
- Broad CIRM Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
88
|
Barron F, Woods C, Kuhn K, Bishop J, Howard MJ, Clouthier DE. Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 2011; 138:2249-59. [PMID: 21558373 DOI: 10.1242/dev.056929] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling. Although the developmental mechanisms behind later aspects of tongue development, including innervation and taste acquisition, have been elucidated, the early patterning signals driving ectomesenchyme into a tongue lineage are largely unknown. We show here that the basic helix-loop-helix transcription factor Hand2 plays key roles in establishing the proximal-distal patterning of the mouse lower jaw, in part through establishing a negative-feedback loop in which Hand2 represses Dlx5 and Dlx6 expression in the distal arch ectomesenchyme following Dlx5- and Dlx6-mediated induction of Hand2 expression in the same region. Failure to repress distal Dlx5 and Dlx6 expression results in upregulation of Runx2 expression in the mandibular arch and the subsequent formation of aberrant bone in the lower jaw along with proximal-distal duplications. In addition, there is an absence of lateral lingual swelling expansion, from which the tongue arises, resulting in aglossia. Hand2 thus appears to establish a distal mandibular arch domain that is conducive for lower jaw development, including the initiation of tongue mesenchyme morphogenesis.
Collapse
Affiliation(s)
- Francie Barron
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
89
|
Vieux-Rochas M, Bouhali K, Baudry S, Fontaine A, Coen L, Levi G. Irreversible effects of retinoic acid pulse on Xenopus jaw morphogenesis: new insight into cranial neural crest specification. ACTA ACUST UNITED AC 2011; 89:493-503. [PMID: 21086490 DOI: 10.1002/bdrb.20269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1-15 min) pulses of low doses of retinoic acid (RA: 0.25-2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6-hr window (developmental stages NF15-NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA-dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
90
|
Kobayashi NR, Hawes SM, Crook JM, Pébay A. G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev Rep 2010; 6:351-66. [PMID: 20625855 DOI: 10.1007/s12015-010-9167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have great potential for understanding early development, treating human disease, tissue trauma and early phase drug discovery. The factors that control the regulation of stem cell survival, proliferation, migration and differentiation are still emerging. Some evidence now exists demonstrating the potent effects of various G-protein coupled receptor (GPCR) ligands on the biology of stem cells. This review aims to give an overview of the current knowledge of the regulation of embryonic and somatic stem cell maintenance and differentiation by GPCR ligands.
Collapse
|
91
|
Clouthier DE, Garcia E, Schilling TF. Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am J Med Genet A 2010; 152A:2962-73. [PMID: 20684004 PMCID: PMC2974943 DOI: 10.1002/ajmg.a.33568] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establishes the identity of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes.
Collapse
Affiliation(s)
- David E Clouthier
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
92
|
Havasi V, Rowe SM, Kolettis PN, Dayangac D, Sahin A, Grangeia A, Carvalho F, Barros A, Sousa M, Bassas L, Casals T, Sorscher EJ. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil Steril 2010; 94:2122-7. [PMID: 20100616 PMCID: PMC3767313 DOI: 10.1016/j.fertnstert.2009.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether genetic modifiers of cystic fibrosis (CF) lung disease also predispose to congenital bilateral absence of the vas deferens (CBAVD) in association with cystic fibrosis transmembrane conductance regulator (CFTR) mutations. We tested the hypothesis that polymorphisms of transforming growth factor (TGF)-β1 (rs 1982073, rs 1800471) and endothelin receptor type A (EDNRA) (rs 5335, rs 1801708) are associated with the CBAVD phenotype. DESIGN Genotyping of subjects with clinical CBAVD. SETTING Outpatient and hospital-based clinical evaluation. PATIENT(S) DNA samples from 80 subjects with CBAVD and 51 healthy male controls from various regions of Europe. This is one of the largest genetic studies of this disease to date. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genotype analysis. RESULT(S) For single nucleotide polymorphism (SNP) rs 5335, we found increased frequency of the CC genotype among subjects with CBAVD. The difference was significant among Turkish patients versus controls (45.2% vs. 19.4%), and between all cases versus controls (36% vs. 15.7%). No associations between CBAVD penetrance and polymorphisms rs 1982073, rs 1800471, or rs 1801708 were observed. CONCLUSION(S) Our findings indicate that endothelin receptor type A polymorphism rs 5335 may be associated with CBAVD penetrance. To our knowledge, this is the first study to investigate genetic modifiers relevant to CBAVD.
Collapse
Affiliation(s)
- Viktoria Havasi
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Vieux-Rochas M, Mantero S, Heude E, Barbieri O, Astigiano S, Couly G, Kurihara H, Levi G, Merlo GR. Spatio-temporal dynamics of gene expression of the Edn1-Dlx5/6 pathway during development of the lower jaw. Genesis 2010; 48:262-373. [PMID: 20333701 DOI: 10.1002/dvg.20625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin-1 (Edn1)-dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo-mandibular identity. Here, to better analyze the spatio-temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1-dependent and -independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1-->Dlx5/6-->Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events.
Collapse
|
94
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
95
|
Talbot JC, Johnson SL, Kimmel CB. hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development 2010; 137:2507-17. [PMID: 20573696 PMCID: PMC2927700 DOI: 10.1242/dev.049700] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities. Here, we show that differential expression of hand2 and Dlx genes delineates domain boundaries before and during cartilage morphogenesis. Knockdown of the broadly expressed genes dlx1a and dlx2a results in both dorsal and intermediate defects, whereas knockdown of three intermediate-domain restricted genes dlx3b, dlx4b and dlx5a results in intermediate-domain-specific defects. The ventrally expressed gene hand2 patterns ventral identity, in part by repressing dlx3b/4b/5a. The jaw joint is an intermediate-domain structure that expresses nkx3.2 and a more general joint marker, trps1. The jaw joint expression of trps1 and nkx3.2 requires dlx3b/4b/5a function, and expands in hand2 mutants. Both hand2 and dlx3b/4b/5a repress dorsal patterning markers. Collectively, our work indicates that the expression and function of hand2 and Dlx genes specify major patterning domains along the dorsoventral axis of zebrafish pharyngeal arches.
Collapse
|
96
|
Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc Natl Acad Sci U S A 2010; 107:11441-6. [PMID: 20534536 DOI: 10.1073/pnas.1001582107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The origin of active predation in vertebrates is associated with the rise of three major, uniquely derived developmental characteristics of the head: (i) migratory cranial neural crest cells (CNCCs) giving rise to most skeletal skull elements; (ii) expression of Dlx genes by CNCCs in the Hox-free first pharyngeal arch (PA1); and (iii) muscularization of PA1 derivatives. Here we show that these three innovations are tightly linked. Expression of Dlx genes by CNCCs is not only necessary for head skeletogenesis, but also for the determination, differentiation, and patterning of cephalic myogenic mesoderm leading to masticatory muscle formation. In particular, inactivation of Dlx5 and Dlx6 in the mouse results in loss of jaw muscles. As Dlx5/6 are not expressed by the myogenic mesoderm, our findings imply an instructive role for Dlx5/6-positive CNCCs in muscle formation. The defect in muscularization does not result from the loss of mandibular identity observed in Dlx5/6(-/-) mice because masticatory muscles are still present in EdnRA(-/-) mutants, which display a similar jaw transformation. The genesis of jaws and their muscularization should therefore be seen as an integrated Dlx-dependent developmental process at the origin of the vertebrate head. The role of Dlx genes in defining gnathostome jaw identity could, therefore, be secondary to a more primitive function in the genesis of the oral skeletomuscular system.
Collapse
|
97
|
Buchtová M, Kuo WP, Nimmagadda S, Benson SL, Geetha-Loganathan P, Logan C, Au-Yeung T, Chiang E, Fu K, Richman JM. Whole genome microarray analysis of chicken embryo facial prominences. Dev Dyn 2010; 239:574-91. [PMID: 19941351 DOI: 10.1002/dvdy.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The face is one of the three regions most frequently affected by congenital defects in humans. To understand the molecular mechanisms involved, it is necessary to have a more complete picture of gene expression in the embryo. Here, we use microarrays to profile expression in chicken facial prominences, post neural crest migration and before differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative polymerase chain reaction (QPCR) and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development 2010; 137:1843-52. [PMID: 20431122 DOI: 10.1242/dev.049056] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of the vertebrate face relies on the regionalization of neural crest-derived skeletal precursors along the dorsoventral (DV) axis. Here we show that Jagged-Notch signaling ensures dorsal identity within the hyoid and mandibular components of the facial skeleton by repressing ventral fates. In a genetic screen in zebrafish, we identified a loss-of-function mutation in jagged 1b (jag1b) that results in dorsal expansion of ventral gene expression and partial transformation of the dorsal hyoid skeleton to a ventral morphology. Conversely, misexpression of human jagged 1 (JAG1) represses ventral gene expression and dorsalizes the ventral hyoid and mandibular skeletons. We further show that jag1b is expressed specifically in dorsal skeletal precursors, where it acts through the Notch2 receptor to activate hey1 expression. Whereas Jagged-Notch positive feedback propagates jag1b expression throughout the dorsal domain, Endothelin 1 (Edn1) inhibits jag1b and hey1 expression in the ventral domain. Strikingly, reduction of Jag1b or Notch2 function partially rescues the ventral defects of edn1 mutants, indicating that Edn1 promotes facial skeleton development in part by inhibiting Jagged-Notch signaling in ventral skeletal precursors. Together, these results indicate a novel function of Jagged-Notch signaling in ensuring dorsal identity within broad fields of facial skeletal precursors.
Collapse
Affiliation(s)
- Elizabeth Zuniga
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
99
|
Takechi M, Kuratani S. History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:417-33. [DOI: 10.1002/jez.b.21347] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
100
|
Kimmel CB, DeLaurier A, Ullmann B, Dowd J, McFadden M. Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One 2010; 5:e9475. [PMID: 20221441 PMCID: PMC2832765 DOI: 10.1371/journal.pone.0009475] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/01/2010] [Indexed: 11/24/2022] Open
Abstract
The morphologies of individual bones are crucial for their functions within the skeleton, and vary markedly during evolution. Recent studies have begun to reveal the detailed molecular genetic pathways that underlie skeletal morphogenesis. On the other hand, understanding of the process of morphogenesis itself has not kept pace with the molecular work. We examined, through an extended period of development in zebrafish, how a prominent craniofacial bone, the opercle (Op), attains its adult morphology. Using high-resolution confocal imaging of the vitally stained Op in live larvae, we show that the bone initially appears as a simple linear spicule, or spur, with a characteristic position and orientation, and lined by osteoblasts that we visualize by transgenic labeling. The Op then undergoes a stereotyped sequence of shape transitions, most notably during the larval period occurring through three weeks postfertilization. New shapes arise, and the bone grows in size, as a consequence of anisotropic addition of new mineralized bone matrix along specific regions of the pre-existing bone surfaces. We find that two modes of matrix addition, spurs and veils, are primarily associated with change in shape, whereas a third mode, incremental banding, largely accounts for growth in size. Furthermore, morphometric analyses show that shape development and growth follow different trajectories, suggesting separate control of bone shape and size. New osteoblast arrangements are associated with new patterns of matrix outgrowth, and we propose that fine developmental regulation of osteoblast position is a critical determinant of the spatiotemporal pattern of morphogenesis.
Collapse
Affiliation(s)
- Charles B Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America.
| | | | | | | | | |
Collapse
|