51
|
Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han SW, Mochida K, Adachi T, Takayama S, Matsuo I. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev Cell 2014; 27:131-144. [PMID: 24176640 DOI: 10.1016/j.devcel.2013.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Mouse anterior-posterior axis polarization is preceded by formation of the distal visceral endoderm (DVE) by unknown mechanisms. Here, we show by in vitro culturing of embryos immediately after implantation in microfabricated cavities that the external mechanical cues exerted on the embryo are crucial for DVE formation, as well as the elongated egg cylinder shape, without affecting embryo-intrinsic transcriptional programs except those involving DVE-specific genes. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic factors from maternal tissues. Moreover, the mechanical forces induce a breach of the basement membrane barrier at the distal portion locally, and thereby the transmigrated epiblast cells emerge as the DVE cells. Thus, we propose that external mechanical forces exerted by the interaction between embryo and maternal uterine tissues directly control the location of DVE formation at the distal tip and consequently establish the mammalian primary body axis.
Collapse
Affiliation(s)
- Ryuji Hiramatsu
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Toshiki Matsuoka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Sung-Woong Han
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Taiji Adachi
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isao Matsuo
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
52
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
53
|
Arkell RM, Tam PPL. Initiating head development in mouse embryos: integrating signalling and transcriptional activity. Open Biol 2013; 2:120030. [PMID: 22754658 PMCID: PMC3382960 DOI: 10.1098/rsob.120030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/06/2012] [Indexed: 11/12/2022] Open
Abstract
The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior–posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.
Collapse
Affiliation(s)
- Ruth M Arkell
- Early Mammalian Development Laboratory, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
54
|
Nowotschin S, Costello I, Piliszek A, Kwon GS, Mao CA, Klein WH, Robertson EJ, Hadjantonakis AK. The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo. Genes Dev 2013; 27:997-1002. [PMID: 23651855 DOI: 10.1101/gad.215152.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reciprocal inductive interactions between the embryonic and extraembryonic tissues establish the anterior-posterior (AP) axis of the early mouse embryo. The anterior visceral endoderm (AVE) signaling center emerges at the distal tip of the embryo at embryonic day 5.5 and translocates to the prospective anterior side of the embryo. The process of AVE induction and migration are poorly understood. Here we demonstrate that the T-box gene Eomesodermin (Eomes) plays an essential role in AVE recruitment, in part by directly activating the homeobox transcription factor Lhx1. Thus, Eomes function in the visceral endoderm (VE) initiates an instructive transcriptional program controlling AP identity.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Ets2-dependent trophoblast signalling is required for gastrulation progression after primitive streak initiation. Nat Commun 2013; 4:1658. [DOI: 10.1038/ncomms2646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
|
56
|
All-trans retinoic acid and basic fibroblast growth factor synergistically direct pluripotent human embryonic stem cells to extraembryonic lineages. Stem Cell Res 2012; 10:228-40. [PMID: 23314291 DOI: 10.1016/j.scr.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be used to model the cellular and molecular mechanisms that underlie embryonic development. Understanding the cellular mechanisms and pathways involved in extraembryonic (ExE) differentiation is of great interest because of the important role of this process in maternal health and fertility. Fibroblast growth factor 2 (FGF-2) is widely used to maintain the self-renewal of hESCs and induced pluripotent stem cells, while all trans retinoic acid (RA) is used to facilitate the directed differentiation of hESCs. Here, we monitored the RA induced differentiation of hESCs to the ExE lineage with and without FGF-2 over a 7-day period via global transcriptional profiling. The stemness markers POU5F1, NANOG and TDGF1 were markedly downregulated, whereas an upregulation of the ExE markers KRT7, CGA, DDAH2 and IGFBP3 was observed. Many of the differentially expressed genes were involved in WNT and TGF-β signaling. RA inactivated WNT signaling even in the presence of exogenous FGF-2, which that promotes the maintenance of the pluripotent state. We also show that BMP4 was upregulated and that RA was able to modulate the TGF-β signaling pathway and direct hESCs toward the ExE lineage. In addition, an epigenetic study revealed hypermethylation of the DDAH2, TDGF1 and GATA3 gene promoters, suggesting a role for epigenetic regulation during ExE differentiation. These data reveals that the effect of RA prevails in the presence of exogenous FGF-2 thus resulting in the direction of hESCs toward the ExE lineage.
Collapse
|
57
|
Abstract
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
58
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
59
|
Godard BG, Mazan S. Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. J Anat 2012; 222:56-66. [PMID: 22905913 DOI: 10.1111/j.1469-7580.2012.01552.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues.
Collapse
Affiliation(s)
- B G Godard
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff, France
| | | |
Collapse
|
60
|
McKean DM, Niswander L. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol Open 2012; 1:874-83. [PMID: 23213481 PMCID: PMC3507239 DOI: 10.1242/bio.20121982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/20/2022] Open
Abstract
Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.
Collapse
Affiliation(s)
- David M McKean
- HHMI, Department of Pediatrics, Cell Biology, Stem Cells and Development Graduate Program, and Children's Hospital Colorado, University of Colorado Anschutz Medical Campus Aurora , CO 80045 , USA
| | | |
Collapse
|
61
|
Abstract
When amniotes appeared during evolution, embryos freed themselves from intracellular nutrition; development slowed, the mid-blastula transition was lost and maternal components became less important for polarity. Extra-embryonic tissues emerged to provide nutrition and other innovations. One such tissue, the hypoblast (visceral endoderm in mouse), acquired a role in fixing the body plan: it controls epiblast cell movements leading to primitive streak formation, generating bilateral symmetry. It also transiently induces expression of pre-neural markers in the epiblast, which also contributes to delay streak formation. After gastrulation, the hypoblast might protect prospective forebrain cells from caudalizing signals. These functions separate mesendodermal and neuroectodermal domains by protecting cells against being caught up in the movements of gastrulation.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, GowerStreet (Anatomy Building), London WC1E 6BT, UK.
| | | |
Collapse
|
62
|
Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, Alexander M, Shakesheff KM, Zernicka-Goetz M. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun 2012; 3:673. [PMID: 22334076 PMCID: PMC3293425 DOI: 10.1038/ncomms1671] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022] Open
Abstract
The development of an anterior-posterior (AP) polarity is a crucial process that in the mouse has been very difficult to analyse, because it takes place as the embryo implants within the mother. To overcome this obstacle, we have established an in-vitro culture system that allows us to follow the step-wise development of anterior visceral endoderm (AVE), critical for establishing AP polarity. Here we use this system to show that the AVE originates in the implanting blastocyst, but that additional cells subsequently acquire AVE characteristics. These 'older' and 'younger' AVE domains coalesce as the egg cylinder emerges from the blastocyst structure. Importantly, we show that AVE migration is led by cells expressing the highest levels of AVE marker, highlighting that asymmetry within the AVE domain dictates the direction of its migration. Ablation of such leading cells prevents AVE migration, suggesting that these cells are important for correct establishment of the AP axis.
Collapse
Affiliation(s)
- Samantha A. Morris
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
- Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Department of Medicine, Division of Hematology/Oncology, Children's Hospital Boston, Massachusetts, USA
| | - Seema Grewal
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
| | - Florencia Barrios
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
| | - Sameer N. Patankar
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Bernhard Strauss
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Lee Buttery
- Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin M. Shakesheff
- Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
63
|
Bloomekatz J, Grego-Bessa J, Migeotte I, Anderson KV. Pten regulates collective cell migration during specification of the anterior-posterior axis of the mouse embryo. Dev Biol 2012; 364:192-201. [PMID: 22342906 DOI: 10.1016/j.ydbio.2012.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 01/23/2023]
Abstract
Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.
Collapse
Affiliation(s)
- Joshua Bloomekatz
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
64
|
Joyce B, Srinivas S. Cell Movements in the Egg Cylinder Stage Mouse Embryo. Results Probl Cell Differ 2012; 55:219-29. [DOI: 10.1007/978-3-642-30406-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
65
|
Paca A, Séguin CA, Clements M, Ryczko M, Rossant J, Rodriguez TA, Kunath T. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol 2012; 361:90-102. [DOI: 10.1016/j.ydbio.2011.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
|
66
|
Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2011; 241:270-83. [PMID: 22170865 DOI: 10.1002/dvdy.23711] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
67
|
Madabhushi M, Lacy E. Anterior visceral endoderm directs ventral morphogenesis and placement of head and heart via BMP2 expression. Dev Cell 2011; 21:907-19. [PMID: 22075149 PMCID: PMC3386144 DOI: 10.1016/j.devcel.2011.08.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/30/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023]
Abstract
In amniotes, ventral folding morphogenesis achieves gut internalization, linear heart tube formation, ventral body wall closure, and encasement of the fetus in extraembryonic membranes. Impairment of ventral morphogenesis results in human birth defects involving body wall, gut, and heart malformations and in mouse misplacement of head and heart. Absence of knowledge about genetic pathways and cell populations directing ventral folding in mammals has precluded systematic study of cellular mechanisms driving this vital morphogenetic process. We report tissue-specific mouse mutant analyses identifying the bone morphogenetic protein (BMP) pathway as a key regulator of ventral morphogenesis. BMP2 expressed in anterior visceral endoderm (AVE) signals to epiblast derivatives during gastrulation to orchestrate initial stages of ventral morphogenesis, including foregut development and positioning of head and heart. These findings identify unanticipated functions for the AVE in organizing the gastrulating embryo and indicate that visceral endoderm-expressed BMP2 coordinates morphogenetic cell behaviors in multiple epiblast lineages.
Collapse
Affiliation(s)
- Mary Madabhushi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
68
|
Toh YC, Blagovic K, Yu H, Voldman J. Spatially organized in vitro models instruct asymmetric stem cell differentiation. Integr Biol (Camb) 2011; 3:1179-87. [PMID: 22028041 DOI: 10.1039/c1ib00113b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding developmental biology requires knowledge of both the environmental factors regulating stem cell differentiation, which are increasingly being defined, and their spatial organization within a structurally heterogeneous niche, which is still largely unknown. Here we introduce spatially organized stem cell developmental models to interrogate the role of space in fate specification. Specifically, we developed Differential Environmental Spatial Patterning (δESP) to organize different microenvironments around single embryonic stem cell (ESC) colonies via sequential micropatterning. We first used δESP to decouple and understand the roles of cell organization and niche organization on ESCs deciding between self-renewal and differentiation fate choices. We then approximated in vitro an embryonic developmental step, specifically proximal-distal (PD) patterning of the mouse epiblast at pre-gastrulation, by spatially organizing two extraembryonic environments around ESCs, demonstrating that spatial organization of these three cell types is sufficient for PD patterns to form in vitro.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
69
|
Crosstalk between Nodal/activin and MAPK p38 signaling is essential for anterior-posterior axis specification. Curr Biol 2011; 21:1289-95. [PMID: 21802298 PMCID: PMC3209556 DOI: 10.1016/j.cub.2011.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/29/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022]
Abstract
Nodal/activin signaling plays a key role in anterior-posterior (A-P) axis formation by inducing the anterior visceral endoderm (AVE), the extraembryonic signaling center that initiates anterior patterning in the embryo. Here we provide direct evidence that the mitogen-activated protein kinase (MAPK) p38 regulates AVE specification through a crosstalk with the Nodal/activin signaling pathway. We show that p38 activation is directly stimulated by Nodal/activin and fails to be maintained upon inhibition of this pathway both in vivo and in vitro. In turn, p38 strengthens the Nodal signaling response by phosphorylating the Smad2 linker region and enhancing the level of Smad2 activation. Furthermore, we demonstrate that this p38 amplification loop is essential for correct specification of the AVE in two ways: first, by showing that inhibiting p38 activity in 5.5 days postcoitum embryo cultures leads to a switch from AVE to an extraembryonic visceral endoderm cell identity, and second, by demonstrating that genetically reducing p38 activity in a Nodal-sensitive background leads to a failure of AVE specification in vivo. Collectively, our results reveal a novel role for p38 in regulating the threshold of Nodal signaling and propose a new mechanism by which A-P axis development can be reinforced during early embryogenesis.
Collapse
|
70
|
Griswold SL, Sajja KC, Jang CW, Behringer RR. Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time-lapse imaging during development. Genesis 2011; 49:591-8. [PMID: 21309067 PMCID: PMC3409694 DOI: 10.1002/dvg.20718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 11/12/2022]
Abstract
A transgenic mouse line named iUBC-KikGR was generated, which expresses the photoconvertible fluorescent protein Kikume Green-Red (KikGR) under the control of the human Ubiquitin C promoter. KikGR is natively a green fluorophore, which can be converted into a red fluorophore upon exposure to UV light. KikGR is expressed broadly throughout transgenic embryos from the two-cell stage onward and in the adult. Specificity of photoconversion can range from the entire embryo to a region of an organ, to a few individual cells, depending on the needs of the experimenter. Cell movements, tissue reorganization, and migration can then be observed in real time by culturing the tissue of interest as an explant on the microscope stage. The iUBC-KikGR transgenic line represents a singular genetic reagent, which can be used for fate mapping, lineage tracing, and live visualization of cell behaviors and tissue movements in multiple organs at multiple time points.
Collapse
Affiliation(s)
- Shannon L Griswold
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
71
|
Takaoka K, Yamamoto M, Hamada H. Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 2011; 13:743-52. [PMID: 21623358 DOI: 10.1038/ncb2251] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
Abstract
Anterior-posterior polarity of the mouse embryo has been thought to be established when distal visceral endoderm (DVE) at embryonic day (E) 5.5 migrates toward the future anterior side to form anterior visceral endoderm (AVE). Lefty1, a marker of DVE and AVE, is asymmetrically expressed in implanting mouse embryos. We now show that Lefty1 is expressed first in a subset of epiblast progenitor cells and then in a subset of primitive endoderm progenitors. Genetic fate mapping indicated that the latter cells are destined to become DVE. In contrast to the accepted notion, however, AVE is not derived from DVE but is newly formed after E5.5 from Lefty1(-) visceral endoderm cells that move to the distal tip. Concomitant with DVE migration, all visceral endoderm cells in the embryonic region undergo global movement. In embryos subjected to genetic ablation of Lefty1-expressing DVE cells, AVE was formed de novo but the visceral endoderm including the newly formed AVE failed to migrate, indicating that DVE guides the migration of AVE by initiating the global movement of visceral endoderm cells. Future anterior-posterior polarity is thus already determined by Lefty1(+) blastomeres in the implanting blastocyst.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation, 1-3Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
72
|
Stuckey DW, Clements M, Di-Gregorio A, Senner CE, Le Tissier P, Srinivas S, Rodriguez TA. Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo. Development 2011; 138:1521-30. [PMID: 21427142 PMCID: PMC3062422 DOI: 10.1242/dev.063537] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.
Collapse
Affiliation(s)
- Daniel W. Stuckey
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Melanie Clements
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Aida Di-Gregorio
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Claire E. Senner
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Paul Le Tissier
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Tristan A. Rodriguez
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
73
|
Tõnissoo T, Lulla S, Meier R, Saare M, Ruisu K, Pooga M, Karis A. Nucleotide exchange factor RIC-8 is indispensable in mammalian early development. Dev Dyn 2011; 239:3404-15. [PMID: 21069829 DOI: 10.1002/dvdy.22480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The guanine nucleotide exchange factor RIC-8 is a conserved protein essential for the asymmetric division in the early embryogenesis in different organisms. The function of RIC-8 in mammalian development is not characterized so far. In this study we map the expression of RIC-8 during the early development of mouse. To elucidate the RIC-8 function we used Ric-8(-/-) mutant embryos. The Ric-8(-/-) embryos reach the gastrulation stage but do not develop further and die at E6.5-E8.5. We characterized the Ric-8(-/-) embryonic phenotype by morphological and marker gene analyses. The gastrulation is initiated in Ric-8(-/-) embryos but their growth is retarded, epiblast and mesoderm disorganized. Additionally, the basement membrane is defective, amnion folding and the formation of allantois are interfered, also the cavitation. Furthermore, the orientation of the Ric-8(-/-) embryo in the uterus was abnormal. Our study reveals that the activity of RIC-8 protein is irreplaceable for the correct gastrulation of mouse embryo.
Collapse
Affiliation(s)
- Tambet Tõnissoo
- Department of Developmental Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
74
|
Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm. PLoS Biol 2011; 9:e1001019. [PMID: 21364967 PMCID: PMC3042994 DOI: 10.1371/journal.pbio.1001019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/07/2011] [Indexed: 01/04/2023] Open
Abstract
The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global cell movements across epithelia (such as during convergence extension), PCP signalling in interplay with TGFβ signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them. The orientation of the head-tail axis is determined during embryogenesis by the movements of a subset of cells called the AVE (anterior visceral endoderm). These cells migrate from their initial position within the simple epithelium of the visceral endoderm (VE) to a location from which they eventually induce anterior pattern in the adjacent epiblast. Little is understood about how AVE cells migrate within the VE, why they stop migrating where they do, and how surrounding cells in the VE respond to or influence AVE migration. In this study, we use time-lapse microscopy and high-resolution 3D reconstructions of protein localisation patterns to address these issues. Our results show that AVE cells move by exchanging neighbours within an intact epithelium. The limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. Finally, we examine the role of planar cell polarity (PCP) signalling, which is responsible for coordinating morphogenetic events across different epithelia. We show that in addition to this traditional role in coordinating global cell movements, PCP signalling along with TGFβ signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them.
Collapse
|
75
|
Sebastiano V, Dalvai M, Gentile L, Schubart K, Sutter J, Wu GM, Tapia N, Esch D, Ju JY, Hübner K, Bravo MJA, Schöler HR, Cavaleri F, Matthias P. Oct1 regulates trophoblast development during early mouse embryogenesis. Development 2010; 137:3551-60. [PMID: 20876643 DOI: 10.1242/dev.047027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.
Collapse
Affiliation(s)
- Vittorio Sebastiano
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgenstrasse, 20 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Fernandez-Diaz LC, Laurent A, Girasoli S, Turco M, Longobardi E, Iotti G, Jenkins NA, Fiorenza MT, Copeland NG, Blasi F. The absence of Prep1 causes p53-dependent apoptosis of mouse pluripotent epiblast cells. Development 2010; 137:3393-403. [PMID: 20826531 DOI: 10.1242/dev.050567] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disruption of mouse Prep1, which codes for a homeodomain transcription factor, leads to embryonic lethality during post-implantation stages. Prep1(-/-) embryos stop developing after implantation and before anterior visceral endoderm (AVE) formation. In Prep1(-/-) embryos at E6.5 (onset of gastrulation), the AVE is absent and the proliferating extra-embryonic ectoderm and epiblast, marked by Bmp4 and Oct4, respectively, are reduced in size. At E.7.5, Prep1(-/-) embryos are small and very delayed, showing no evidence of primitive streak or of differentiated embryonic lineages. Bmp4 is expressed residually, while the reduced number of Oct4-positive cells is constant up to E8.5. At E6.5, Prep1(-/-) embryos retain a normal mitotic index but show a major increase in cleaved caspase 3 and TUNEL staining, indicating apoptosis. Therefore, the mouse embryo requires Prep1 when undergoing maximal expansion in cell number. Indeed, the phenotype is partially rescued in a p53(-/-), but not in a p16(-/-), background. Apoptosis is probably due to DNA damage as Atm downregulation exacerbates the phenotype. Despite this early lethal phenotype, Prep1 is not essential for ES cell establishment. A differential embryonic expression pattern underscores the unique function of Prep1 within the Meis-Prep family.
Collapse
Affiliation(s)
- Luis C Fernandez-Diaz
- IFOM, FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, via Adamello 16, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Morsut L, Yan KP, Enzo E, Aragona M, Soligo SM, Wendling O, Mark M, Khetchoumian K, Bressan G, Chambon P, Dupont S, Losson R, Piccolo S. Negative control of Smad activity by ectodermin/Tif1gamma patterns the mammalian embryo. Development 2010; 137:2571-8. [PMID: 20573697 DOI: 10.1242/dev.053801] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The definition of embryonic potency and induction of specific cell fates are intimately linked to the tight control over TGFbeta signaling. Although extracellular regulation of ligand availability has received considerable attention in recent years, surprisingly little is known about the intracellular factors that negatively control Smad activity in mammalian tissues. By means of genetic ablation, we show that the Smad4 inhibitor ectodermin (Ecto, also known as Trim33 or Tif1gamma) is required to limit Nodal responsiveness in vivo. New phenotypes, which are linked to excessive Nodal activity, emerge from such a modified landscape of Smad responsiveness in both embryonic and extra-embryonic territories. In extra-embryonic endoderm, Ecto is required to confine expression of Nodal antagonists to the anterior visceral endoderm. In trophoblast cells, Ecto precisely doses Nodal activity, balancing stem cell self-renewal and differentiation. Epiblast-specific Ecto deficiency shifts mesoderm fates towards node/organizer fates, revealing the requirement of Smad inhibition for the precise allocation of cells along the primitive streak. This study unveils that intracellular negative control of Smad function by ectodermin/Tif1gamma is a crucial element in the cellular response to TGFbeta signals in mammalian tissues.
Collapse
Affiliation(s)
- Leonardo Morsut
- Department of Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale Colombo 3, 35126 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Bruce AW, Zernicka-Goetz M. Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate. Curr Opin Genet Dev 2010; 20:485-91. [PMID: 20554442 DOI: 10.1016/j.gde.2010.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/16/2022]
Abstract
The temporal and spatial segregation of the two extra-embryonic cell lineages, trophectoderm and primitive endoderm (TE and PE respectively), from the pluripotent epiblast (EPI) during mammalian pre-implantation development are prerequisites for the successful implantation of the blastocyst. The mechanisms underlying these earliest stages of development remain a fertile topic for research and informed debate. In recent years novel roles for various transcription factors, polarity factors and signalling cascades have been uncovered. This mini-review seeks to summarise some of this work and to put it into the context of the regulative nature of early mammalian development and to highlight how the increasing evidence of naturally occurring asymmetries and heterogeneity in the embryo can bias specification of the distinct cell types of the blastocyst.
Collapse
Affiliation(s)
- Alexander W Bruce
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
79
|
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009; 137:571-84. [PMID: 19410550 DOI: 10.1016/j.cell.2009.03.014] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 01/09/2009] [Accepted: 03/05/2009] [Indexed: 01/12/2023]
Abstract
Specification of the germ cell lineage is vital to development and heredity. In mice, the germ cell fate is induced in pluripotent epiblast cells by signaling molecules, yet the underlying mechanism remains unknown. Here we demonstrate that germ cell fate in the epiblast is a direct consequence of Bmp4 signaling from the extraembryonic ectoderm (ExE), which is antagonized by the anterior visceral endoderm (AVE). Strikingly, Bmp8b from the ExE restricts AVE development, thereby contributing to Bmp4 signaling. Furthermore, Wnt3 in the epiblast ensures its responsiveness to Bmp4. Serum-free, defined cultures revealed that, in response to Bmp4, competent epiblast cells uniformly expressed key transcriptional regulators Blimp1 and Prdm14 and acquired germ-cell properties, including genome-wide epigenetic reprogramming, in an orderly fashion. Notably, the induced cells contributed to both spermatogenesis and fertility of offspring. By identifying a signaling principle in germ cell specification, our study establishes a robust strategy for reconstituting the mammalian germ cell lineage in vitro.
Collapse
Affiliation(s)
- Yasuhide Ohinata
- Center for Developmental Biology, RIKEN Kobe Institute, Minatojima-Minamimachi, Chuo-ku, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Acampora D, Di Giovannantonio LG, Di Salvio M, Mancuso P, Simeone A. Selective inactivation of Otx2 mRNA isoforms reveals isoform-specific requirement for visceral endoderm anteriorization and head morphogenesis and highlights cell diversity in the visceral endoderm. Mech Dev 2009; 126:882-97. [PMID: 19615442 DOI: 10.1016/j.mod.2009.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Genetic and embryological experiments demonstrated that the visceral endoderm (VE) is essential for positioning the primitive streak at one pole of the embryo and head morphogenesis through antagonism of the Wnt and Nodal signaling pathways. The transcription factor Otx2 is required for VE anteriorization and specification of rostral neuroectoderm at least in part by controlling the expression of Dkk1 and Lefty1. Here, we investigated the relevance of the Otx2 transcriptional control in these processes. Otx2 protein is encoded by different mRNAs variants, which, on the basis of their transcription start site, may be distinguished in distal and proximal. Distal isoforms are prevalently expressed in the epiblast and neuroectoderm, while proximal isoforms prevalently in the VE. Selective inactivation of Otx2 variants reveals that distal isoforms are not required for gastrulation, but essential for maintenance of forebrain and midbrain identities; conversely, proximal isoforms control VE anteriorization and, indirectly, primitive streak positioning through the activation of Dkk1 and Lefty1. Moreover, in these mutants the expression of proximal isoforms is not affected by the lack of distal mRNAs and vice versa. Taken together these findings indicate that proximal and distal isoforms, whose expression is independently regulated in the VE and epiblast-derived neuroectoderm, functionally cooperate to provide these tissues with the sufficient level of Otx2 necessary to promote a normal development. Furthermore, we discovered that in the VE the expression of Otx2 isoforms is tightly controlled at single cell level, and we hypothesize that this molecular diversity may potentially confer specific functional properties to different subsets of VE cells.
Collapse
|
81
|
Zernicka-Goetz M, Morris SA, Bruce AW. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 2009; 10:467-77. [PMID: 19536196 DOI: 10.1038/nrg2564] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preimplantation mammalian embryo offers a striking opportunity to address the question of how and why apparently identical cells take on separate fates. Two cell fate decisions are taken before the embryo implants; these decisions set apart a group of pluripotent cells, progenitors for the future body, from the distinct extraembryonic lineages of trophectoderm and primitive endoderm. New molecular, cellular and developmental insights reveal the interplay of transcriptional regulation, epigenetic modifications, cell position and cell polarity in these two fate decisions in the mouse. We discuss how mechanisms proposed in previously distinct models might work in concert to progressively reinforce cell fate decisions through feedback loops.
Collapse
Affiliation(s)
- Magdalena Zernicka-Goetz
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. m.zernicka-goetz@
| | | | | |
Collapse
|
82
|
Rossant J, Tam PPL. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 2009; 136:701-13. [PMID: 19201946 DOI: 10.1242/dev.017178] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The investigation into lineage allocation and early asymmetries in the pre- and peri-implantation mouse embryo is gaining momentum. As we review here, new insights have been gained into the cellular and molecular events that lead to the establishment of the three lineages of the blastocyst, to the determination of the origin and the fates of the visceral endoderm in the peri-implantation mouse embryo, and to the generation of cellular and molecular activities that accompany the emergence of asymmetries in the pre-gastrulation embryo. We also discuss the continuing debate that surrounds the relative impacts of early lineage bias versus the stochastic allocation of cells with respect to the events that pattern the blastocyst and initiate its later asymmetries.
Collapse
Affiliation(s)
- Janet Rossant
- Research Institute, The Hospital for Sick Children and Departments of Molecular Genetics, and Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
83
|
Hierholzer A, Kemler R. Cdx1::Cre allele for gene analysis in the extraembryonic ectoderm and the three germ layers of mice at mid-gastrulation. Genesis 2009; 47:204-9. [DOI: 10.1002/dvg.20484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
84
|
Coolen M, Menuet A, Mazan S. Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish. C R Biol 2009; 332:210-8. [DOI: 10.1016/j.crvi.2008.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/12/2008] [Indexed: 12/18/2022]
|
85
|
Yamamoto M, Beppu H, Takaoka K, Meno C, Li E, Miyazono K, Hamada H. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. ACTA ACUST UNITED AC 2009; 184:323-34. [PMID: 19153222 PMCID: PMC2654303 DOI: 10.1083/jcb.200808044] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior–posterior axis of the mouse embryo is established by formation of distal visceral endoderm (DVE) and its subsequent migration. The precise mechanism of DVE formation has remained unknown, however. Here we show that bone morphogenetic protein (BMP) signaling plays dual roles in DVE formation. BMP signaling is required at an early stage for differentiation of the primitive endoderm into the embryonic visceral endoderm (VE), whereas it inhibits DVE formation, restricting it to the distal region, at a later stage. A Smad2-activating factor such as Activin also contributes to DVE formation by generating a region of VE positive for the Smad2 signal and negative for Smad1 signal. DVE is thus formed at the distal end of the embryo, the only region of VE negative for the Smad1 signal and positive for Smad2 signal. An inverse relation between the level of phosphorylated Smad1 and that of phosphorylated Smad2 in VE suggests an involvement of antagonism between Smad1- and Smad2-mediated signaling.
Collapse
Affiliation(s)
- Masamichi Yamamoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
86
|
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 2009; 10:91-103. [PMID: 19129791 DOI: 10.1038/nrm2618] [Citation(s) in RCA: 590] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior-posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.
Collapse
Affiliation(s)
- Sebastian J Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
87
|
Kwon GS, Viotti M, Hadjantonakis AK. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell 2008; 15:509-20. [PMID: 18854136 DOI: 10.1016/j.devcel.2008.07.017] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/10/2008] [Accepted: 07/30/2008] [Indexed: 12/22/2022]
Abstract
The cell movements underlying the morphogenesis of the embryonic endoderm, the tissue that will give rise to the respiratory and digestive tracts, are complex and not well understood. Using live imaging combined with genetic labeling, we investigated the cell behaviors and fate of the visceral endoderm during gut endoderm formation in the mouse gastrula. Contrary to the prevailing view, our data reveal no mass displacement of visceral endoderm to extraembryonic regions concomitant with the emergence of epiblast-derived definitive endoderm. Instead, we observed dispersal of the visceral endoderm epithelium and extensive mixing between cells of visceral endoderm and epiblast origin. Visceral endoderm cells remained associated with the epiblast and were incorporated into the early gut tube. Our findings suggest that the segregation of extraembryonic and embryonic tissues within the mammalian embryo is not as strict as believed and that a lineage previously defined as exclusively extraembryonic contributes cells to the embryo.
Collapse
Affiliation(s)
- Gloria S Kwon
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
88
|
GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Dev Biol 2008; 325:43-8. [PMID: 18823971 DOI: 10.1016/j.ydbio.2008.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/02/2008] [Accepted: 09/08/2008] [Indexed: 01/02/2023]
Abstract
Within the TGF-beta superfamily, there are approximately forty ligands divided into two major branches: the TGF-beta/Activin/Nodal ligands and the BMP/GDF ligands. We studied the ligand GDF3 and found that it inhibits signaling by its co-family members, the BMPs; however, GDF3 has been described by others to have Nodal-like activity. Here, we show that GDF3 can activate Nodal signaling, but only at very high doses and only upon mRNA over-expression. In contrast, GDF3 inhibits BMP signaling upon over-expression of GDF3 mRNA, as recombinant protein, and regardless of its dose. We therefore further characterized the mechanism through which GDF3 protein acts as a specific BMP inhibitor and found that the BMP inhibitory activity of GDF3 resides redundantly in the unprocessed, predominant form and in the mature form of the protein. These results confirm and extend the activity that we described for GDF3 and illuminate the experimental basis for the different observations of others. We suggest that GDF3 is either a bi-functional TGF-beta ligand, or, more likely, that it is a BMP inhibitor that can artificially activate Nodal signaling under non-physiological conditions.
Collapse
|
89
|
Transcriptional regulator BPTF/FAC1 is essential for trophoblast differentiation during early mouse development. Mol Cell Biol 2008; 28:6819-27. [PMID: 18794365 DOI: 10.1128/mcb.01058-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The putative transcriptional regulator BPTF/FAC1 is expressed in embryonic and extraembryonic tissues of the early mouse conceptus. The extraembryonic trophoblast lineage in mammals is essential to form the fetal part of the placenta and hence for the growth and viability of the embryo in utero. Here, we describe a loss-of-function allele of the BPTF/FAC1 gene that causes embryonic lethality in the mouse. BPTF/FAC1-deficient embryos form apparently normal blastocysts that implant and develop epiblast, visceral endoderm, and extraembryonic ectoderm including trophoblast stem cells. Subsequent development of mutants, however, is arrested at the early gastrula stage (embryonic day 6.5), and virtually all null embryos die before midgestation. Most notably, the ectoplacental cone is drastically reduced or absent in mutants, which may cause the embryonic lethality. Development of the mutant epiblast is also affected, as the anterior visceral endoderm and the primitive streak do not form correctly, while brachyury-expressing mesodermal cells arise but are delayed. The mutant phenotype suggests that gastrulation is initiated, but no complete anteroposterior axis of the epiblast appears. We conclude that BPTF/FAC1 is essential in the extraembryonic lineage for correct development of the ectoplacental cone and fetomaternal interactions. In addition, BPTF/FAC1 may also play a role either directly or indirectly in anterior-posterior patterning of the epiblast.
Collapse
|
90
|
Abstract
Autophagy is important for the degradation of bulk cytoplasm, long-lived proteins, and entire organelles. In lower eukaryotes, autophagy functions as a cell death mechanism or as a stress response during development. However, autophagy's significance in vertebrate development, and the role (if any) of vertebrate-specific factors in its regulation, remains unexplained. Through careful analysis of the current autophagy gene mutant mouse models, we propose that in mammals, autophagy may be involved in specific cytosolic rearrangements needed for proliferation, death, and differentiation during embryogenesis and postnatal development. Thus, autophagy is a process of cytosolic "renovation," crucial in cell fate decisions.
Collapse
Affiliation(s)
- Francesco Cecconi
- Dulbecco Telethon Institute at the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Beth Levine
- Howard Hughes Medical Institute, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA; Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA; Department of Microbiology, Southwestern Medical Center, University of Texas, Dallas, TX 75390, USA.
| |
Collapse
|
91
|
Soares ML, Torres-Padilla ME, Zernicka-Goetz M. Bone morphogenetic protein 4 signaling regulates development of the anterior visceral endoderm in the mouse embryo. Dev Growth Differ 2008; 50:615-21. [PMID: 18657169 PMCID: PMC3342679 DOI: 10.1111/j.1440-169x.2008.01059.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extraembryonic ectoderm (ExE) of the mouse conceptus is known to play a role in embryo patterning by signaling to the underlying epiblast and surrounding visceral endoderm. Bmp4 is one of the key ExE signaling molecules and has been recently implicated to participate in regulating development and migration of the anterior visceral endoderm (AVE). However, it remains unclear when exactly BMP4 signaling starts to regulate AVE positioning. To examine this, we have chosen to affect BMP4 function at two different time points, at embryonic day 5.25 (E5.25), thus before AVE migration, and E5.75, just after AVE migration. To this end, an RNAi technique was used, which consisted of the injection of Bmp4 dsRNA into the proamniotic cavity of the egg cylinder followed by its targeted electroporation into the ExE. This resulted in specific knockdown of Bmp4. It was found that Bmp4 RNAi at E5.25, but not at E5.75, led to an abnormal pattern of expression of the AVE marker Cerberus-like. Thus, BMP4 signaling appears to affect the expression of Cer1 at a specific time window. This RNAi approach provides a convenient means to study spatial and temporal function of genes shortly after embryo implantation.
Collapse
Affiliation(s)
| | | | - Magdalena Zernicka-Goetz
- The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology and Department of Genetics, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| |
Collapse
|
92
|
Cripto-independent Nodal signaling promotes positioning of the A–P axis in the early mouse embryo. Dev Biol 2008; 315:280-9. [DOI: 10.1016/j.ydbio.2007.12.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 11/20/2022]
|
93
|
Abstract
Proper cell-cell communication is necessary to orchestrate the cell fate determination, proliferation, movement, and differentiation that occurs during the development of a complex, multicellular organism. Members of the Wnt family of secreted signaling molecules regulate these processes in virtually every embryonic tissue and during the homeostatic maintenance of adult tissues. Mammalian genetic studies have been particularly useful in illustrating the specific roles that Wnt signaling pathways play in embryonic development, and in the etiology of diseases such as cancer. This chapter will largely focus on the functional roles that Wnts, signaling through the Wnt/-catenin pathway, play during early mammalian development.
Collapse
Affiliation(s)
- Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, the National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
94
|
de Sousa Lopes SMC, Hayashi K, Surani MA. Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors. BMC DEVELOPMENTAL BIOLOGY 2007; 7:140. [PMID: 18096072 PMCID: PMC2231376 DOI: 10.1186/1471-213x-7-140] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 12/20/2007] [Indexed: 11/17/2022]
Abstract
Background The extraembryonic tissues, visceral endoderm (VE) and extraembryonic ectoderm (ExE) are known to be important for the induction of primordial germ cells (PGCs) in mice via activation of the bone morphogenetic protein (BMP) signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells. Results We cultured embryonic day (E) 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo. Conclusion We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.
Collapse
Affiliation(s)
- Susana M Chuva de Sousa Lopes
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
95
|
Abstract
The definitive axes of the mouse embryo can be unequivocally identified in embryos dissected at 5.5 days of gestation. However, how and when are these axes established remains an open question. At pre-implantation stages, different approaches have been aimed at determining if events occurring in the zygote influence the geometrical arrangement of the blastocyst. An intense debate has focused on whether the mouse embryo is a pre-patterned or a regulative structure. At post-implantation stages, the efforts have been concentrated in understanding how extra-embryonic tissues affect the formation of the primitive streak, the caudal marker of the anteroposterior axis. Here I summarize the last 10 years of research in this field.
Collapse
Affiliation(s)
- Jaime A Rivera-Perez
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
96
|
Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol 2007; 311:500-11. [PMID: 17936261 DOI: 10.1016/j.ydbio.2007.08.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 08/18/2007] [Accepted: 08/29/2007] [Indexed: 11/24/2022]
Abstract
Vg1, a member of the TGF-beta superfamily of ligands, has been implicated in the induction of mesoderm, formation of primitive streak, and left-right patterning in Xenopus and chick embryos. In mice, GDF1 and GDF3 - two TGF-beta superfamily ligands that share high sequence identity with Vg1 - have been shown to independently mimic distinct aspects of Vg1's functions. However, the extent to which the developmental processes controlled by GDF1 and GDF3 and the underlying signaling mechanisms are evolutionarily conserved remains unclear. Here we show that phylogenetic and genomic analyses indicate that Gdf1 is the true Vg1 ortholog in mammals. In addition, and similar to GDF1, we find that GDF3 signaling can be mediated by the type I receptor ALK4, type II receptors ActRIIA and ActRIIB, and the co-receptor Cripto to activate Smad-dependent reporter genes. When expressed in heterologous cells, the native forms of either GDF1 or GDF3 were incapable of inducing downstream signaling. This could be circumvented by using chimeric constructs carrying heterologous prodomains, or by co-expression with the Furin pro-protein convertase, indicating poor processing of the native GDF1 and GDF3 precursors. Unexpectedly, co-expression with Nodal - another TGF-beta superfamily ligand involved in mesoderm formation - could also expose the activities of native GDF1 and GDF3, suggesting a potentially novel mode of cooperation between these ligands. Functional complementarity between GDF1 and GDF3 during embryonic development was investigated by analyzing genetic interactions between their corresponding genes. This analysis showed that Gdf1(-/-);Gdf3(-/-) compound mutants are more severely affected than either Gdf1(-/-) or Gdf3(-/-) single mutants, with defects in the formation of anterior visceral endoderm and mesoderm that recapitulate Vg1 loss of function, suggesting that GDF1 and GDF3 together represent the functional mammalian homologs of Vg1.
Collapse
|
97
|
Torres-Padilla ME, Richardson L, Kolasinska P, Meilhac SM, Luetke-Eversloh MV, Zernicka-Goetz M. The anterior visceral endoderm of the mouse embryo is established from both preimplantation precursor cells and by de novo gene expression after implantation. Dev Biol 2007; 309:97-112. [PMID: 17662710 PMCID: PMC3353121 DOI: 10.1016/j.ydbio.2007.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/26/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Initiation of the development of the anterior-posterior axis in the mouse embryo has been thought to take place only when the anterior visceral endoderm (AVE) emerges and starts its asymmetric migration. However, expression of Lefty1, a marker of the AVE, was recently found to initiate before embryo implantation. This finding has raised two important questions: are the cells that show such early, preimplantation expression of this AVE marker the real precursors of the AVE and, if so, how does this contribute to the establishment of the AVE? Here, we address both of these questions. First, we show that the expression of another AVE marker, Cer1, also commences before implantation and its expression becomes consolidated in the subset of ICM cells that comprise the primitive endoderm. Second, to determine whether the cells showing this early Cer1 expression are true precursors of the AVE, we set up conditions to trace these cells in time-lapse studies from early periimplantation stages until the AVE emerges and becomes asymmetrically displaced. We found that Cer1-expressing cells are asymmetrically located after implantation and, as the embryo grows, they become dispersed into two or three clusters. The expression of Cer1 in the proximal domain is progressively diminished, whilst it is reinforced in the distal-lateral domain. Our time-lapse studies demonstrate that this distal-lateral domain is incorporated into the AVE together with cells in which Cer1 expression begins only after implantation. Thus, the AVE is formed from both part of an ancestral population of Cerl-expressing cells and cells that acquire Cer1 expression later. Finally, we demonstrate that when the AVE shifts asymmetrically to establish the anterior pole, this occurs towards the region where the earlier postimplantation expression of Cer1 was strongest. Together, these results suggest that the orientation of the anterior-posterior axis is already anticipated before AVE migration.
Collapse
Affiliation(s)
- Maria-Elena Torres-Padilla
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Lucy Richardson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Paulina Kolasinska
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Sigolène M. Meilhac
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Merlin Verena Luetke-Eversloh
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Magdalena Zernicka-Goetz
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
98
|
Miura S, Mishina Y. The DVE changes distal epiblast fate from definitive endoderm to neurectoderm by antagonizing nodal signaling. Dev Dyn 2007; 236:1602-10. [PMID: 17471538 DOI: 10.1002/dvdy.21166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To assess the function of the distal visceral endoderm (DVE) of embryonic day 5.5 (E5.5) embryos, we established a system to directly ablate the DVE and observe the consequences after culture. When the DVE was successfully ablated, such embryos (DVE-ablated embryos) showed deregulated expression of Nodal and Wnt3 and ectopically formed the primitive streak at the proximal portion of the embryo. The DVE and anterior visceral endoderm (AVE) are implicated in the development of neurectoderm. We found that the distal epiblast of E5.5 embryo rotates anteriorly by the beginning of gastrulation. These cells remained to be anteriorly located during gastrulation and contributed to the ectoderm in the anterior side of the embryo. This indicates that the distal epiblast of E5.5 embryo becomes neurectoderm in normal development. In DVE-ablated embryos, the distal epiblast did not show any movement during culture and was abnormally fated to early definitive endoderm lineage. The data suggest that down-regulation of Nodal signaling in the distal epiblast of E5.5 embryo may be an initial step of neural development.
Collapse
Affiliation(s)
- Shigeto Miura
- Molecular Developmental Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA.
| | | |
Collapse
|
99
|
Perea-Gomez A, Meilhac SM, Piotrowska-Nitsche K, Gray D, Collignon J, Zernicka-Goetz M. Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC DEVELOPMENTAL BIOLOGY 2007; 7:96. [PMID: 17705827 PMCID: PMC1978209 DOI: 10.1186/1471-213x-7-96] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reciprocal interactions between two extra-embryonic tissues, the extra-embryonic ectoderm and the visceral endoderm, and the pluripotent epiblast, are required for the establishment of anterior-posterior polarity in the mouse. After implantation, two visceral endoderm cell types can be distinguished, in the embryonic and extra-embryonic regions of the egg cylinder. In the embryonic region, the specification of the anterior visceral endoderm (AVE) is central to the process of anterior-posterior patterning. Despite recent advances in our understanding of the molecular interactions underlying the differentiation of the visceral endoderm, little is known about how cells colonise the three regions of the tissue. RESULTS As a first step, we performed morphological observations to understand how the extra-embryonic region of the egg cylinder forms from the blastocyst. Our analysis suggests a new model for the formation of this region involving cell rearrangements such as folding of the extra-embryonic ectoderm at the early egg cylinder stage. To trace visceral endoderm cells, we microinjected mRNAs encoding fluorescent proteins into single surface cells of the inner cell mass of the blastocyst and analysed the distribution of labelled cells at E5.0, E5.5 and E6.5. We found that at E5.0 the embryonic and extra-embryonic regions of the visceral endoderm do not correspond to distinct cellular compartments. Clusters of labelled cells may span the junction between the two regions even after the appearance of histological and molecular differences at E5.5. We show that in the embryonic region cell dispersion increases after the migration of the AVE. At this time, visceral endoderm cell clusters tend to become oriented parallel to the junction between the embryonic and extra-embryonic regions. Finally we investigated the origin of the AVE and demonstrated that this anterior signalling centre arises from more than a single precursor between E3.5 and E5.5. CONCLUSION We propose a new model for the formation of the extra-embryonic region of the egg cylinder involving a folding of the extra-embryonic ectoderm. Our analyses of the pattern of labelled visceral endoderm cells indicate that distinct cell behaviour in the embryonic and extra-embryonic regions is most apparent upon AVE migration. We also demonstrate the polyclonal origin of the AVE. Taken together, these studies lead to further insights into the formation of the extra-embryonic tissues as they first develop after implantation.
Collapse
Affiliation(s)
- Aitana Perea-Gomez
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Institut Jacques Monod CNRS UMR 7592, Université Paris 6 and Paris 7, 2 place Jussieu, 75005 Paris, France
| | - Sigolène M Meilhac
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Karolina Piotrowska-Nitsche
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Division of Neuroscience Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, Georgia 30329, USA
| | - Dionne Gray
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jérôme Collignon
- Institut Jacques Monod CNRS UMR 7592, Université Paris 6 and Paris 7, 2 place Jussieu, 75005 Paris, France
| | - Magdalena Zernicka-Goetz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| |
Collapse
|
100
|
Takaoka K, Yamamoto M, Hamada H. Origin of body axes in the mouse embryo. Curr Opin Genet Dev 2007; 17:344-50. [PMID: 17646095 DOI: 10.1016/j.gde.2007.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/07/2007] [Accepted: 06/09/2007] [Indexed: 11/26/2022]
Abstract
How and at what stage of development are the axes of the body determined? The left-right axis of the mouse embryo is generated de novo at embryonic day (E) 8.0 in a manner dependent on pre-existing positional cues. The anterior-posterior (A-P) axis becomes apparent earlier when distally located visceral endoderm migrates toward the future anterior side at E5.5. The direction of this migration is predetermined by asymmetric expression of Lefty1 and Cerl1(Cerberus-like 1). Asymmetric expression of Lefty1 takes place even earlier, in the primitive endoderm of the implanting blastocyst, pushing back the origin of the A-P axis to the peri-implantation stage. Although its functional significance remains to be seen, studies on how this molecular asymmetry emerges may provide insight into the origin of A-P polarity. The first cell fate decision occurs by the morula stage. Although blastomeres at the two-cell or four-cell stage may have biased fates, it is currently unknown whether this bias has any causal relation to later fate.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|