51
|
Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, Nakayama M, Koseki H, Amagai M, Okada T. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep 2019; 9:8625. [PMID: 31197234 PMCID: PMC6565750 DOI: 10.1038/s41598-019-44866-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier is thought to protect sensory nerves from overexposure to environmental stimuli, and barrier impairment leads to pathological conditions associated with itch, such as atopic dermatitis (AD). However, it is not known how the epidermal barrier continuously protects nerves for the sensory homeostasis during turnover of the epidermis. Here we show that epidermal nerves are contained underneath keratinocyte tight junctions (TJs) in normal human and mouse skin, but not in human AD samples or mouse models of chronic itch caused by epidermal barrier impairment. By intravital imaging of the mouse skin, we found that epidermal nerve endings were frequently extended and retracted, and occasionally underwent local pruning. Importantly, the epidermal nerve pruning took place rapidly at intersections with newly forming TJs in the normal skin, whereas this process was disturbed during chronic itch development. Furthermore, aberrant Ca2+ increases in epidermal nerves were induced in association with the disturbed pruning. Finally, TRPA1 inhibition suppressed aberrant Ca2+ increases in epidermal nerves and itch. These results suggest that epidermal nerve endings are pruned through interactions with keratinocytes to stay below the TJ barrier, and that disruption of this mechanism may lead to aberrant activation of epidermal nerves and pathological itch.
Collapse
Affiliation(s)
- Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Sotaro Ochiai
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan. .,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
52
|
Cucinotta FA, Eliedonna Cacao MA. DETRIMENTS IN NEURON MORPHOLOGY FOLLOWING HEAVY ION IRRADIATION: WHAT'S THE TARGET? RADIATION PROTECTION DOSIMETRY 2019; 183:69-74. [PMID: 30561664 PMCID: PMC6642454 DOI: 10.1093/rpd/ncy265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Neuron cells consist of the soma or cell body, axons, dendritic arbor with multiple branches, and dendritic spines which are the substrates for memory storage and synaptic transmission. Detriments in neuron morphology are suggested to play a key role in cognitive impairments following brain irradiation. Multiple molecular mechanisms are involved in the regulation and stability of neuron morphology, while the effects of radiation on these processes have not been studied extensively. In this report, we consider possible biological targets in neurons for energy deposition (ED) by charged particles that could lead to neuron morphology detriments, and the resulting dose and radiation quality dependence of such detriments. The track structures of heavy ions including high charge and energy (HZE) particles consists of core of high-ED events and a penumbra of sparse ED from δ-ray electrons produced in ionization of target molecules. We consider the role of track structure relative to possible targets causative in the degradation of morphology.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas NV, USA
| | - Murat Alp Eliedonna Cacao
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas NV, USA
| |
Collapse
|
53
|
Sapar ML, Han C. Die in pieces: How Drosophila sheds light on neurite degeneration and clearance. J Genet Genomics 2019; 46:187-199. [PMID: 31080046 PMCID: PMC6541534 DOI: 10.1016/j.jgg.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injury-induced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Maria L Sapar
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
54
|
Zhu S, Chen R, Soba P, Jan YN. JNK signaling coordinates with ecdysone signaling to promote pruning of Drosophila sensory neuron dendrites. Development 2019; 146:dev.163592. [PMID: 30936183 DOI: 10.1242/dev.163592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Developmental pruning of axons and dendrites is crucial for the formation of precise neuronal connections, but the mechanisms underlying developmental pruning are not fully understood. Here, we have investigated the function of JNK signaling in dendrite pruning using Drosophila class IV dendritic arborization (c4da) neurons as a model. We find that loss of JNK or its canonical downstream effectors Jun or Fos led to dendrite-pruning defects in c4da neurons. Interestingly, our data show that JNK activity in c4da neurons remains constant from larval to pupal stages but the expression of Fos is specifically activated by ecdysone receptor B1 (EcRB1) at early pupal stages, suggesting that ecdysone signaling provides temporal control of the regulation of dendrite pruning by JNK signaling. Thus, our work not only identifies a novel pathway involved in dendrite pruning and a new downstream target of EcRB1 in c4da neurons, but also reveals that JNK and Ecdysone signaling coordinate to promote dendrite pruning.
Collapse
Affiliation(s)
- Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA .,Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Peter Soba
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Yuh-Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 20251, USA
| |
Collapse
|
55
|
Wang Y, Rui M, Tang Q, Bu S, Yu F. Patronin governs minus-end-out orientation of dendritic microtubules to promote dendrite pruning in Drosophila. eLife 2019; 8:39964. [PMID: 30920370 PMCID: PMC6438692 DOI: 10.7554/elife.39964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/08/2019] [Indexed: 01/09/2023] Open
Abstract
Class IV ddaC neurons specifically prune larval dendrites without affecting axons during Drosophila metamorphosis. ddaCs distribute the minus ends of microtubules (MTs) to dendrites but the plus ends to axons. However, a requirement of MT minus-end-binding proteins in dendrite-specific pruning remains completely unknown. Here, we identified Patronin, a minus-end-binding protein, for its crucial and dose-sensitive role in ddaC dendrite pruning. The CKK domain is important for Patronin’s function in dendrite pruning. Moreover, we show that both patronin knockdown and overexpression resulted in a drastic decrease of MT minus ends and a concomitant increase of plus-end-out MTs in ddaC dendrites, suggesting that Patronin stabilizes dendritic minus-end-out MTs. Consistently, attenuation of Klp10A MT depolymerase in patronin mutant neurons significantly restored minus-end-out MTs in dendrites and thereby rescued dendrite-pruning defects. Thus, our study demonstrates that Patronin orients minus-end-out MT arrays in dendrites to promote dendrite-specific pruning mainly through antagonizing Klp10A activity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| |
Collapse
|
56
|
Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity. Proc Natl Acad Sci U S A 2019; 116:5126-5134. [PMID: 30804200 DOI: 10.1073/pnas.1814456116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
Collapse
|
57
|
Functions of Microtubule Disassembly during Neurite Pruning. Trends Cell Biol 2019; 29:291-297. [PMID: 30683460 DOI: 10.1016/j.tcb.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/23/2022]
Abstract
Large-scale neurite pruning, the developmentally regulated degeneration of axons or dendrites, is an important specificity mechanism during neuronal circuit formation. Pruning is usually restricted to single neurite branches and can occur by local degeneration or retraction. How this spatial regulation is achieved, and what triggers degeneration locally, are still poorly understood. At the cellular level, pruning involves local cytoskeleton disassembly before branch removal. Recent evidence suggests that microtubule disassembly is the local trigger and that the specific local microtubule organization of axons or dendrites determines where and how neurites degenerate. Based on these data, we propose a general model for spatial pruning regulation by microtubules and discuss how microtubule-associated proteins such as Tau could contribute to these regulatory aspects.
Collapse
|
58
|
Alyagor I, Berkun V, Keren-Shaul H, Marmor-Kollet N, David E, Mayseless O, Issman-Zecharya N, Amit I, Schuldiner O. Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 2019; 47:38-52.e6. [PMID: 30300589 PMCID: PMC6179959 DOI: 10.1016/j.devcel.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.
Collapse
Affiliation(s)
- Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Victoria Berkun
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel; Life Science Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | - Neta Marmor-Kollet
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Noa Issman-Zecharya
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Sciences, Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot, Israel.
| |
Collapse
|
59
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
60
|
The Role of Apoptotic Signaling in Axon Guidance. J Dev Biol 2018; 6:jdb6040024. [PMID: 30340315 PMCID: PMC6316149 DOI: 10.3390/jdb6040024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Navigating growth cones are exposed to multiple signals simultaneously and have to integrate competing cues into a coherent navigational response. Integration of guidance cues is traditionally thought to occur at the level of cytoskeletal dynamics. Drosophila studies indicate that cells exhibit a low level of continuous caspase protease activation, and that axon guidance cues can activate or suppress caspase activity. We base a model for axon guidance on these observations. By analogy with other systems in which caspase signaling has non-apoptotic functions, we propose that caspase signaling can either reinforce repulsion or negate attraction in response to external guidance cues by cleaving cytoskeletal proteins. Over the course of an entire trajectory, incorrectly navigating axons may pass the threshold for apoptosis and be eliminated, whereas axons making correct decisions will survive. These observations would also explain why neurotrophic factors can act as axon guidance cues and why axon guidance systems such as Slit/Robo signaling may act as tumor suppressors in cancer.
Collapse
|
61
|
Zong W, Wang Y, Tang Q, Zhang H, Yu F. Prd1 associates with the clathrin adaptor α-Adaptin and the kinesin-3 Imac/Unc-104 to govern dendrite pruning in Drosophila. PLoS Biol 2018; 16:e2004506. [PMID: 30142146 PMCID: PMC6126864 DOI: 10.1371/journal.pbio.2004506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 09/06/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Refinement of the nervous system depends on selective removal of excessive axons/dendrites, a process known as pruning. Drosophila ddaC sensory neurons prune their larval dendrites via endo-lysosomal degradation of the L1-type cell adhesion molecule (L1-CAM), Neuroglian (Nrg). Here, we have identified a novel gene, pruning defect 1 (prd1), which governs dendrite pruning of ddaC neurons. We show that Prd1 colocalizes with the clathrin adaptor protein α-Adaptin (α-Ada) and the kinesin-3 immaculate connections (Imac)/Uncoordinated-104 (Unc-104) in dendrites. Moreover, Prd1 physically associates with α-Ada and Imac, which are both critical for dendrite pruning. Prd1, α-Ada, and Imac promote dendrite pruning via the regulation of endo-lysosomal degradation of Nrg. Importantly, genetic interactions among prd1, α-adaptin, and imac indicate that they act in the same pathway to promote dendrite pruning. Our findings indicate that Prd1, α-Ada, and Imac act together to regulate discrete distribution of α-Ada/clathrin puncta, facilitate endo-lysosomal degradation, and thereby promote dendrite pruning in sensory neurons. During the maturation of the nervous system, some neurons can selectively eliminate their unnecessary connections, including dendrites and axons, to retain specific connections. In Drosophila, a class of sensory neurons lose all their larval dendrites during metamorphosis, when they transition from larvae to adults. We previously showed that these neurons prune their dendrites via lysosome-mediated degradation of a cell-adhesion protein, Neuroglian. In this paper, we identified a previously uncharacterized gene, pruning defect 1 (prd1), which plays an important role in dendrite pruning. We show that Prd1 is localized and complexed with α-Adaptin and Imac, two other proteins that are also essential for dendrite pruning. Moreover, Prd1, α-Adaptin, and Imac act in a common pathway to promote dendrite pruning by down-regulating Neuroglian protein. Thus, our study highlights a mechanism whereby Prd1, α-Adaptin, and Imac act together to regulate distribution of α-Adaptin/clathrin puncta, facilitate lysosome-dependent protein degradation, and thereby promote dendrite pruning in Drosophila sensory neurons.
Collapse
Affiliation(s)
- Wenhui Zong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, Singapore
- * E-mail:
| |
Collapse
|
62
|
Differential Requirement for Translation Initiation Factor Pathways during Ecdysone-Dependent Neuronal Remodeling in Drosophila. Cell Rep 2018; 24:2287-2299.e4. [DOI: 10.1016/j.celrep.2018.07.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022] Open
|
63
|
Meltzer S, Bagley JA, Perez GL, O'Brien CE, DeVault L, Guo Y, Jan LY, Jan YN. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons. Cell Rep 2018; 21:859-866. [PMID: 29069593 DOI: 10.1016/j.celrep.2017.09.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022] Open
Abstract
Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas), which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE) synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP) activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.
Collapse
Affiliation(s)
- Shan Meltzer
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua A Bagley
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gerardo Lopez Perez
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura DeVault
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yanmeng Guo
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
64
|
Cacao E, Parihar VK, Limoli CL, Cucinotta FA. Stochastic Modeling of Radiation-induced Dendritic Damage on in silico Mouse Hippocampal Neurons. Sci Rep 2018; 8:5494. [PMID: 29615729 PMCID: PMC5882641 DOI: 10.1038/s41598-018-23855-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction associated with radiotherapy for cancer treatment has been correlated to several factors, one of which is changes to the dendritic morphology of neuronal cells. Alterations in dendritic geometry and branching patterns are often accompanied by deficits that impact learning and memory. The purpose of this study is to develop a novel predictive model of neuronal dendritic damages caused by exposure to low linear energy transfer (LET) radiation, such as X-rays, γ-rays and high-energy protons. We established in silico representations of mouse hippocampal dentate granule cell layer (GCL) and CA1 pyramidal neurons, which are frequently examined in radiation-induced cognitive decrements. The in silico representations are used in a stochastic model that describes time dependent dendritic damage induced by exposure to low LET radiation. Changes in morphometric parameters, such as total dendritic length, number of branch points and branch number, including the Sholl analysis for single neurons are described by the model. Our model based predictions for different patterns of morphological changes based on energy deposition in dendritic segments (EDDS) will serve as a useful basis to compare specific patterns of morphological alterations caused by EDDS mechanisms.
Collapse
Affiliation(s)
- Eliedonna Cacao
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, United States of America
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, CA, United States of America
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, United States of America
| | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, United States of America.
| |
Collapse
|
65
|
DeVault L, Li T, Izabel S, Thompson-Peer KL, Jan LY, Jan YN. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2. Genes Dev 2018; 32:402-414. [PMID: 29563183 PMCID: PMC5900713 DOI: 10.1101/gad.308270.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
DeVault et al. show that the capacity for regeneration was present in adult neurons but diminished as the animal aged. The regenerated dendrites showed preferential alignment with the extracellular matrix, and inhibition of matrix metalloproteinase 2 led to increased dendrite regeneration. Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging.
Collapse
Affiliation(s)
- Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Sarah Izabel
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
66
|
Zhang B, Sato K, Yamamoto D. Ecdysone signaling regulates specification of neurons with a male-specific neurite in Drosophila. Biol Open 2018; 7:7/2/bio029744. [PMID: 29463514 PMCID: PMC5861360 DOI: 10.1242/bio.029744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Some mAL neurons in the male brain form the ipsilateral neurite (ILN[+]) in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses robo1 transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL) to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts. Upon EcR-A knockdown, ILN[+]-mALs were produced at a high rate (∼60%), even when heat shocked at 6-7 days AEL, yet EcR-B1 knockdown reduced the proportion of ILN[+]-mALs to ∼30%. Immunoprecipitation assays in S2 cells demonstrated that EcR-A and EcR-B1 form a complex with FruBM. robo1 reporter transcription was repressed by FruBM and ecdysone counteracted FruBM. We suggest that ecdysone signaling modulates the FruBM action to produce an appropriate number of male-type neurons. Summary: The insect molting hormone ecdysone determines whether a single neuron develops a sex-specific structure, through crosstalk with signaling elements in a pathway dedicated to the sex-fate determination.
Collapse
Affiliation(s)
- Binglong Zhang
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Kosei Sato
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| |
Collapse
|
67
|
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with some additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser-scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, followed by a short description of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Albrecht Haase
- Department of Physics, University of Trento, Povo, Italy. .,Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
68
|
Herzmann S, Götzelmann I, Reekers LF, Rumpf S. Spatial regulation of microtubule disruption during dendrite pruning in Drosophila. Development 2018; 145:dev.156950. [DOI: 10.1242/dev.156950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/18/2018] [Indexed: 11/20/2022]
Abstract
Large scale neurite pruning is an important specificity mechanism during neuronal morphogenesis. Drosophila sensory neurons prune their larval dendrites during metamorphosis. Pruning dendrites are severed in their proximal regions, but how this spatial information is encoded is not clear. Dendrite severing is preceded by local breakdown of dendritic microtubules through PAR-1-mediated inhibition of Tau. Here, we investigated spatial aspects of microtubule breakdown during dendrite pruning. Live imaging of fluorescently tagged tubulin shows that microtubule breakdown first occurs at proximal dendritic branchpoints, followed by breakdown at more distal branchpoints, suggesting that the process is triggered by a signal emanating from the soma. In fly dendrites, microtubules are arranged in uniformly oriented arrays where all plus ends face towards the soma. Mutants in kinesin-1 and -2, which are required for uniform microtubule orientation, cause defects in microtubule breakdown and dendrite pruning. Our data suggest that the local microtubule organization at branch points determines where microtubule breakdown occurs. Local microtubule organization may therefore contribute spatial information for severing sites during dendrite pruning.
Collapse
Affiliation(s)
- Svende Herzmann
- Insitute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Ina Götzelmann
- Insitute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Lea-Franziska Reekers
- Insitute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Sebastian Rumpf
- Insitute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| |
Collapse
|
69
|
Wang Q, Wang Y, Yu F. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 2018; 145:dev.164475. [DOI: 10.1242/dev.164475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Abstract
Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila, ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning.
Collapse
Affiliation(s)
- Qiwei Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857
| |
Collapse
|
70
|
Zheng Q, Ma A, Yuan L, Gao N, Feng Q, Franc NC, Xiao H. Apoptotic Cell Clearance in Drosophila melanogaster. Front Immunol 2017; 8:1881. [PMID: 29326726 PMCID: PMC5742343 DOI: 10.3389/fimmu.2017.01881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
The swift clearance of apoptotic cells (ACs) (efferocytosis) by phagocytes is a critical event during development of all multicellular organisms. It is achieved through phagocytosis by professional or amateur phagocytes. Failure in this process can lead to the development of inflammatory autoimmune or neurodegenerative diseases. AC clearance has been conserved throughout evolution, although many details in its mechanisms remain to be explored. It has been studied in the context of mammalian macrophages, and in the nematode Caenorhabditis elegans, which lacks “professional” phagocytes such as macrophages, but in which other cell types can engulf apoptotic corpses. In Drosophila melanogaster, ACs are engulfed by macrophages, glial, and epithelial cells. Drosophila macrophages perform similar functions to those of mammalian macrophages. They are professional phagocytes that participate in phagocytosis of ACs and pathogens. Study of AC clearance in Drosophila has identified some key elements, like the receptors Croquemort and Draper, promoting Drosophila as a suitable model to genetically dissect this process. In this review, we survey recent works of AC clearance pathways in Drosophila, and discuss the physiological outcomes and consequences of this process.
Collapse
Affiliation(s)
- Qian Zheng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - AiYing Ma
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China.,College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, NingXia, China
| | - Lei Yuan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Ning Gao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Qi Feng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Nathalie C Franc
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| |
Collapse
|
71
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
72
|
Gu T, Zhao T, Kohli U, Hewes RS. The large and small SPEN family proteins stimulate axon outgrowth during neurosecretory cell remodeling in Drosophila. Dev Biol 2017; 431:226-238. [PMID: 28916169 DOI: 10.1016/j.ydbio.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/16/2022]
Abstract
Split ends (SPEN) is the founding member of a well conserved family of nuclear proteins with critical functions in transcriptional regulation and the post-transcriptional processing and nuclear export of transcripts. In animals, the SPEN proteins fall into two size classes that perform either complementary or antagonistic functions in different cellular contexts. Here, we show that the two Drosophila representatives of this family, SPEN and Spenito (NITO), regulate metamorphic remodeling of the CCAP/bursicon neurosecretory cells. CCAP/bursicon cell-targeted overexpression of SPEN had no effect on the larval morphology or the pruning back of the CCAP/bursicon cell axons at the onset of metamorphosis. During the subsequent outgrowth phase of metamorphic remodeling, overexpression of either SPEN or NITO strongly inhibited axon extension, axon branching, peripheral neuropeptide accumulation, and soma growth. Cell-targeted loss-of-function alleles for both spen and nito caused similar reductions in axon outgrowth, indicating that the absolute levels of SPEN and NITO activity are critical to support the developmental plasticity of these neurons. Although nito RNAi did not affect SPEN protein levels, the phenotypes produced by SPEN overexpression were suppressed by nito RNAi. We propose that SPEN and NITO function additively or synergistically in the CCAP/bursicon neurons to regulate multiple aspects of neurite outgrowth during metamorphic remodeling.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Tao Zhao
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Uday Kohli
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Randall S Hewes
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
73
|
Rode S, Ohm H, Zipfel J, Rumpf S. The spliceosome-associated protein Mfap1 binds to VCP in Drosophila. PLoS One 2017; 12:e0183733. [PMID: 28837687 PMCID: PMC5570293 DOI: 10.1371/journal.pone.0183733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Posttranscriptional regulation of gene expression contributes to many developmental transitions. Previously, we found that the AAA chaperone Valosin-Containing Protein (VCP) regulates ecdysone-dependent dendrite pruning of Drosophila class IV dendritic arborization (c4da) neurons via an effect on RNA metabolism. In a search for RNA binding proteins associated with VCP, we identified the spliceosome-associated protein Mfap1, a component of the tri-snRNP complex. Mfap1 is a nucleolar protein in neurons and its levels are regulated by VCP. Mfap1 binds to VCP and TDP-43, a disease-associated RNA-binding protein. via distinct regions in its N- and C-terminal halfs. Similar to vcp mutations, Mfap1 overexpression causes c4da neuron dendrite pruning defects and mislocalization of TDP-43 in these cells, but genetic analyses show that Mfap1 is not a crucial VCP target during dendrite pruning. Finally, rescue experiments with a lethal mfap1 mutant show that the VCP binding region is not essential for Mfap1 function, but may act to increase its stability or activity.
Collapse
Affiliation(s)
- Sandra Rode
- Institute for Neurobiology, University of Münster, Badestrasse 9, Münster, Germany
| | - Henrike Ohm
- Institute for Neurobiology, University of Münster, Badestrasse 9, Münster, Germany
| | - Jaqueline Zipfel
- Institute for Neurobiology, University of Münster, Badestrasse 9, Münster, Germany
| | - Sebastian Rumpf
- Institute for Neurobiology, University of Münster, Badestrasse 9, Münster, Germany
- * E-mail:
| |
Collapse
|
74
|
Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 2017. [PMID: 28644437 PMCID: PMC5520460 DOI: 10.1038/cdd.2017.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
75
|
Herzmann S, Krumkamp R, Rode S, Kintrup C, Rumpf S. PAR-1 promotes microtubule breakdown during dendrite pruning in Drosophila. EMBO J 2017; 36:1981-1991. [PMID: 28554895 DOI: 10.15252/embj.201695890] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
Pruning of unspecific neurites is an important mechanism during neuronal morphogenesis. Drosophila sensory neurons prune their dendrites during metamorphosis. Pruning dendrites are severed in their proximal regions. Prior to severing, dendritic microtubules undergo local disassembly, and dendrites thin extensively through local endocytosis. Microtubule disassembly requires a katanin homologue, but the signals initiating microtubule breakdown are not known. Here, we show that the kinase PAR-1 is required for pruning and dendritic microtubule breakdown. Our data show that neurons lacking PAR-1 fail to break down dendritic microtubules, and PAR-1 is required for an increase in neuronal microtubule dynamics at the onset of metamorphosis. Mammalian PAR-1 is a known Tau kinase, and genetic interactions suggest that PAR-1 promotes microtubule breakdown largely via inhibition of Tau also in Drosophila Finally, PAR-1 is also required for dendritic thinning, suggesting that microtubule breakdown might precede ensuing plasma membrane alterations. Our results shed light on the signaling cascades and epistatic relationships involved in neurite destabilization during dendrite pruning.
Collapse
Affiliation(s)
- Svende Herzmann
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Rafael Krumkamp
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Sandra Rode
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Carina Kintrup
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Sebastian Rumpf
- Institute for Neurobiology, University of Münster, Münster, Germany
| |
Collapse
|
76
|
Thompson-Peer KL, DeVault L, Li T, Jan LY, Jan YN. In vivo dendrite regeneration after injury is different from dendrite development. Genes Dev 2017; 30:1776-89. [PMID: 27542831 PMCID: PMC5002981 DOI: 10.1101/gad.282848.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022]
Abstract
Thompson-Peer et al. show that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.
Collapse
Affiliation(s)
- Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
77
|
Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017; 206:1429-1443. [PMID: 28476867 PMCID: PMC5500141 DOI: 10.1534/genetics.117.200378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 02/01/2023] Open
Abstract
During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad. By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.
Collapse
|
78
|
Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 2017; 50:5-11. [PMID: 27502014 PMCID: PMC5319658 DOI: 10.5483/bmbrep.2017.50.1.131] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/30/2023] Open
Abstract
One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. [BMB Reports 2017; 50(1): 5-11].
Collapse
Affiliation(s)
- Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Biomolecular Science, University of Science and Technology, Daejeon 34141, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
79
|
Makhijani K, To TL, Ruiz-González R, Lafaye C, Royant A, Shu X. Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System. Cell Chem Biol 2017; 24:110-119. [PMID: 28065655 DOI: 10.1016/j.chembiol.2016.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Tsz-Leung To
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Rubén Ruiz-González
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Céline Lafaye
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38044, France; European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38044, France; European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
80
|
Wang Y, Zhang H, Shi M, Liou YC, Lu L, Yu F. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 2017; 144:1851-1862. [DOI: 10.1242/dev.146175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Pruning, whereby neurons eliminate their exuberant neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell adhesion molecule Neuroglian (Nrg).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
| | - Meng Shi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857
| |
Collapse
|
81
|
Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA, Reuter MS, Hausrat TJ, Weigand E, Fisher M, Ahles A, Engelhardt S, Bishop DL, Kneussel M, Misgeld T. Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination. Neuron 2016; 92:845-856. [PMID: 27773584 PMCID: PMC5133389 DOI: 10.1016/j.neuron.2016.09.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/14/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease. During synapse elimination, retreating axon branches dismantle their microtubules Microtubules are destabilized due to branch-specific severing Microtubule stabilization delays axon branch removal during synapse elimination The disease-associated microtubule severing protein spastin mediates microtubule loss
Collapse
Affiliation(s)
- Monika S Brill
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany.
| | - Tatjana Kleele
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Laura Ruschkies
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Natalia A Marahori
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Miriam S Reuter
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Torben J Hausrat
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Emily Weigand
- Ball State University, Department of Biology, 2000 West University, Muncie, IN 47306, USA
| | - Matthew Fisher
- Ball State University, Department of Biology, 2000 West University, Muncie, IN 47306, USA
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; German Center for Cardiovascular Research, DZHK, Partner site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; German Center for Cardiovascular Research, DZHK, Partner site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Derron L Bishop
- Indiana University School of Medicine, Department of Cellular and Integrative Physiology, Medical Science Building 385, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15(th) Street, Indianapolis, IN 46202, USA
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; Center of Integrated Protein Science (CIPSM), Butenandtstraße 5-13, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| |
Collapse
|
82
|
Tao J, Feng C, Rolls MM. The microtubule-severing protein fidgetin acts after dendrite injury to promote their degeneration. J Cell Sci 2016; 129:3274-81. [PMID: 27411367 DOI: 10.1242/jcs.188540] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 02/01/2023] Open
Abstract
After being severed from the cell body, axons initiate an active degeneration program known as Wallerian degeneration. Although dendrites also seem to have an active injury-induced degeneration program, no endogenous regulators of this process are known. Because microtubule disassembly has been proposed to play a role in both pruning and injury-induced degeneration, we used a Drosophila model to identify microtubule regulators involved in dendrite degeneration. We found that, when levels of fidgetin were reduced using mutant or RNA interference (RNAi) strategies, dendrite degeneration was delayed, but axon degeneration and dendrite pruning proceeded with normal timing. We explored two possible ways in which fidgetin could promote dendrite degeneration: (1) by acting constitutively to moderate microtubule stability in dendrites, or (2) by acting specifically after injury to disassemble microtubules. When comparing microtubule dynamics and stability in uninjured neurons with and without fidgetin, we could not find evidence that fidgetin regulated microtubule stability constitutively. However, we identified a fidgetin-dependent increase in microtubule dynamics in severed dendrites. We conclude that fidgetin acts after injury to promote disassembly of microtubules in dendrites severed from the cell body.
Collapse
Affiliation(s)
- Juan Tao
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chengye Feng
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
83
|
Yaniv SP, Schuldiner O. A fly's view of neuronal remodeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:618-35. [PMID: 27351747 PMCID: PMC5086085 DOI: 10.1002/wdev.241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618–635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website
Collapse
Affiliation(s)
- Shiri P Yaniv
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Schuldiner
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
84
|
Bhogal B, Plaza-Jennings A, Gavis ER. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals. Development 2016; 143:2147-59. [PMID: 27256879 DOI: 10.1242/dev.132415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues.
Collapse
Affiliation(s)
- Balpreet Bhogal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
85
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
86
|
Lin T, Pan PY, Lai YT, Chiang KW, Hsieh HL, Wu YP, Ke JM, Lee MC, Liao SS, Shih HT, Tang CY, Yang SB, Cheng HC, Wu JT, Jan YN, Lee HH. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS Genet 2015; 11:e1005642. [PMID: 26540204 PMCID: PMC4634852 DOI: 10.1371/journal.pgen.1005642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022] Open
Abstract
During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.
Collapse
Affiliation(s)
- Tzu Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yuan Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Lun Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Ke
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Myong-Chol Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Sian Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
87
|
Smith-Trunova S, Prithviraj R, Spurrier J, Kuzina I, Gu Q, Giniger E. Cdk5 regulates developmental remodeling of mushroom body neurons in Drosophila. Dev Dyn 2015; 244:1550-63. [PMID: 26394609 DOI: 10.1002/dvdy.24350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/19/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND During metamorphosis, axons and dendrites of the mushroom body (MB) in the Drosophila central brain are remodeled extensively to support the transition from larval to adult behaviors. RESULTS We show here that the neuronal cyclin-dependent kinase, Cdk5, regulates the timing and rate of mushroom body remodeling: reduced Cdk5 activity causes a delay in pruning of MB neurites, while hyperactivation accelerates it. We further show that Cdk5 cooperates with the ubiquitin-proteasome system in this process. Finally, we show that Cdk5 modulates the first overt step in neurite disassembly, dissolution of the neuronal tubulin cytoskeleton, and provide evidence that it also acts at additional steps of MB pruning. CONCLUSIONS These data show that Cdk5 regulates the onset and extent of remodeling of the Drosophila MB. Given the wide phylogenetic conservation of Cdk5, we suggest that it is likely to play a role in developmental remodeling in other systems, as well. Moreover, we speculate that the well-established role of Cdk5 in neurodegeneration may involve some of the same cellular mechanisms that it uses during developmental remodeling.
Collapse
Affiliation(s)
- Svetlana Smith-Trunova
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Ranjini Prithviraj
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Joshua Spurrier
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.,The Johns Hopkins University/National Institutes of Health Graduate Partnership Program, National Institutes of Health, Bethesda, Maryland
| | - Irina Kuzina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Qun Gu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
88
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
89
|
Rabinovich D, Mayseless O, Schuldiner O. Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 2015; 9:327. [PMID: 26379498 PMCID: PMC4547045 DOI: 10.3389/fncel.2015.00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) γ neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB γ neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.
Collapse
Affiliation(s)
- Dana Rabinovich
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| |
Collapse
|
90
|
Abstract
Cellular debris created by developmental processes or injury must be cleared by phagocytic cells to maintain and repair tissues. Cutaneous injuries damage not only epidermal cells but also the axonal endings of somatosensory (touch-sensing) neurons, which must be repaired to restore the sensory function of the skin. Phagocytosis of neuronal debris is usually performed by macrophages or other blood-derived professional phagocytes, but we have found that epidermal cells phagocytose somatosensory axon debris in zebrafish. Live imaging revealed that epidermal cells rapidly internalize debris into dynamic phosphatidylinositol 3-monophosphate-positive phagosomes that mature into phagolysosomes using a pathway similar to that of professional phagocytes. Epidermal cells phagocytosed not only somatosensory axon debris but also debris created by injury to other peripheral axons that were mislocalized to the skin, neighboring skin cells, and macrophages. Together, these results identify vertebrate epidermal cells as broad-specificity phagocytes that likely contribute to neural repair and wound healing.
Collapse
|
91
|
Kanamori T, Yoshino J, Yasunaga KI, Dairyo Y, Emoto K. Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nat Commun 2015; 6:6515. [DOI: 10.1038/ncomms7515] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
|
92
|
Loncle N, Agromayor M, Martin-Serrano J, Williams DW. An ESCRT module is required for neuron pruning. Sci Rep 2015; 5:8461. [PMID: 25676218 PMCID: PMC4327575 DOI: 10.1038/srep08461] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022] Open
Abstract
Neural circuits are refined by both functional and structural changes. Structural remodeling by large-scale pruning occurs where relatively long neuronal branches are cut away from their parent neuron and removed by local degeneration. Until now, the molecular mechanisms executing such branch severing events have remained poorly understood. Here, we reveal a role for the Endosomal Sorting Complex Required for Transport (ESCRT) machinery during neuronal remodeling. Our data show that a specific ESCRT pruning module, including members of the ESCRT-I and ESCRT-III complexes, but not ESCRT-0 or ESCRT-II, are required for the neurite scission event during pruning. Furthermore we show that this ESCRT module requires a direct, in vivo, interaction between Shrub/CHMP4B and the accessory protein Myopic/HD-PTP.
Collapse
Affiliation(s)
- Nicolas Loncle
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| | - Monica Agromayor
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Juan Martin-Serrano
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Darren W Williams
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| |
Collapse
|
93
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
94
|
Carvalho MJA, Mirth CK. Coordinating morphology with behavior during development: an integrative approach from a fly perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
95
|
|
96
|
|
97
|
Kanamori T, Togashi K, Koizumi H, Emoto K. Dendritic Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:1-25. [DOI: 10.1016/bs.ircmb.2015.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
98
|
Schuldiner O, Yaron A. Mechanisms of developmental neurite pruning. Cell Mol Life Sci 2014; 72:101-19. [PMID: 25213356 DOI: 10.1007/s00018-014-1729-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/19/2022]
Abstract
The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system.
Collapse
Affiliation(s)
- Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, 7610001, Rehovot, Israel,
| | | |
Collapse
|
99
|
Wang C, Feng T, Wan Q, Kong Y, Yuan L. miR-124 controls Drosophila behavior and is required for neural development. Int J Dev Neurosci 2014; 38:105-12. [PMID: 25169673 DOI: 10.1016/j.ijdevneu.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-124 (miR-124) is an evolutionarily conserved, small, noncoding RNA molecule that participates in the central nervous system (CNS) developmental control of gene expression. In the current study, we found that Drosophila embryos lacking the mir-124 gene did not exhibit detectable defects in axon growth or CNS development. On the other hand, adult mutants showed severe problems in locomotion, flight, and female fertility. Furthermore, the deficits that we observed in the adult stage could be marginally rescued with elav-GAL4 driven expression of miR-124, making elav-GAL4 an excellently simulated driver to induce entopic over-expression of miR-124. Further developmental assessment in the third instar larval neuromuscular junction (NMJ) and dendritic arborization (DA) neurons was performed with miR-124 knock outs, flies over-expressing miR-124, and rescue models. Typically, the absence and over-abundance of a molecular signal exerts opposite effects on development or phenotype. However, we determined that both miR-124 knock-outs and over-expressing flies displayed reduced NMJ 6/7 bouton number and branch length. Similarly, reduced ddaE branching numbers were observed between the two mutant lines. As to ddaF, we found that branching number was not influenced by mir-124 knock out, but was statistically reduced by miR-124 over-expression. While we were not able to determine any causal relationship between behavioral defects and dysplasia of NMJs or DA neurons, there were some accompanying relationships among behavioral phenotypes, NMJ abnormalities, and ddaE/ddaF dendritic branching which were all controlled by miR-124.
Collapse
Affiliation(s)
- Chao Wang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, # 2 Sipailou Road, Nanjing 210096, China
| | - Tongbao Feng
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, # 2 Sipailou Road, Nanjing 210096, China
| | - Qian Wan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, # 2 Sipailou Road, Nanjing 210096, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Liudi Yuan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, # 2 Sipailou Road, Nanjing 210096, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
100
|
Zhang H, Wang Y, Wong J, Lim KL, Liou YC, Wang H, Yu F. Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Dev Cell 2014; 30:463-78. [DOI: 10.1016/j.devcel.2014.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|