51
|
Nguyen-Chi ME, Bryson-Richardson R, Sonntag C, Hall TE, Gibson A, Sztal T, Chua W, Schilling TF, Currie PD. Morphogenesis and cell fate determination within the adaxial cell equivalence group of the zebrafish myotome. PLoS Genet 2012; 8:e1003014. [PMID: 23133395 PMCID: PMC3486873 DOI: 10.1371/journal.pgen.1003014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 08/22/2012] [Indexed: 01/12/2023] Open
Abstract
One of the central questions of developmental biology is how cells of equivalent potential—an equivalence group—come to adopt specific cellular fates. In this study we have used a combination of live imaging, single cell lineage analyses, and perturbation of specific signaling pathways to dissect the specification of the adaxial cells of the zebrafish embryo. We show that the adaxial cells are myogenic precursors that form a cell fate equivalence group of approximately 20 cells that consequently give rise to two distinct sub-types of muscle fibers: the superficial slow muscle fibers (SSFs) and muscle pioneer cells (MPs), distinguished by specific gene expression and cell behaviors. Using a combination of live imaging, retrospective and indicative fate mapping, and genetic studies, we show that MP and SSF precursors segregate at the beginning of segmentation and that they arise from distinct regions along the anterior-posterior (AP) and dorsal-ventral (DV) axes of the adaxial cell compartment. FGF signaling restricts MP cell fate in the anterior-most adaxial cells in each somite, while BMP signaling restricts this fate to the middle of the DV axis. Thus our results reveal that the synergistic actions of HH, FGF, and BMP signaling independently create a three-dimensional (3D) signaling milieu that coordinates cell fate within the adaxial cell equivalence group. How specific genes and signals act on initially identical cells to generate the different tissues of the body remains one of the central questions of developmental genetics. Zebrafish are a useful model system to tackle this question as the optically clear embryo allows direct imaging of forming tissues, tracking individual cells in a myriad of different genetic contexts. The zebrafish myotome, the compartment of the embryo that gives rise to skeletal muscle, is subdivided into a number of specific cell types—one of which, the adaxial cells, gives rise exclusively to muscle of the “slow twitch” class. The adaxial cells give rise to two types of slow muscle cell types, muscle pioneer cells and non-muscle pioneer slow cells, distinguished by gene expression and different cellular behaviours. In this study we use lineage tracing live imaging and the manipulation of distinct genetic pathways to demonstrate that the adaxial cells form a cell fate “equivalence group” that is specified using separate signaling pathways that operating in distinct dimensions.
Collapse
Affiliation(s)
- Mai E. Nguyen-Chi
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Thomas E. Hall
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Abigail Gibson
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Tamar Sztal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Wendy Chua
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- * E-mail:
| |
Collapse
|
52
|
Reptilian myotomal myogenesis—lessons from the sand lizard Lacerta agilis L. (Reptilia, Lacertidae). ZOOLOGY 2012; 115:330-8. [DOI: 10.1016/j.zool.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/09/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
53
|
Abstract
The niche is a conserved regulator of stem cell quiescence and function. During aging, stem cell function declines. To what extent and by which means age-related changes within the niche contribute to this phenomenon are unknown. We demonstrate that the aged muscle stem cell niche, the muscle fiber, expresses FGF2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose self-renewing capacity. We show that relatively dormant aged satellite cells robustly express Sprouty1 (spry1), an inhibitor of FGF signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing spry1, results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of FGFR1 signalling or overexpression of spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.
Collapse
|
54
|
Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 2012; 241:995-1007. [PMID: 22434732 DOI: 10.1002/dvdy.23780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Although Xenopus is a key model organism in developmental biology, little is known about the myotome formation in this species. Here, we assessed the expression of myogenic regulatory factors of the Myod family (MRFs) during embryonic development and revealed distinct MRF programs. RESULTS The expression pattern of each MRF during embryonic development highlights three successive myogenic waves. We showed that a first median and lateral myogenesis initiates before dermomyotome formation: the median cell population expresses Myf5, Myod, and Mrf4, whereas the lateral one expresses Myod, moderate levels of Myogenin and Mrf4. The second wave of myoblasts arising from the dermomyotome is characterized by the full MRF program expression, with high levels of Myogenin. The third wave is revealed by Myf5 expression in the myotome and could contribute to the formation of plurinucleated fibers at larval stages. Furthermore, Myf5- or Myod-expressing anlagen are identified in craniofacial myogenesis. CONCLUSIONS The first median and lateral myogenesis and their associated MRF programs have probably disappeared in mammals. However, some aspects of Xenopus myogenesis have been conserved such as the development of somitic muscles by successive myogenic waves and the existence of Myf5-dependent and -independent lineages.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Windner SE, Bird NC, Patterson SE, Doris RA, Devoto SH. Fss/Tbx6 is required for central dermomyotome cell fate in zebrafish. Biol Open 2012; 1:806-14. [PMID: 23213474 PMCID: PMC3507223 DOI: 10.1242/bio.20121958] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
The dermomyotome is a pool of progenitor cells on the surface of the myotome. In zebrafish, dermomyotome precursors (anterior border cells, ABCs) can be first identified in the anterior portion of recently formed somites. They must be prevented from undergoing terminal differentiation during segmentation, even while mesodermal cells around them respond to signaling cues and differentiate. T-box containing transcription factors regulate many aspects of mesoderm fate including segmentation and somite patterning. The fused somites (fss) gene is the zebrafish ortholog of tbx6. We demonstrate that in addition to its requirement for segmentation, fss/tbx6 is also required for the specification of ABCs and subsequently the central dermomyotome. The absence of Tbx6-dependent central dermomyotome cells in fss/tbx6 mutants is spatially coincident with a patterning defect in the myotome. Using transgenic fish with a heat-shock inducible tbx6 gene in the fss/tbx6 mutant background, we further demonstrate that ubiquitous fss/tbx6 expression has spatially distinct effects on recovery of the dermomyotome and segment boundaries, suggesting that the mechanism of Fss/Tbx6 action is distinct with respect to dermomyotome development and segmentation. We propose that Fss/Tbx6 is required for preventing myogenic differentiation of central dermomyotome precursors before and after segmentation and that central dermomyotome cells represent a genetically and functionally distinct subpopulation within the zebrafish dermomyotome.
Collapse
Affiliation(s)
- Stefanie Elisabeth Windner
- Department of Biology, Wesleyan University , Middletown, CT 06459 , USA ; Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg , A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
56
|
Gordon LR, Gribble KD, Syrett CM, Granato M. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 2012; 139:1023-33. [PMID: 22318632 DOI: 10.1242/dev.071555] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In zebrafish, the MuSK receptor initiates neuromuscular synapse formation by restricting presynaptic growth cones and postsynaptic acetylcholine receptors (AChRs) to the center of skeletal muscle cells. Increasing evidence suggests a role for Wnts in this process, yet how muscle cells respond to Wnt signals is unclear. Here, we show that in vivo, wnt11r and wnt4a initiate MuSK translocation from muscle membranes to recycling endosomes and that this transition is crucial for AChR accumulation at future synaptic sites. Moreover, we demonstrate that components of the planar cell polarity pathway colocalize to recycling endosomes and that this localization is MuSK dependent. Knockdown of several core components disrupts MuSK translocation to endosomes, AChR localization and axonal guidance. We propose that Wnt-induced trafficking of the MuSK receptor to endosomes initiates a signaling cascade to align pre- with postsynaptic elements. Collectively, these findings suggest a general mechanism by which Wnt signals shape synaptic connectivity through localized receptor endocytosis.
Collapse
Affiliation(s)
- Laura R Gordon
- Department of Cell and Developmental Biology, University of Pennsylvania. Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
57
|
Burguière AC, Nord H, von Hofsten J. Alkali-like myosin light chain-1 (myl1) is an early marker for differentiating fast muscle cells in zebrafish. Dev Dyn 2011; 240:1856-63. [PMID: 21674687 DOI: 10.1002/dvdy.22677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During myogenesis, muscle precursors become divided into either fast- or slow-twitch fibres, which in the zebrafish occupy distinct domains in the embryo. Genes encoding sarcomeric proteins specific for fast or slow fibres are frequently used as lineage markers. In an attempt to identify and evaluate early definitive markers for cells in the fast-twitch pathway, we analysed genes encoding proteins contributing to the fast sarcomeric structures. The previously uncharacterized zebrafish alkali-like myosin light chain gene (myl1) was found to be expressed exclusively in cells in the fast-twitch pathway initiated at an early stage of fast fibre differentiation. Myl1 was expressed earlier, and in a more fibre type restricted manner, than any of the previously described and frequently used fast myosin light and heavy chain and troponin muscle markers mylz2, mylz3, tnni2, tnnt3a, fMyHC1.3. In summary, this study introduces a novel marker for early differentiating fast muscle cells.
Collapse
Affiliation(s)
- A C Burguière
- Umeå Centre for Molecular Medicine, UCMM, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
58
|
Batut J, Duboé C, Vandel L. The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS One 2011; 6:e25427. [PMID: 22016767 PMCID: PMC3189919 DOI: 10.1371/journal.pone.0025427] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/05/2011] [Indexed: 12/31/2022] Open
Abstract
In vertebrates, skeletal myogenesis involves the sequential activation of myogenic factors to lead ultimately to the differentiation into slow and fast muscle fibers. How transcriptional co-regulators such as arginine methyltransferases PRMT4/CARM1 and PRMT5 control myogenesis in vivo remains poorly understood. Loss-of-function experiments using morpholinos against PRMT4/CARM1 and PRMT5 combined with in situ hybridization, quantitative polymerase chain reaction, as well as immunohistochemistry indicate a positive, but differential, role of these enzymes during myogenesis in vivo. While PRMT5 regulates myod, myf5 and myogenin expression and thereby slow and fast fiber formation, PRMT4/CARM1 regulates myogenin expression, fast fiber formation and does not affect slow fiber formation. However, our results show that PRMT4/CARM1 is required for proper slow myosin heavy chain localization. Altogether, our results reveal a combinatorial role of PRMT4/CARM1 and PRMT5 for proper myogenesis in zebrafish.
Collapse
Affiliation(s)
- Julie Batut
- Université de Toulouse-Paul Sabatier, Centre de Biologie du Développement, Toulouse, France
| | | | | |
Collapse
|
59
|
Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sänger AM, Stoiber W. Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. ACTA ACUST UNITED AC 2011; 214:1791-801. [PMID: 21562165 DOI: 10.1242/jeb.050096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperature is an important factor influencing teleost muscle growth, including a lasting ('imprinted') influence of embryonic thermal experience throughout all further life. However, little is known about the cellular processes behind this phenomenon. The study reported here used digital morphometry and immunolabelling for Pax7, myogenin and H3P to quantitatively examine the effects of thermal history on muscle precursor cell (MPC) behaviour and muscle growth in pearlfish (Rutilus meidingeri) until the adult stage. Fish were reared at three different temperatures (8.5, 13 and 16°C) until hatching and subsequently kept under the same (ambient) thermal conditions. Cellularity data were combined with a quantitative analysis of Pax7+ MPCs including those that were mitotically active (Pax7+/H3P+) or had entered differentiation (Pax7+/myogenin+). The results demonstrate that at hatching, body lengths, fast and slow muscle cross-sectional areas and fast fibre numbers are lower in fish reared at 8.5 and 13°C than at 16°C. During the larval period, this situation changes in the 13°C-fish, so that these fish are finally the largest. The observed effects can be related to divergent cellular mechanisms at the MPC level that are initiated in the embryo during the imprinting period. Embryos of 16°C-fish have reduced MPC proliferation but increased differentiation, and thus give rise to larger hatchlings. However, their limited MPC reserves finally lead to smaller adults. By contrast, embryos of 13°C-fish and, to a lesser extent, 8.5°-fish, show enhanced MPC proliferation but reduced differentiation, thus leading to smaller hatchlings but allowing for a larger MPC pool that can be used for enhanced post-hatching growth, finally resulting in larger adults.
Collapse
Affiliation(s)
- Peter Steinbacher
- Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
60
|
Knight RD, Mebus K, d'Angelo A, Yokoya K, Heanue T, Roehl H. Ret signalling integrates a craniofacial muscle module during development. Development 2011; 138:2015-24. [PMID: 21490065 DOI: 10.1242/dev.061002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An appropriate organisation of muscles is crucial for their function, yet it is not known how functionally related muscles are coordinated with each other during development. In this study, we show that the development of a subset of functionally related head muscles in the zebrafish is regulated by Ret tyrosine kinase signalling. Three genes in the Ret pathway (gfra3, artemin2 and ret) are required specifically for the development of muscles attaching to the opercular bone (gill cover), but not other adjacent muscles. In animals lacking Ret or Gfra3 function, myogenic gene expression is reduced in forming opercular muscles, but not in non-opercular muscles derived from the same muscle anlagen. These animals have a normal skeleton with small or missing opercular muscles and tightly closed mouths. Myogenic defects correlate with a highly restricted expression of artn2, gfra3 and ret in mesenchymal cells in and around the forming opercular muscles. ret(+) cells become restricted to the forming opercular muscles and a loss of Ret signalling results in reductions of only these, but not adjacent, muscles, revealing a specific role of Ret in a subset of head muscles. We propose that Ret signalling regulates myogenesis in head muscles in a modular manner and that this is achieved by restricting Ret function to a subset of muscle precursors.
Collapse
Affiliation(s)
- Robert D Knight
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
61
|
Osborn DPS, Li K, Hinits Y, Hughes SM. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Dev Biol 2010; 350:464-75. [PMID: 21147088 DOI: 10.1016/j.ydbio.2010.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/15/2023]
Abstract
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57(Kip2)) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.
Collapse
Affiliation(s)
- Daniel P S Osborn
- King's College London, Randall Division for Cell and Molecular Biophysics, London, UK
| | | | | | | |
Collapse
|
62
|
Abstract
In amniotes, BMP signaling from lateral plate and dorsal neural tube inhibits differentiation of muscle precursors in the dermomyotome. Here, we show that BMPs are expressed adjacent to the dermomyotome during and after segmentation in zebrafish. In addition, downstream BMP pathway members are expressed within the somite during dermomyotome development. We also show that zebrafish dermomyotome is responsive to BMP throughout its development. Ectopic overexpression of Bmp2b increases expression of the muscle precursor marker pax3, and changes the time course of myoD expression. At later stages, overexpression increases the number of Pax7+ myogenic precursors, and delays muscle differentiation, as indicated by decreased numbers of MEF2+ nuclei, decreased number of multi-nucleated muscle fibers, and an increased myotome angle. In addition, we show that while BMP overexpression is sufficient to delay myogenic differentiation, inhibition of BMP does not detectably affect this process, suggesting that other factors redundantly inhibit myogenic differentiation.
Collapse
Affiliation(s)
- Sara E Patterson
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
63
|
Kok FO, Shepherd IT, Sirotkin HI. Churchill and Sip1a repress fibroblast growth factor signaling during zebrafish somitogenesis. Dev Dyn 2010; 239:548-58. [PMID: 20034103 DOI: 10.1002/dvdy.22201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell-type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild-type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity.
Collapse
Affiliation(s)
- Fatma O Kok
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | | | | |
Collapse
|
64
|
Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, Chen GD, Lee MT, Hwang PP, Kawakami K, Chang CC, Huang CJ. Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 2010; 38:4635-50. [PMID: 20378713 PMCID: PMC2919723 DOI: 10.1093/nar/gkq230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5'-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Niro C, Demignon J, Vincent S, Liu Y, Giordani J, Sgarioto N, Favier M, Guillet-Deniau I, Blais A, Maire P. Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev Biol 2010; 338:168-82. [DOI: 10.1016/j.ydbio.2009.11.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/18/2023]
|
66
|
|
67
|
Komisarczuk AZ, Kawakami K, Becker TS. Cis-regulation and chromosomal rearrangement of the fgf8 locus after the teleost/tetrapod split. Dev Biol 2009; 336:301-12. [PMID: 19782672 DOI: 10.1016/j.ydbio.2009.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/02/2009] [Accepted: 09/18/2009] [Indexed: 12/23/2022]
Abstract
The complex expression pattern of fibroblast growth factor 8 (Fgf8) and the cellular responses dependent on concentration of its mRNA in vertebrates suggest that Fgf8 should be tightly controlled at the transcriptional level. We found zebrafish conserved noncoding elements (CNEs) with pan-vertebrate as well as fish-specific orthologous sequences from across 200 kb of the zebrafish fgf8a genomic regulatory block to direct reporter expression in patterns consistent with the expression pattern of fgf8a. These included elements from inside the introns of the skin-specific slc2a15a and the ubiquitously expressed fbxw4 bystander genes. The fgf8a/fbxw4 gene pair, which has remained joined throughout three whole genome duplications in chordate evolution, is inverted in teleost genomes, but CNEs across both evolutionary breakpoints showed specific activity. While some CNEs directed highly reproducible expression patterns, others were subject to variation but showed, in a subset of transgenes, expression in the apical ectodermal ridge, the anterior boundaries of somites and the midbrain-hindbrain boundary, specific Fgf8 signaling domains, suggesting that their activity may be context specific. A human element with tetrapod-specific orthologous sequences directed reporter expression to the vasculature, possibly corresponding to a tetrapod innovation. We conclude that fgf8a transcriptional regulation employs pan-vertebrate and teleost-specific enhancers dispersed over three genes in the zebrafish genome.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
68
|
Regulation of slow and fast muscle myofibrillogenesis by Wnt/beta-catenin and myostatin signaling. PLoS One 2009; 4:e5880. [PMID: 19517013 PMCID: PMC2690692 DOI: 10.1371/journal.pone.0005880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 11/22/2022] Open
Abstract
Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/β-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/β-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The effects of Wnt/β-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF, establishing an in vivo regulation of myofibrillogenesis by Wnt/β-catenin signaling and Myostatin. Epistatic analyses suggest a possible genetic interaction between Wnt/β-catenin and Myostatin in regulation of slow and fast twitch muscle myofibrillogenesis.
Collapse
|
69
|
Hinits Y, Osborn DPS, Hughes SM. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 2009; 136:403-14. [PMID: 19141670 DOI: 10.1242/dev.028019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myogenic regulatory factors of the Myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. However, the roles of each gene in myogenesis remain unclear, owing partly to genetic linkage at the Myf5/Mrf4 locus and to rapid morphogenetic movements in the amniote somite. In mice, Myf5 is essential for the earliest epaxial myogenesis, whereas Myod is required for timely differentiation of hypaxially derived muscle. A second major subdivision of the somite is between primaxial muscle of the somite proper and abaxial somite-derived migratory muscle precursors. Here, we use a combination of mutant and morphant analysis to ablate the function of each of the four conserved MRF genes in zebrafish, an organism that has retained a more ancestral bodyplan. We show that a fundamental distinction in somite myogenesis is into medial versus lateral compartments, which correspond to neither epaxial/hypaxial nor primaxial/abaxial subdivisions. In the medial compartment, Myf5 and/or Myod drive adaxial slow fibre and medial fast fibre differentiation. Myod-driven Myogenin activity alone is sufficient for lateral fast somitic and pectoral fin fibre formation from the lateral compartment, as well as for cranial myogenesis. Myogenin activity is a significant contributor to fast fibre differentiation. Mrf4 does not contribute to early myogenesis in zebrafish. We suggest that the differential use of duplicated MRF paralogues in this novel two-component myogenic system facilitated the diversification of vertebrates.
Collapse
Affiliation(s)
- Yaniv Hinits
- Randall Division for Cell and Molecular Biophysics and MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | | | | |
Collapse
|
70
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
71
|
Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 2009; 61:721-33. [PMID: 19285469 DOI: 10.1016/j.neuron.2008.12.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/13/2008] [Accepted: 12/24/2008] [Indexed: 11/24/2022]
Abstract
Early during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChRs fail to aggregate and, as visualized by live-cell imaging, growth cones stray from their central path. Using inducible unplugged/MuSK transgenes, we show that organization of the central muscle zone is dispensable for the formation of neural synapses, but essential for AChR prepattern and motor growth cone guidance. Finally, we show that blocking noncanonical dishevelled signaling in muscle fibers disrupts AChR prepatterning and growth cone guidance. We propose that Wnt ligands activate unplugged/MuSK signaling in muscle fibers to restrict growth cone guidance and AChR prepatterns to the muscle center through a mechanism reminiscent of the planar cell polarity pathway.
Collapse
|
72
|
Schnapp E, Pistocchi AS, Karampetsou E, Foglia E, Lamia CL, Cotelli F, Cossu G. Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 double-morphant zebrafish embryo. J Cell Sci 2009; 122:481-8. [DOI: 10.1242/jcs.038356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin – Myod, Myf5 and Mrf4 – are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin-remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish.
Collapse
Affiliation(s)
- Esther Schnapp
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy
| | | | | | - Efrem Foglia
- Department of Biology, University of Milan, 26 via Celoria, 20133 Milan, Italy
| | - Carla Lora Lamia
- Department of Biology, University of Milan, 26 via Celoria, 20133 Milan, Italy
| | - Franco Cotelli
- Department of Biology, University of Milan, 26 via Celoria, 20133 Milan, Italy
| | - Giulio Cossu
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy
- Department of Biology, University of Milan, 26 via Celoria, 20133 Milan, Italy
| |
Collapse
|
73
|
Baxendale S, Chen CK, Tang H, Davison C, Hateren LV, Croning MD, Humphray SJ, Hubbard SJ, Ingham PW. Expression screening and annotation of a zebrafish myoblast cDNA library. Gene Expr Patterns 2009; 9:73-82. [DOI: 10.1016/j.gep.2008.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/13/2008] [Accepted: 10/19/2008] [Indexed: 01/29/2023]
|
74
|
Rescan PY. New insights into skeletal muscle development and growth in teleost fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:541-8. [PMID: 18666123 DOI: 10.1002/jez.b.21230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent research has significantly broadened our understanding of how the teleost somite is patterned to achieve embryonic and postembryonic myogenesis. Medial (adaxial) cells and posterior cells of the early epithelial somite generate embryonic superficial slow and deep fast muscle fibers, respectively, whereas anterior somitic cells move laterally to form an external cell layer of undifferentiated Pax7-positive myogenic precursors surrounding the embryonic myotome. In late embryo and in larvae, some of the cells contained in the external cell layer incorporate into the myotome and differentiate into new muscle fibers, thus contributing to medio-lateral expansion of the myotome. This supports the suggestion that the teleost external cell layer is homologous to the amniote dermomyotome. Some of the signalling molecules that promote lateral movement or regulate the myogenic differentiation of external cell precursors have been identified and include stromal cell-derived factor 1 (Sdf1), hedgehog proteins, and fibroblast growth factor 8 (Fgf8). Recent studies have shed light on gene activations that underlie the differentiation and maturation of slow and fast muscle fibers, pointing out that both adaxially derived embryonic slow fibers and slow fibers formed during the myotome expansion of larvae initially and transiently bear features of the fast fiber phenotype.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- INRA (National Institute for Agricultural Research), Joint Research Unit for Fish Physiology, Biodiversity and Environment, Rennes, France.
| |
Collapse
|
75
|
Liew HP, Choksi SP, Wong KN, Roy S. Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1. Dev Biol 2008; 324:226-35. [DOI: 10.1016/j.ydbio.2008.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/01/2008] [Accepted: 09/07/2008] [Indexed: 12/21/2022]
|
76
|
Bessarab DA, Chong SW, Srinivas BP, Korzh V. Six1a is required for the onset of fast muscle differentiation in zebrafish. Dev Biol 2008; 323:216-28. [DOI: 10.1016/j.ydbio.2008.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 01/19/2023]
|
77
|
Knight RD, Mebus K, Roehl HH. Mandibular arch muscle identity is regulated by a conserved molecular process during vertebrate development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:355-69. [PMID: 18338789 DOI: 10.1002/jez.b.21215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vertebrate head muscles exhibit a highly conserved pattern of innervation and skeletal connectivity and yet it is unclear whether the molecular basis of their development is likewise conserved. Using the highly conserved expression of Engrailed 2 (En2) as a marker of identity in the dorsal mandibular muscles of zebrafish, we have investigated the molecular signals and tissues required for patterning these muscles. We show that muscle En2 expression is not dependent on signals from the adjacent neural tube, pharyngeal endoderm or axial mesoderm and that early identity of head muscles does not require bone morphogenetic pathway, Notch or Hedgehog (Hh) signalling. However, constrictor dorsalis En2 expression is completely lost after a loss of fibroblast growth factor (Fgf) signalling and we show that is true throughout head muscle development. These results suggest that head muscle identity is dependent on Fgf signalling. Data from experiments performed in chick suggest a similar regulation of En2 genes by Fgf signalling revealing a conserved mechanism for specifying head muscle identity. We present evidence that another key gene important in the development of mouse head muscles, Tbx1, is also critical for specification of mandibular arch muscle identity and that this is independent of Fgf signalling. These data imply that dorsal mandibular arch muscle identity in fish, chick and mouse is specified by a highly conserved molecular process despite differing functions of these muscles in different lineages.
Collapse
Affiliation(s)
- Robert D Knight
- MRC Centre for Developmental Neurobiology, Kings College London, London, UK.
| | | | | |
Collapse
|
78
|
Abstract
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.
Collapse
Affiliation(s)
- Robert J Bryson-Richardson
- Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
79
|
Dumont E, Rallière C, Rescan PY. Identification of novel genes including Dermo-1, a marker of dermal differentiation, expressed in trout somitic external cells. ACTA ACUST UNITED AC 2008; 211:1163-8. [PMID: 18344491 DOI: 10.1242/jeb.015461] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The external cell layer that surrounds the fish primary myotome provides the myogenic precursors necessary for muscle growth, suggesting that this epithelium is equivalent to the amniote dermomyotome. In this study we report the identification of a trout orthologue of the dermal marker Dermo-1, and show that trout somitic external cells, which are all potentially myogenic as indicated by the transcription of Pax7 gene, express Dermo-1. This finding and our previous observation that external cells express collagen I show that these cells have dermis-related characteristics in addition to exhibiting myogenic features. In an effort to identify novel genes expressed in the external cell epithelium we performed an in situ hybridisation screen and found both collectin sub-family member 12, a transmembrane C-type lectin, and Seraf, an EGF-like repeat autocrine factor. In situ hybridisation of staged trout embryos revealed that the expression of Dermo-1, collectin sub-family member 12 and Seraf within the external cell layer epithelium was preceded by a complex temporal and spatial expression pattern in the early somite.
Collapse
Affiliation(s)
- Emmanuelle Dumont
- INRA (National Institute for Agricultural Research), Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042, Rennes, France
| | | | | |
Collapse
|
80
|
Verkade H, Heath JK. Wnt signaling mediates diverse developmental processes in zebrafish. Methods Mol Biol 2008; 469:225-51. [PMID: 19109714 DOI: 10.1007/978-1-60327-469-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.
Collapse
Affiliation(s)
- Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
81
|
Abstract
Recent work in teleosts has renewed interest in the dermomyotome, which was initially characterized in the late 19th century. We review the evidence for the teleost dermomyotome, comparing it to the more well-characterized amniote dermomyotome. We discuss primary myotome morphogenesis, the relationship between the primary myotome and the dermomyotome, the differentiation of axial muscle, appendicular muscle, and dermis from the dermomyotome, and the signaling molecules that regulate myotome growth from myogenic precursors within the dermomyotome. The recognition of a dermomyotome in teleosts provides a new perspective on teleost muscle growth, as well as a fruitful approach to understanding the vertebrate dermomyotome.
Collapse
Affiliation(s)
- Frank Stellabotte
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
82
|
Ochi H, Hans S, Westerfield M. Smarcd3 regulates the timing of zebrafish myogenesis onset. J Biol Chem 2007; 283:3529-3536. [PMID: 18056260 DOI: 10.1074/jbc.m708594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cascade of signaling events triggers myogenesis in vertebrates. Although studies of zebrafish indicate that fibroblast growth factor (Fgf), Hedgehog (Hh), and the T-box transcription factors, No tail (Ntl) and T-box gene 16 (Tbx16), regulate myogenesis, the hierarchy of these factors has not been determined. Recently, another transcriptional cofactor, Smarcd3, a subunit of the SWI/SNF chromatin-remodeling complex, has been shown to be required for heart muscle formation in mouse. In zebrafish, fgf8 and ntl expression commences during blastula stages, whereas myogenesis, as indicated by myod expression, does not begin until much later during mid-gastrula stages. smarcd3b expression, on the other hand, becomes enriched in the marginal zone just prior to the beginning of myod expression. Overexpression of smarcd3 shifts the onset of myod and myf5 expression earlier, and myod and myf5 expression in adaxial cells, the earliest muscle precursors, requires Smarcd3, indicating that Smarcd3 is the limiting factor that regulates the onset of myogenesis. Smarcd3 physically interacts with Ntl, and Smarcd3 overexpression fails to rescue myod expression in ntl mutants, demonstrating that function of Smarcd3 depends on Ntl activity. We propose a model in which cooperative activity of Fgf, Ntl, and Smarcd3 is required for the onset of myogenesis, with Smarcd3b serving as the primary regulator of the timing of myogenesis onset.
Collapse
Affiliation(s)
- Haruki Ochi
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254
| | - Stefan Hans
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254.
| |
Collapse
|
83
|
Murai K, Vernon AE, Philpott A, Jones P. Hes6 is required for MyoD induction during gastrulation. Dev Biol 2007; 312:61-76. [PMID: 17950722 DOI: 10.1016/j.ydbio.2007.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/22/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
The specification of mesoderm into distinct compartments sharing the same lineage restricted fates is a crucial step occurring during gastrulation, and is regulated by morphogenic signals such as the FGF/MAPK and activin pathways. One target of these pathways is the transcription factor XmyoD, which in early gastrulation is expressed in the lateral and ventral mesoderm. Expression of the hairy/enhancer of split transcription factor hes6, is also restricted to lateral and ventral mesoderm in gastrula stage Xenopus embryos, leading us to investigate whether it has a role in XmyoD regulation. In vivo, Xhes6 is required for FGF-mediated induction of XmyoD expression but not for induction of early mesoderm. The WRPW domain of Xhes6, which binds Groucho family transcriptional co-regulators, is essential for the XmyoD-inducing activity of Xhes6. Two Groucho proteins, Xgrg2 and Xgrg4, are expressed in lateral and ventral mesoderm, and inhibit expression of XmyoD. Xhes6 binds both Xgrg2 and Xgrg4 and relieves their inhibition of XmyoD expression. We also find that lowering Xhes6 expression levels blocks normal myogenic differentiation at tail bud stage. We conclude that Xhes6 is essential for XmyoD induction and acts by relieving Groucho-mediated repression of gene expression.
Collapse
Affiliation(s)
- Kasumi Murai
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke's Hospital, Cambridge CB2 0XZ, UK
| | | | | | | |
Collapse
|
84
|
Mann CJ, Osborn DP, Hughes SM. Vestigial-like-2b (VITO-1b) and Tead-3a (Tef-5a) expression in zebrafish skeletal muscle, brain and notochord. Gene Expr Patterns 2007; 7:827-36. [PMID: 17916448 PMCID: PMC3360971 DOI: 10.1016/j.modgep.2007.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/03/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
The vestigial gene has been shown to control skeletal muscle formation in Drosophila and the related Vestigial-like 2 (Vgl-2) protein plays a similar role in mice. Vgl-family proteins are thought to regulate tissue-specific gene expression by binding to members of the broadly expressed Scalloped/Tef/TEAD transcription factor family. Zebrafish have at least four Vgl genes, including two Vgl-2s, and at least three TEAD genes, including two Tead3s. We describe the cloning and expression of one member from each family in the zebrafish. A novel gene, vgl-2b, with closest homology to mouse and human vgl-2, is expressed transiently in nascent notochord and in muscle fibres as they undergo terminal differentiation during somitogenesis. Muscle cells also express a TEAD-3 homologue, a possible partner of Vgl-2b, during myoblast differentiation and early fibre assembly. Tead-3a is also expressed in rhombomeres, eye and epiphysis regions.
Collapse
Affiliation(s)
- Christopher J. Mann
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Daniel P.S. Osborn
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Simon M. Hughes
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| |
Collapse
|
85
|
Daggett DF, Domingo CR, Currie PD, Amacher SL. Control of morphogenetic cell movements in the early zebrafish myotome. Dev Biol 2007; 309:169-79. [PMID: 17689522 PMCID: PMC2723113 DOI: 10.1016/j.ydbio.2007.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 12/11/2022]
Abstract
As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.
Collapse
Affiliation(s)
- David F. Daggett
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720-3200
| | - Carmen R. Domingo
- Department of Biology, San Francisco State University, San Francisco, California 94132
| | - Peter D. Currie
- Developmental Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst 2010, New South Wales, Australia
| | - Sharon L. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720-3200
| |
Collapse
|
86
|
Maves L, Waskiewicz AJ, Paul B, Cao Y, Tyler A, Moens CB, Tapscott SJ. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development 2007; 134:3371-82. [PMID: 17699609 DOI: 10.1242/dev.003905] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Myod directly regulates gene expression throughout the program of skeletal muscle differentiation. It is not known how a Myod-driven myogenic program is modulated to achieve muscle fiber-type-specific gene expression. Pbx homeodomain proteins mark promoters of a subset of Myod target genes, including myogenin (Myog); thus, Pbx proteins might modulate the program of myogenesis driven by Myod. By inhibiting Pbx function in zebrafish embryos, we show that Pbx proteins are required in order for Myod to induce the expression of a subset of muscle genes in the somites. In the absence of Pbx function, expression of myog and of fast-muscle genes is inhibited, whereas slow-muscle gene expression appears normal. By knocking down Pbx or Myod function in combination with another bHLH myogenic factor, Myf5, we show that Pbx is required for Myod to regulate fast-muscle, but not slow-muscle, development. Furthermore, we show that Sonic hedgehog requires Myod in order to induce both fast- and slow-muscle markers but requires Pbx only to induce fast-muscle markers. Our results reveal that Pbx proteins modulate Myod activity to drive fast-muscle gene expression, thus showing that homeodomain proteins can direct bHLH proteins to establish a specific cell-type identity.
Collapse
Affiliation(s)
- Lisa Maves
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Macqueen DJ, Robb D, Johnston IA. Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salarL.). J Exp Biol 2007; 210:2781-94. [PMID: 17690225 DOI: 10.1242/jeb.006981] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARYPotential molecular mechanisms regulating developmental plasticity to temperature were investigated in Atlantic salmon embryos (Salmo salarL.). Six orthologues of the four myogenic regulatory factors (MRFs:individually: smyf5, smyoD1a/1b/1c, smyoG and sMRF4), the master transcription factors regulating vertebrate myogenesis, were characterised at the mRNA/genomic level. In situ hybridisation was performed with specific cRNA probes to determine the expression patterns of each gene during embryonic myogenesis. To place the MRF data in the context of known muscle fibre differentiation events, the expression of slow myosin light chain-1 and Pax7 were also investigated. Adaxial myoblasts expressed smyoD1a prior to and during somitogenesis followed by smyoD1c (20-somite stage, ss),and sMRF4 (25–30 ss), before spreading laterally across the myotome, followed closely by the adaxial cells. Smyf5 was detected prior to somitogenesis, but not in the adaxial cells in contrast to other teleosts studied. The expression domains of smyf5, smyoD1band smyoG were not confined to the s-smlc1 expression field,indicating a role in fast muscle myogenesis. From the end of segmentation,each MRF was expressed to a greater or lesser extent in zones of new muscle fibre production, the precursor cells for which probably originated from the Pax7 expressing cell layer external to the single layer of s-smlc1+ fibres. SmyoD1a and smyoGshowed similar expression patterns with respect to somite stage at three different temperatures investigated (2°C, 5°C and 8°C) in spite of different rates of somite formation (one somite added each 5 h, 8 h and 15 h at 8°C, 5°C and 2°C, respectively). In contrast, the expression of smyf5, sMRF4 and s-smlc1 was retarded with respect to somite stage at 2°C compared to 8°C, potentially resulting in heterochronies in downstream pathways influencing later muscle phenotype.
Collapse
Affiliation(s)
- Daniel J Macqueen
- Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | | | | |
Collapse
|
88
|
Hammond CL, Simbi BH, Stickland NC. In ovo temperature manipulation influences embryonic motility and growth of limb tissues in the chick (Gallus gallus). J Exp Biol 2007; 210:2667-75. [PMID: 17644681 DOI: 10.1242/jeb.005751] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chick embryo, developing in the egg, is an ideal system in which to investigate the effects of incubation environment on the development of the embryo. We show that raising the temperature of the eggs by just one degree, from 37.5 degrees C to 38.5 degrees C, during embryonic days (ED) 4-7 causes profound changes in development. We demonstrate that embryonic movement is significantly increased in the chicks raised at 38.5 degrees C both during the period in which they are at the higher temperature but also 4 days after their return to the control temperature. Concomitant with this increase in embryonic activity, the embryos raised at higher temperature grow to significantly heavier weights and exhibit significantly longer leg bones (tibia and tarsus) than the controls from ED12 onwards, although mineralization occurs normally. Additionally, the number of leg myonuclei is increased from ED12 in the embryos raised at the higher temperature. This is likely to promote greater leg muscle growth later in development, which may provide postural stability to the chicks posthatch. These changes are similar to those seen when drugs are injected to increase embryonic activity. We therefore believe that the increased embryonic activity provides a mechanism that can explain the increased growth of leg muscle and bone seen when the eggs are incubated for 3 days at higher temperature.
Collapse
Affiliation(s)
- Christina L Hammond
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | | | | |
Collapse
|
89
|
Hinits Y, Osborn DPS, Carvajal JJ, Rigby PWJ, Hughes SM. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns 2007; 7:738-45. [PMID: 17638597 PMCID: PMC3001336 DOI: 10.1016/j.modgep.2007.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/05/2007] [Accepted: 06/09/2007] [Indexed: 12/25/2022]
Abstract
Mrf4 (Myf6) is a member of the basic helix-loop-helix (bHLH) myogenic regulatory transcription factor (MRF) family, which also contains Myod, Myf5 and myogenin. Mrf4 is implicated in commitment of amniote cells to skeletal myogenesis and is also abundantly expressed in many adult muscle fibres. The specific role of Mrf4 is unclear both because mrf4 null mice are viable, suggesting redundancy with other MRFs, and because of genetic interactions at the complex mrf4/myf5 locus. We report the cloning and expression of an mrf4 gene from zebrafish, Danio rerio, which shows conservation of linkage to myf5. Mrf4 mRNA accumulates in a subset of terminally differentiated muscle fibres in parallel with myosin protein in the trunk and fin. Although most, possibly all, trunk muscle expresses mrf4, the level of mRNA is dynamically regulated. No expression is detected in muscle precursor cell populations prior to myosin accumulation. Moreover, mrf4 expression is not detected in head muscles, at least at early stages. As fish mature, mrf4 expression is pronounced in the region of slow muscle fibres.
Collapse
Affiliation(s)
- Yaniv Hinits
- MRC Centre for Developmental Neurobiology and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Daniel P. S. Osborn
- MRC Centre for Developmental Neurobiology and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | | | - Simon M. Hughes
- MRC Centre for Developmental Neurobiology and Randall Division of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
| |
Collapse
|
90
|
Dumont E, Rallière C, Tabet KC, Rescan PY. A NLRR-1 gene is expressed in migrating slow muscle cells of the trout (Oncorhynchus mykiss) embryo. Dev Genes Evol 2007; 217:469-75. [PMID: 17394015 DOI: 10.1007/s00427-007-0148-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
NLRR-l (neuronal leucine-rich repeat-l) is a transmembrane protein that functions as a cell adhesion molecule regulating morphogenesis. A previous study in the mouse reported that the somitic expression of NLRR-1 is restricted to the dorsal lip of the dermomyotome that gives rise to the epaxial muscle. In this study, we report the expression of a NLRR-1 gene in the trout-developing somite. Whole mount in situ hybridization showed that NLRR-l transcript accumulated in a rostro-caudal wave in the adaxial slow muscle cells, which are initially found deep in the somite, immediately adjacent to the notochord. No labelling was observed in the segmental plate from which somites form. As somites mature along an anteroposterior axis, the NLRR-l-positive adaxial cells exhibited an apparent migration radially to the lateral surface of the myotome where they ultimately form the peripheral slow muscle fibres. These observations show that a NLRR-1 gene is expressed in a subpopulation of myogenic cells of the trout embryo, but the anatomical location and the fate of this subpopulation are distinct from those of the NLRR-1 positive myogenic cells in amniotes. NLRR-l was also transcribed in distinct areas of the developing nervous system including the telencephalon, the optic tectum, the cerebellum, the neural tube, the retina, and the branchial arches.
Collapse
Affiliation(s)
- Emmanuelle Dumont
- National Institute for Agricultural Research, The Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | |
Collapse
|
91
|
Stellabotte F, Dobbs-McAuliffe B, Fernández DA, Feng X, Devoto SH. Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 2007; 134:1253-7. [PMID: 17314134 DOI: 10.1242/dev.000067] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myogenic precursors responsible for muscle growth in amniotes develop from the dermomyotome, an epithelium at the external surface of the somite. In teleosts, the myogenic precursors responsible for growth have not been identified. We have used single cell lineage labeling in zebrafish to show that anterior border cells of epithelial somites are myogenic precursors responsible for zebrafish myotome growth. These cells move to the external surface of the embryonic myotome and express the transcription factor Pax7. Some remain on the external surface and some incorporate into the fast myotome, apparently by moving between differentiated slow fibres. The posterior cells of the somite, by contrast, elongate into medial muscle fibres. The surprising movement of the anterior somite cells to the external somite surface transforms a segmentally repeated arrangement of myogenic precursors into a medio-lateral arrangement similar to that seen in amniotes.
Collapse
Affiliation(s)
- Frank Stellabotte
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | | | |
Collapse
|
92
|
Fernandes JMO, Kinghorn JR, Johnston IA. Differential regulation of multiple alternatively spliced transcripts of MyoD. Gene 2007; 391:178-85. [PMID: 17292566 DOI: 10.1016/j.gene.2006.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/11/2006] [Accepted: 12/13/2006] [Indexed: 01/25/2023]
Abstract
Splice variants of the basic helix-loop-helix myoblast determination factor (myoD) have not been previously found in vertebrates. Here we report the identification and characterization of three alternative transcripts of a myoD paralogue from the tiger pufferfish (Takifugu rubripes). The T. rubripes myoD1 gene (TmyoD1) has 3 exons and 2 introns and it is present on scaffold 104, in a region of conserved synteny with zebrafish. The isoform TMyoD1-alpha is a putative protein of 281 residues that contains the basic, helix-loop-helix and helix III domains and shares 61%, 56%, 51%, 49% and 56% overall identity with zebrafish, Xenopus, mouse, human and chicken MyoD1, respectively. TMyoD1-beta arises from an alternative 3' splice site and differs from TMyoD1-alpha by a 26-residue insertion adjacent to helix III, which is one of the functional domains required for chromatin remodelling. The third alternative transcript, TmyoD1-gamma, retains intron I and has two premature termination codons far from the 3'-most exon-exon junction. TmyoD1-gamma is therefore likely to be degraded by nonsense-mediated decay, an important widespread post-transcriptional mechanism that regulates transcript levels. Analysis of gene expression by qPCR revealed that TmyoD1-alpha was the most abundant transcript in fast and slow myotomal muscle. TmyoD1-alpha expression was 2-fold higher in fast muscle of juvenile fish that were actively producing new myotubes compared to adult stages that had stopped recruiting fast muscle fibres. A similar expression pattern was observed for TmyoD1-alpha in slow muscle but the differences were not significant. Transcript levels of TmyoD1-gamma only varied significantly in fast muscle and were 5-fold higher in adult compared to juvenile stages. Significant differences in expression of TmyoD1 splice variants were also observed during embryonic development. The differential expression of three alternative transcripts of myoD1 in developing and adult myotomal muscle of T. rubripes supports the hypothesis that diversity generated by alternative splicing may be of functional significance in muscle development in this species.
Collapse
|
93
|
Svetic V, Hollway GE, Elworthy S, Chipperfield TR, Davison C, Adams RJ, Eisen JS, Ingham PW, Currie PD, Kelsh RN. Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants. Development 2007; 134:1011-22. [PMID: 17267445 DOI: 10.1242/dev.02789] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pigment pattern formation in zebrafish presents a tractable model system for studying the morphogenesis of neural crest derivatives. Embryos mutant for choker manifest a unique pigment pattern phenotype that combines a loss of lateral stripe melanophores with an ectopic melanophore ;collar' at the head-trunk border. We find that defects in neural crest migration are largely restricted to the lateral migration pathway, affecting both xanthophores (lost) and melanophores (gained) in choker mutants. Double mutant and timelapse analyses demonstrate that these defects are likely to be driven independently, the collar being formed by invasion of melanophores from the dorsal and ventral stripes. Using tissue transplantation, we show that melanophore patterning depends upon the underlying somitic cells, the myotomal derivatives of which--both slow--and fast-twitch muscle fibres--are themselves significantly disorganised in the region of the ectopic collar. In addition, we uncover an aberrant pattern of expression of the gene encoding the chemokine Sdf1a in choker mutant homozygotes that correlates with each aspect of the melanophore pattern defect. Using morpholino knock-down and ectopic expression experiments, we provide evidence to suggest that Sdf1a drives melanophore invasion in the choker mutant collar and normally plays an essential role in patterning the lateral stripe. We thus identify Sdf1 as a key molecule in pigment pattern formation, adding to the growing inventory of its roles in embryonic development.
Collapse
Affiliation(s)
- Valentina Svetic
- Centre for Regenerative Medicine and Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, Hughes SM. Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 2007; 302:504-21. [PMID: 17094960 PMCID: PMC3960072 DOI: 10.1016/j.ydbio.2006.10.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/26/2006] [Accepted: 10/05/2006] [Indexed: 11/22/2022]
Abstract
Pax3/7 paired homeodomain transcription factors are important markers of muscle stem cells. Pax3 is required upstream of myod for lateral dermomyotomal cells in the amniote somite to form particular muscle cells. Later Pax3/7-dependent cells generate satellite cells and most body muscle. Here we analyse early myogenesis from, and regulation of, a population of Pax3-expressing dermomyotome-like cells in the zebrafish. Zebrafish pax3 is widely expressed in the lateral somite and, along with pax7, becomes restricted anteriorly and then to the external cells on the lateral somite surface. Midline-derived Hedgehog signals appear to act directly on lateral somite cells to repress Pax3/7. Both Hedgehog and Fgf8, signals that induce muscle formation within the somite, suppress Pax3/7 and promote expression of myogenic regulatory factors (MRFs) myf5 and myod in specific muscle precursor cell populations. Loss of MRF function leads to loss of myogenesis by specific populations of muscle fibres, with parallel up-regulation of Pax3/7. Myod is required for lateral fast muscle differentiation from pax3-expressing cells. In contrast, either Myf5 or Myod is sufficient to promote slow muscle formation from adaxial cells. Thus, myogenic signals act to drive somite cells to a myogenic fate through up-regulation of distinct combinations of MRFs. Our data show that the relationship between Pax3/7 genes and myogenesis is evolutionarily ancient, but that changes in the MRF targets for particular signals contribute to myogenic differences between species.
Collapse
Affiliation(s)
| | - Yaniv Hinits
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1UL, UK
| | - Daniel P.S. Osborn
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1UL, UK
| | - James E.N. Minchin
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1UL, UK
| | | | - Simon M. Hughes
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1UL, UK
| |
Collapse
|
95
|
Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, Currie PD. Whole-Somite Rotation Generates Muscle Progenitor Cell Compartments in the Developing Zebrafish Embryo. Dev Cell 2007; 12:207-19. [PMID: 17276339 DOI: 10.1016/j.devcel.2007.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/24/2006] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Somites are transient, mesodermally derived structures that give rise to a number of different cell types within the vertebrate embryo. To achieve this, somitic cells are partitioned into lineage-restricted domains, whose fates are determined by signals secreted from adjacent tissues. While the molecular nature of many of the inductive signals that trigger formation of different cell fates within the nascent somite has been identified, less is known about the processes that coordinate the formation of the subsomitic compartments from which these cells arise. Utilizing a combination of vital dye-staining and lineage-tracking techniques, we describe a previously uncharacterized, lineage-restricted compartment of the zebrafish somite that generates muscle progenitor cells for the growth of appendicular, hypaxial, and axial muscles during development. We also show that formation of this compartment occurs via whole-somite rotation, a process that requires the action of the Sdf family of secreted cytokines.
Collapse
Affiliation(s)
- Georgina E Hollway
- The Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
96
|
Guyon JR, Steffen LS, Howell MH, Pusack TJ, Lawrence C, Kunkel LM. Modeling human muscle disease in zebrafish. Biochim Biophys Acta Mol Basis Dis 2007; 1772:205-15. [PMID: 16934958 DOI: 10.1016/j.bbadis.2006.07.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/01/2006] [Accepted: 07/05/2006] [Indexed: 01/28/2023]
Abstract
Zebrafish reproduce in large quantities, grow rapidly, and are transparent early in development. For these reasons, zebrafish have been used extensively to model vertebrate development and disease. Like mammals, zebrafish express dystrophin and many of its associated proteins early in development and these proteins have been shown to be vital for zebrafish muscle stability. In dystrophin-null zebrafish, muscle degeneration becomes apparent as early as 3 days post-fertilization (dpf) making the zebrafish an excellent organism for large-scale screens to identify other genes involved in the disease process or drugs capable of correcting the disease phenotype. Being transparent, developing zebrafish are also an ideal experimental model for monitoring the fate of labeled transplanted cells. Although zebrafish dystrophy models are not meant to replace existing mammalian models of disease, experiments requiring large numbers of animals may be best performed in zebrafish. Results garnered from using this model could lead to a better understanding of the pathogenesis of the muscular dystrophies and the development of future therapies.
Collapse
Affiliation(s)
- Jeffrey R Guyon
- Program in Genomics and Howard Hughes Medical Institute at Children's Hospital Boston, Enders Bldg, Rm 570, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Locomotion mediated by skeletal muscle provides a basis for the behavioral repertoire of most animals. Embryological and genetic studies of mouse, bird, fish and frog embryos are providing insights into the functions of the myogenic regulatory factors (MRFs) and the signaling molecules that regulate activity of MRFs. Nevertheless, our understanding of muscle development remains somewhat limited. Fundamental goals are to elucidate how mesodermal cells are induced during gastrulation to form muscle precursor cells and how muscle precursor cells acquire specific cell fates, such as slow and fast muscle cells. In this review, we focus on studies of zebrafish muscle development that have advanced our understanding of the molecular genetics of muscle cell induction and specification.
Collapse
Affiliation(s)
- Haruki Ochi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
98
|
Steinbacher P, Haslett JR, Six M, Gollmann HP, Sänger AM, Stoiber W. Phases of myogenic cell activation and possible role of dermomyotome cells in teleost muscle formation. Dev Dyn 2007; 235:3132-43. [PMID: 16960856 DOI: 10.1002/dvdy.20950] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Present knowledge indicates that fibre recruitment (hyperplasia) in developing teleost fish occurs in three distinct phases. However, the origin and relationship of the myogenic precursors activated during the different phases remains unclear. Here, we address this issue using molecular techniques on embryos and larvae of pearlfish, a large cyprinid species. Results provide comprehensive molecular characterisation of cell recruitment over the three phases of myogenesis, identifying muscle types as they arise. Specifically, we show that the myogenic cells arising during 2nd phase myogenesis are clearly different from the myogenic cells arising during the 3rd phase and that the dermomyotome is a major source of myogenic cells driving 2nd phase hyperplasia. These findings are discussed in relation to their implications for the generality of vertebrate developmental patterns.
Collapse
Affiliation(s)
- P Steinbacher
- Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
99
|
Multiple upstream modules regulate zebrafish myf5 expression. BMC DEVELOPMENTAL BIOLOGY 2007; 7:1. [PMID: 17199897 PMCID: PMC1769357 DOI: 10.1186/1471-213x-7-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/03/2007] [Indexed: 11/27/2022]
Abstract
Background Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP) reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1) the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2) the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3) the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4) the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5) the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion We suggest that the cell lineage-specific expression of myf5 is delicately orchestrated by multiple modules within the distal upstream region. This study provides an insight to understand the molecular control of myf5 and myogenesis in the zebrafish.
Collapse
|
100
|
Feng X, Adiarte EG, Devoto SH. Hedgehog acts directly on the zebrafish dermomyotome to promote myogenic differentiation. Dev Biol 2006; 300:736-46. [PMID: 17046741 DOI: 10.1016/j.ydbio.2006.08.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 01/03/2023]
Abstract
Vertebrate myogenesis is regulated by signaling proteins secreted from surrounding tissues. One of the most important, Sonic hedgehog, has been proposed to regulate myogenic precursor cell survival, proliferation, and differentiation in a variety of vertebrates. In zebrafish, Hedgehog signaling is both necessary and sufficient for the development of embryonic slow muscle fibers-the earliest differentiating muscle fibers. Here we investigated the function of Hedgehog signaling in another zebrafish myogenic lineage, a dermomyotomal population of cells defined by somitic pax3/7 expression. We found that Hedgehog negatively regulates the number of myogenic precursors expressing pax3/7. Hh also positively regulates the growth of embryonic fast muscle. Unlike Hedgehog's function in regulating the elongation of fast muscle fibers, this regulation is not mediated by embryonic slow muscle fibers. Instead, it is a direct Hedgehog response, cell autonomous to myogenic precursors. The regulation of myogenic precursors and their differentiation into fast fibers have a different critical time period for Hh signaling, and different requirements for specific gli gene family members of Hh activated transcription factors from the earlier promotion of embryonic slow muscle fiber differentiation. We propose that Hedgehog signaling acts at multiple times on different lineages, through different downstream pathways, to promote myogenic differentiation.
Collapse
Affiliation(s)
- Xuesong Feng
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|