51
|
Decker RS, Koyama E, Enomoto-Iwamoto M, Maye P, Rowe D, Zhu S, Schultz PG, Pacifici M. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol 2014; 395:255-67. [PMID: 25238962 PMCID: PMC4253021 DOI: 10.1016/j.ydbio.2014.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFβ superfamily members, particularly TFGβ1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFβ1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFβ1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFβ and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFβ signaling, working in addition to and/or in concert with the filamin A/CBFβ/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.
Collapse
Affiliation(s)
- Rebekah S Decker
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Peter Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - David Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
52
|
Afzal M, Malik S. Longitudinal deficiency of upper limb: similar case presentation of two subjects with unilateral ulnar hemimelia, carpal and metacarpal deficiency, and severe oligodactyly. ASIAN BIOMED 2014; 8:569-575. [DOI: 10.5372/1905-7415.0804.329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Abstract
Background: Longitudinal deficiency of upper limbs with oligodactyly is a very rare congenital malformation. It manifests itself as preaxial or postaxial hypoplasia/aplasia of long bones accompanied by reduction of palm and phalanges.
Objective: To report two cases with essentially similar phenotypic presentation characterized by unilateral mesomelic shortening of limb, ulnar hypoplasia, and severe deficiency of skeletal elements of hand that were found in unrelated individuals.
Methods: Review of clinical and family history, phenotypic examination, physical and radiological investigations, and literature review.
Results: In both individuals, the right arm was short, the size of the middle arm and hand being dramatically reduced in size, and the hand comprising only two functional digits. Roentgenograms revealed hemimelia/ dysmelia of the ulna, hypoplasia of radius, dysplastic distal radial head, and several missing carpals. Only two phalangeal rays were witnessed in the hand. Radiographic measurements showed a normal contralateral arm and lower limbs, and no other associated symptoms. These phenotypes were classified as type I and type D according to the schemes proposed by Swanson et al., and Ogino and Kato, respectively. Both individuals were the product of third degree consanguineous unions (F = 0.0625).
Conclusion: Consistent phenotypic pattern of longitudinal limb anomalies evident in two independent subjects suggest a common underlying genetic etiology. There is currently no known genetic factor to allow molecular testing and risk estimation for family members. Isolated limb anomalies may provide important clues to understand pathomorphogenetic mechanisms that lead to the disruption of normal limb development.
Collapse
Affiliation(s)
- Muhammad Afzal
- Human Genetics Program, Department of Animal Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sajid Malik
- Malik, Human Genetics Program, Department of Animal Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
53
|
Keyte AL, Smith KK. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution. Semin Cell Dev Biol 2014; 34:99-107. [PMID: 24994599 DOI: 10.1016/j.semcdb.2014.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/14/2014] [Accepted: 06/23/2014] [Indexed: 01/20/2023]
Abstract
Heterochrony, or a change in developmental timing, is an important mechanism of evolutionary change. Historically the concept of heterochrony has focused alternatively on changes in size and shape or changes in developmental sequence, but most have focused on the pattern of change. Few studies have examined changes in the mechanisms that embryos use to actually measure time during development. Recently, evolutionary studies focused on changes in distinct timekeeping mechanisms have appeared, and this review examines two such case studies: the evolution of increased segment number in snakes and the extreme rostral to caudal gradient of developmental maturation in marsupials. In both examples, heterochronic modifications of the somite clock have been important drivers of evolutionary change.
Collapse
Affiliation(s)
- Anna L Keyte
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Kathleen K Smith
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
54
|
Norbnop P, Srichomthong C, Suphapeetiporn K, Shotelersuk V. ZRS 406A>G mutation in patients with tibial hypoplasia, polydactyly and triphalangeal first fingers. J Hum Genet 2014; 59:467-70. [PMID: 24965254 DOI: 10.1038/jhg.2014.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
Werner mesomelic syndrome (WMS), an autosomal dominant disorder characterized by hypoplastic tibiae, triphalangeal thumbs and polydactyly, is caused by a specific point mutation at the position 404 in zone of polarizing activity regulatory sequence (ZRS). Here we identified two additional families with WMS. All three patients in three generations of Family 1 were found to harbor the same heterozygous 406A>G mutation in ZRS. The fourth patient from Family 2 was a sporadic case with the known 404 point mutation. The novel 406A>G mutation expands mutational spectrum in ZRS causing WMS, provides evidence for a functionally important nucleotide position 406 of ZRS in humans and has implications for genetic counseling.
Collapse
Affiliation(s)
- Phatchara Norbnop
- 1] Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chalurmpon Srichomthong
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- 1] Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand [2] Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
55
|
Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
56
|
Abstract
Regeneration of a lost appendage in adult amphibians and fish is a remarkable feat of developmental patterning. Although the limb or fin may be years removed from its initial creation by an embryonic primordium, the blastema that emerges at the injury site fashions a close mimic of adult form. Central to understanding these events are revealing the cellular origins of new structures, how positional identity is maintained, and the determinants for completion. Each of these topics has been advanced recently, strengthening models for how complex tissue pattern is recalled in the adult context.
Collapse
Affiliation(s)
- Valerie A Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
57
|
Malik S. Polydactyly: phenotypes, genetics and classification. Clin Genet 2014; 85:203-212. [PMID: 24020795 DOI: 10.1111/cge.12276] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022]
Abstract
Polydactyly is one of the most common hereditary limb malformations featuring additional digits in hands and/or feet. It constituted the highest proportion among the congenital limb defects in various epidemiological surveys. Polydactyly, primarily presenting as an additional pre-axial or post-axial digit of autopod, is a highly heterogeneous condition and depicts broad inter- and intra-familial clinical variability. There is a plethora of polydactyly classification methods reported in the medical literature which approach the heterogeneity in polydactyly in various ways. In this communication, well-characterized, non-syndromic polydactylies in humans are reviewed. The cardinal features, phenotypic variability and molecular advances of each type have been presented. Polydactyly at cellular and developmental levels is mainly a failure in the control of digit number. Interestingly, GLI3 and SHH (ZRS/SHH enhancer), two antagonistic factors known to modulate digit number and identity during development, have also been implicated in polydactyly. Mutations in GLI3 and ZRS/SHH cause overlapping polydactyly phenotypes highlighting shared molecular cascades in the etiology of additional digits, and thus suggesting the lumping of at least six distinct polydactyly entities. However, owing to the extreme phenotypic and clinical heterogeneity witnessed in polydactyly a substantial genetic heterogeneity is expected across different populations and ethnic groups.
Collapse
Affiliation(s)
- S Malik
- Human Genetics Program, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
58
|
Bundschu K, Schuh K. Cardiovascular ATIP (Angiotensin receptor type 2 interacting protein) expression in mouse development. Dev Dyn 2014; 243:699-711. [DOI: 10.1002/dvdy.24102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 12/23/2022] Open
Affiliation(s)
- Karin Bundschu
- Institute of Biochemistry and Molecular Biology; University of Ulm; Ulm Germany
| | - Kai Schuh
- Institute of Physiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
59
|
Abstract
In the limb bud, patterning along the anterior-posterior (A-P) axis is controlled by Sonic Hedgehog (Shh), a signaling molecule secreted by the “Zone of Polarizing Activity”, an organizer tissue located in the posterior margin of the limb bud. We have found that the transcription factors GATA4 and GATA6, which are key regulators of cell identity, are expressed in an anterior to posterior gradient in the early limb bud, raising the possibility that GATA transcription factors may play an additional role in patterning this tissue. While both GATA4 and GATA6 are expressed in an A-P gradient in the forelimb buds, the hindlimb buds principally express GATA6 in an A-P gradient. Thus, to specifically examine the role of GATA6 in limb patterning we generated Prx1-Cre; GATA6fl/fl mice, which conditionally delete GATA6 from their developing limb buds. We found that these animals display ectopic expression of both Shh and its transcriptional targets specifically in the anterior mesenchyme of the hindlimb buds. Loss of GATA6 in the developing limbs results in the formation of preaxial polydactyly in the hindlimbs. Conversely, forced expression of GATA6 throughout the limb bud represses expression of Shh and results in hypomorphic limbs. We have found that GATA6 can bind to chromatin (isolated from limb buds) encoding either Shh or Gli1 regulatory elements that drive expression of these genes in this tissue, and demonstrated that GATA6 works synergistically with FOG co-factors to repress expression of luciferase reporters driven by these sequences. Most significantly, we have found that conditional loss of Shh in limb buds lacking GATA6 prevents development of hindlimb polydactyly in these compound mutant embryos, indicating that GATA6 expression in the anterior region of the limb bud blocks hindlimb polydactyly by repressing ectopic expression of Shh. Sonic Hedgehog (Shh) is a crucial regulator of the growth and anterior-posterior patterning of the developing limb bud, and is produced in the “Zone of Polarizing Activity” in the posterior of the limb bud. Here, we demonstrate that GATA4 and GATA6 (members of the GATA family of transcription factors) are expressed in the anterior mesenchyme of mouse limb buds and that limb bud-specific deletion of GATA6 results in ectopic expression of Shh and its target genes (such as Gli1) in the anterior limb bud mesenchyme, resulting in preaxial polydactyly. Conversely, over-expression of GATA6 in limb buds causes down-regulation of Shh and its target genes, resulting in a decreased number of digits. We also show that GATA6 binds to the sequences that regulate expression of either Shh or Gli1, and that simultaneous deletion of both GATA6 and Shh genes in developing limb buds rescues the polydactylous hindlimb phenotype of GATA6 mutants. Our findings indicate that GATA6 is necessary to repress ectopic expression of both Shh and hedgehog transcriptional targets in the anterior region of the mouse hindlimb bud, and thus demonstrate that GATA transcription factors, in addition to being regulators of cell identity, are important negative regulators of ectopic Shh expression in the limb bud.
Collapse
|
60
|
Lopez-Real RE, Budge JJR, Marder TB, Whiting A, Hunt PN, Przyborski SA. Application of synthetic photostable retinoids induces novel limb and facial phenotypes during chick embryogenesis in vivo. J Anat 2013; 224:392-411. [PMID: 24303996 PMCID: PMC4098675 DOI: 10.1111/joa.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 02/02/2023] Open
Abstract
We have recently developed a range of synthetic retinoid analogues which include the compounds EC23 and EC19. They are stable on exposure to light and are predicted to be resistant to the normal metabolic processes involved in the inactivation of retinoids in vivo. Based on the position of the terminal carboxylic acid groups in the compounds we suggest that EC23 is a structural analogue of all-trans retinoic acid (ATRA), and EC19 is an analogue of 13-cis retinoic acid. Their effects on the differentiation of pluripotent stem cells has been previously described in vitro and are consistent with this hypothesis. We present herein the first description of the effects of these molecules in vivo. Retinoids were applied to the anterior limb buds of chicken embryos in ovo via ion-exchange beads. We found that retinoid EC23 produces effects on the wing digits similar to ATRA, but does so at two orders of magnitude lower concentration. When larger quantities of EC23 are applied, a novel phenotype is obtained involving production of multiple digit 1s on the anterior limb. This corresponds to differential effects of ATRA and EC23 on sonic hedgehog (shh) expression in the developing limb bud. With EC23 application we also find digit 1 phenotypes similar to thumb duplications described in the clinical literature. EC23 and ATRA are shown to have effects on the entire proximal–distal axis of the limb, including hitherto undescribed effects on the scapula. This includes suppression of expression of the scapula marker Pax1. EC23 also produces effects similar to those of ATRA on the developing face, producing reductions of the upper beak at concentrations two orders of magnitude lower than ATRA. In contrast, EC19, which is structurally very similar to EC23, has novel, less severe effects on the face and rarely alters limb development. EC19 and ATRA are effective at similar concentrations. These results further demonstrate the ability of retinoids to influence embryonic development. Moreover, EC23 represents a useful new tool to investigate developmental processes and probe the mechanisms underlying congenital abnormalities in vertebrates including man.
Collapse
Affiliation(s)
- R E Lopez-Real
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | |
Collapse
|
61
|
Woolley TE, Baker RE, Tickle C, Maini PK, Towers M. Mathematical modelling of digit specification by a sonic hedgehog gradient. Dev Dyn 2013; 243:290-8. [PMID: 24115161 DOI: 10.1002/dvdy.24068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. RESULTS We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. CONCLUSIONS Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration.
Collapse
Affiliation(s)
- Thomas E Woolley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, United Kingdom; Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
62
|
Hennekam RC, Biesecker LG, Allanson JE, Hall JG, Opitz JM, Temple IK, Carey JC. Elements of morphology: General terms for congenital anomalies. Am J Med Genet A 2013; 161A:2726-33. [DOI: 10.1002/ajmg.a.36249] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Raoul C. Hennekam
- Departments of Pediatrics and Clinical Genetics, Academic Medical Center; University of Amsterdam; Amsterdam Netherlands
| | - Leslie G. Biesecker
- National Human Genome Research Institute; National Institutes of Health; Bethesda Maryland
| | - Judith E. Allanson
- Department of Genetics; Children's Hospital of Eastern Ontario; Ottawa Canada
| | - Judith G. Hall
- Departments of Medical Genetics and Pediatrics; University of British Columbia and BC Children's Hospital; Vancouver British Columbia Canada
| | - John M. Opitz
- Division of Medical Genetics, Human Genetics; Pathology; Obstetrics and Gynecology; University of Utah; Salt Lake City Utah
| | - I Karen Temple
- Faculty of Medicine, University of Southampton and Wessex Clinical Genetics Service; University Hospital Southampton; Southampton United Kingdom
| | - John C. Carey
- Division of Medical Genetics, Human Genetics; Pathology; Obstetrics and Gynecology; University of Utah; Salt Lake City Utah
| | | |
Collapse
|
63
|
Nachtrab G, Kikuchi K, Tornini VA, Poss KD. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 2013; 140:3754-64. [PMID: 23924636 PMCID: PMC3754474 DOI: 10.1242/dev.098798] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kazu Kikuchi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A. Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
64
|
Jones TEM, Day RC, Beck CW. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects. J Anat 2013; 223:474-88. [PMID: 23981117 DOI: 10.1111/joa.12098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development.
Collapse
Affiliation(s)
- Tamsin E M Jones
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
65
|
Roscito JG, Rodrigues MT. A comparative analysis of the post-cranial skeleton of fossorial and non-fossorial gymnophthalmid lizards. J Morphol 2013; 274:845-58. [DOI: 10.1002/jmor.20139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/17/2012] [Accepted: 01/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juliana G. Roscito
- Departamento de Zoologia; Instituto de Biociências; Universidade de São Paulo; São Paulo; Brasil
| | - Miguel T. Rodrigues
- Departamento de Zoologia; Instituto de Biociências; Universidade de São Paulo; São Paulo; Brasil
| |
Collapse
|
66
|
Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: a mouse model. PLoS One 2013; 8:e55296. [PMID: 23383321 PMCID: PMC3562241 DOI: 10.1371/journal.pone.0055296] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023] Open
Abstract
Endochondral bone formation begins with the development of a cartilage intermediate that is subsequently replaced by calcified bone. The mechanisms occurring during early chondrogenesis that control both mesenchymal cell differentiation into chondrocytes and cell proliferation are not clearly understood in vertebrates. Indian hedgehog (Ihh), one of the hedgehog signaling molecules, is known to control both the hypertrophy of chondrocytes and bone replacement; these processes are particularly important in postnatal endochondral bone formation rather than in early chondrogenesis. In this study, we utilized the maternal transfer of 5E1 to E12.5 in mouse embryos, a process that leads to an attenuation of Ihh activity. As a result, mouse limb bud chondrogenesis was inhibited, and an exogenous recombinant IHH protein enhanced the proliferation and differentiation of mesenchymal cells. Analysis of the genetic relationships in the limb buds suggested a more extensive role for Ihh and Runx genes in early chondrogenesis. The transfer of 5E1 decreased the expression of Runx2 and Runx3, whereas an exogenous recombinant IHH protein increased Runx2 and Runx3 expression. Moreover, a transcription factor Gli1 in hedgehog pathway enhances the direct induction of both Runx2 and Runx3 transcription. These findings suggested that Ihh signaling plays an important role in chondrocyte proliferation and differentiation via interactions with Runx2 and Runx3.
Collapse
|
67
|
Pakkasjärvi N, Koskimies E, Ritvanen A, Nietosvaara Y, Mäkitie O. Characteristics and associated anomalies in radial ray deficiencies in Finland--a population-based study. Am J Med Genet A 2013; 161A:261-7. [PMID: 23322606 DOI: 10.1002/ajmg.a.35707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 09/03/2012] [Indexed: 01/03/2023]
Abstract
Upper-limb defects with deficiencies of the radial ray have varying etiologies, with a low proportion of true Mendelian disorders. We carried out a population-based study to elucidate the birth prevalence and clinical spectrum of radial ray deficiencies in Finland. We identified all births with radial ray deficiency reported to the Finnish Register of Congenital Malformations in 1993-2005. Altogether 138 cases were identified (123 live births), with a birth prevalence of 1.83 per 10,000 births and a live birth prevalence of 1.64 per 10,000 live births. The proportion of infant deaths was as high as 35%. The majority of the cases were associated with known syndromes or multiple anomalies; only 13% were true isolated radial ray deficiencies. The most common syndrome was trisomy 18, and the most common in multiple anomalies was VACTERL association. In 8.7% of cases an association between radial ray deficiency and heart anomaly was observed. The high proportion of cases with associated major anomalies indicates that radial ray deficiency can be regarded isolated only after thorough assessment of the various organ systems in an affected infant.
Collapse
Affiliation(s)
- Niklas Pakkasjärvi
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
68
|
Badugu A, Kraemer C, Germann P, Menshykau D, Iber D. Digit patterning during limb development as a result of the BMP-receptor interaction. Sci Rep 2012; 2:991. [PMID: 23251777 PMCID: PMC3524521 DOI: 10.1038/srep00991] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 01/07/2023] Open
Abstract
Turing models have been proposed to explain the emergence of digits during limb development. However, so far the molecular components that would give rise to Turing patterns are elusive. We have recently shown that a particular type of receptor-ligand interaction can give rise to Schnakenberg-type Turing patterns, which reproduce patterning during lung and kidney branching morphogenesis. Recent knockout experiments have identified Smad4 as a key protein in digit patterning. We show here that the BMP-receptor interaction meets the conditions for a Schnakenberg-type Turing pattern, and that the resulting model reproduces available wildtype and mutant data on the expression patterns of BMP, its receptor, and Fgfs in the apical ectodermal ridge (AER) when solved on a realistic 2D domain that we extracted from limb bud images of E11.5 mouse embryos. We propose that receptor-ligand-based mechanisms serve as a molecular basis for the emergence of Turing patterns in many developing tissues.
Collapse
Affiliation(s)
- Amarendra Badugu
- Department for Biosystems Science and Engineering (D-BSSE) , ETH Zurich, Basel, Switzerland
| | | | | | | | | |
Collapse
|
69
|
Cucchi D, Occhione MA, Gulino A, De Smaele E. Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma. J Exp Pharmacol 2012; 4:173-85. [PMID: 27186130 PMCID: PMC4863577 DOI: 10.2147/jep.s28553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is the most common type of cancer and accounts for up to 40% of all cancers in the US, with a growing incidence rate over recent decades in all developed countries. Surgery is curative for most patients, although it leaves unaesthetic scars, but those that develop locally advanced or metastatic BCC require different therapeutic approaches. Furthermore, patients with BCC present a high risk of developing additional tumors. The increasing economic burden and the morbidity of BCC render primary interest in the development of targeted treatments for this disease. Among the molecular signals involved in the development of BCC, the critical role of the morphogenetic Hedgehog (Hh) pathway has become evident. This pathway is found altered and activated in almost all BCCs, both sporadic and inherited. Given the centrality of the Hh pathway in the pathophysiology of BCC, the primary efforts to identify molecular targets for the topical or systemic treatment of this cancer have focused on the Hh components. Several Hh inhibitors have been so far identified - from the first identified natural cyclopamine to the recently Food and Drug Administration-approved synthetic vismodegib - most of which target the Hh receptor Smoothened (either its function or its translocation to the primary cilium). Other molecules await further characterization (bisamide compounds), while drugs currently approved for other diseases such as itraconazole (an antimicotic agent) and vitamin D3 have been tested on BCC with encouraging results. The outcomes of the numerous ongoing clinical trials are expected to expand the field in the very near future. Further research is needed to obtain drugs targeting downstream components of the Hh pathway (eg, Gli) or to exploit combinatorial therapies (eg, with phosphatidylinositol 3-kinase inhibitors or retinoids) in order to overcome potential drug resistance.
Collapse
Affiliation(s)
- Danilo Cucchi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
70
|
Glimm T, Headon D, Kiskowski MA. Computational and mathematical models of chondrogenesis in vertebrate limbs. ACTA ACUST UNITED AC 2012; 96:176-92. [PMID: 22692890 DOI: 10.1002/bdrc.21014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production of cartilage (chondrogenic patterning) in the limb is one of the best-studied examples of the emergence of form in developmental biology. At the core of the theoretical study is an effort to understand the mechanism that establishes the characteristic distribution of cartilage in the embryonic limb, which defines the future sites and shapes of bones that will be present in the mature limb. This review article gives an overview of the history and current state of a rich literature of mathematical and computational models that seek to contribute to this problem. We describe models for the mechanisms of limb growth and shaping via interaction with various chemical fields, as well as models addressing the intrinsic self-organization capabilities of the embryonic mesenchymal tissue, such as reaction-diffusion and mechanochemical models. We discuss the contributions of these models to the current understanding of chondrogenesis in vertebrate limbs, as well as their relation to the varied conceptual models that have been proposed by experimentalists.
Collapse
Affiliation(s)
- T Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA.
| | | | | |
Collapse
|
71
|
Seki R, Kamiyama N, Tadokoro A, Nomura N, Tsuihiji T, Manabe M, Tamura K. Evolutionary and Developmental Aspects of Avian-Specific Traits in Limb Skeletal Pattern. Zoolog Sci 2012; 29:631-44. [DOI: 10.2108/zsj.29.631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Roscito JG, Rodrigues MT. Embryonic development of the fossorial gymnophthalmid lizards Nothobachia ablephara and Calyptommatus sinebrachiatus. ZOOLOGY 2012; 115:302-18. [DOI: 10.1016/j.zool.2012.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/13/2023]
|
73
|
Sheeba CJ, Andrade RP, Palmeirim I. Joint interpretation of AER/FGF and ZPA/SHH over time and space underlies hairy2 expression in the chick limb. Biol Open 2012; 1:1102-10. [PMID: 23213390 PMCID: PMC3507187 DOI: 10.1242/bio.20122386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022] Open
Abstract
Embryo development requires precise orchestration of cell proliferation and differentiation in both time and space. A molecular clock operating through gene expression oscillations was first described in the presomitic mesoderm (PSM) underlying periodic somite formation. Cycles of HES gene expression have been further identified in other progenitor cells, including the chick distal limb mesenchyme, embryonic neural progenitors and both mesenchymal and embryonic stem cells. In the limb, hairy2 is expressed in the distal mesenchyme, adjacent to the FGF source (AER) and along the ZPA-derived SHH gradient, the two major regulators of limb development. Here we report that hairy2 expression depends on joint AER/FGF and ZPA/SHH signaling. FGF plays an instructive role on hairy2, mediated by Erk and Akt pathway activation, while SHH acts by creating a permissive state defined by Gli3-A/Gli3-R>1. Moreover, we show that AER/FGF and ZPA/SHH present distinct temporal and spatial signaling properties in the distal limb mesenchyme: SHH acts at a long-term, long-range on hairy2, while FGF has a short-term, short-range action. Our work establishes limb hairy2 expression as an output of integrated FGF and SHH signaling in time and space, providing novel clues for understanding the regulatory mechanisms underlying HES oscillations in multiple systems, including embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- Caroline J Sheeba
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , 4710-057 Braga , Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal ; Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve , 8005-139 Faro , Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
74
|
Malik S. Syndactyly: phenotypes, genetics and current classification. Eur J Hum Genet 2012; 20:817-824. [PMID: 22333904 PMCID: PMC3400728 DOI: 10.1038/ejhg.2012.14] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/03/2012] [Accepted: 01/06/2012] [Indexed: 01/08/2023] Open
Abstract
Syndactyly is one of the most common hereditary limb malformations depicting the fusion of certain fingers and/or toes. It may occur as an isolated entity or a component of more than 300 syndromic anomalies. Syndactylies exhibit great inter- and intra-familial clinical variability. Even within a subject, phenotype can be unilateral or bilateral and symmetrical or asymmetrical. At least nine non-syndromic syndactylies with additional sub-types have been characterized. Most of the syndactyly types are inherited as autosomal dominant but two autosomal recessive and an X-linked recessive entity have also been described. Whereas the underlying genes/mutations for types II-1, III, IV, V, and VII have been worked out, the etiology and molecular basis of the other syndactyly types remain unknown. In this communication, based on an overview of well-characterized isolated syndactylies, their cardinal phenotypes, inheritance patterns, and clinical and genetic heterogeneities, a 'current classification scheme' is presented. Despite considerable progress in the understanding of syndactyly at clinical and molecular levels, fundamental questions regarding the disturbed developmental mechanisms leading to fused digits, remain to be answered.
Collapse
Affiliation(s)
- Sajid Malik
- Human Genetics Program, Department of Animal Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
75
|
Anderson E, Peluso S, Lettice LA, Hill RE. Human limb abnormalities caused by disruption of hedgehog signaling. Trends Genet 2012; 28:364-73. [DOI: 10.1016/j.tig.2012.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 12/23/2022]
|
76
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
77
|
Gunji YP, Ono R. Sociality of an agent during morphogenetic canalization: asynchronous updating with potential resonance. Biosystems 2012; 109:420-9. [PMID: 22613512 DOI: 10.1016/j.biosystems.2012.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
Abstract
Canalization is a typical self-organization process leading to complementarity between parts and the whole. In the field of developmental biology, concerns about morphogenesis canalization are often framed as the French flag problem, questioning how each cell knows its own position in the whole system. Although chemical gradients have been suggested to provide positional information, there is no direct evidence that gradients are used to gain positional information. The chemical gradient hypothesis is based on the assumption that agents (e.g., cells) in a domain that locally interact with each other can generate a chemical gradient thanks to a global reference point. Instead of a chemical gradient, we here propose a model based on agents that are equipped with sociality that is based not on a global reference but rather on the ability to sense other neighboring agents, or potential resonance. The interaction among the agents with sociality, developed from undifferentiated types or tokens, is implemented using asynchronous updating automata equipped with potential resonance. We show that these automata can generate a French flag pattern that is very robust against perturbations without positional information by comparing automata with synchronous updating and asynchronous automata without potential resonance.
Collapse
Affiliation(s)
- Yukio-Pegio Gunji
- Department of Earth & Planetary Sciences, Faculty of Science, Kobe University, Nada Kobe 657-8501, Japan.
| | | |
Collapse
|
78
|
Lettice L, Williamson I, Wiltshire J, Peluso S, Devenney P, Hill A, Essafi A, Hagman J, Mort R, Grimes G, DeAngelis C, Hill R. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev Cell 2012; 22:459-67. [PMID: 22340503 PMCID: PMC3314984 DOI: 10.1016/j.devcel.2011.12.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/20/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022]
Abstract
Sonic hedgehog (Shh) expression during limb development is crucial for specifying the identity and number of digits. The spatial pattern of Shh expression is restricted to a region called the zone of polarizing activity (ZPA), and this expression is controlled from a long distance by the cis-regulator ZRS. Here, members of two groups of ETS transcription factors are shown to act directly at the ZRS mediating a differential effect on Shh, defining its spatial expression pattern. Occupancy at multiple GABPα/ETS1 sites regulates the position of the ZPA boundary, whereas ETV4/ETV5 binding restricts expression outside the ZPA. The ETS gene family is therefore attributed with specifying the boundaries of the classical ZPA. Two point mutations within the ZRS change the profile of ETS binding and activate Shh expression at an ectopic site in the limb bud. These molecular changes define a pathogenetic mechanism that leads to preaxial polydactyly (PPD).
Collapse
Affiliation(s)
- Laura A. Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - John H. Wiltshire
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Silvia Peluso
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Paul S. Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison E. Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Abdelkader Essafi
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - James Hagman
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA
| | - Richard Mort
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Carlo L. DeAngelis
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert E. Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Corresponding author
| |
Collapse
|
79
|
Zuniga A, Zeller R, Probst S. The molecular basis of human congenital limb malformations. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:803-22. [PMID: 23799625 DOI: 10.1002/wdev.59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses predominantly on the human congenital malformations caused by alterations affecting the morphoregulatory gene networks that control early limb bud patterning and outgrowth. Limb defects are among the most frequent congenital malformations in humans that are caused by genetic mutations or teratogenic effects resulting either in abnormal, loss of, or additional skeletal elements. Spontaneous and engineered mouse models have been used to identify and study the molecular alterations and disrupted gene networks that underlie human congenital limb malformations. More recently, mouse genetics has begun to reveal the alterations that affect the often-large cis-regulatory landscapes that control gene expression in limb buds and cause devastating effects on limb bud development. These findings have paved the way to identifying mutations in cis-regulatory regions as causal to an increasing number of congenital limb malformations in humans. In these cases, no mutations in the coding region of a presumed candidate were previously detected. This review highlights how the current understanding of the molecular gene networks and interactions that control mouse limb bud development provides insight into the etiology of human congenital limb malformations.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
80
|
Abstract
Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP). Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1) and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.
Collapse
Affiliation(s)
- Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, 49 Convent Drive, MSC 4472, Bethesda, MD, 20892, USA.
| |
Collapse
|
81
|
Archer TC, Weeraratne SD, Pomeroy SL. Hedgehog-GLI pathway in medulloblastoma. J Clin Oncol 2012; 30:2154-6. [PMID: 22508821 DOI: 10.1200/jco.2011.41.1181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tenley C Archer
- Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
82
|
Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O. Mechanical Stress Acts via Katanin to Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis. Cell 2012; 149:439-51. [DOI: 10.1016/j.cell.2012.02.048] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/10/2011] [Accepted: 02/21/2012] [Indexed: 12/14/2022]
|
83
|
Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, Kitayama H, Echizenya M, Morioka Y, Alexander DB, Yagi T, Itohara S, Nakamura T, Akiyama H, Noda M. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open 2012; 1:458-66. [PMID: 23213437 PMCID: PMC3507216 DOI: 10.1242/bio.2012638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER) that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.
Collapse
Affiliation(s)
- Mako Yamamoto
- Department of Molecular Oncology ; Global COE Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Itou J, Kawakami H, Quach T, Osterwalder M, Evans SM, Zeller R, Kawakami Y. Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development 2012; 139:1620-9. [PMID: 22438573 DOI: 10.1242/dev.073056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How divergent genetic systems regulate a common pathway during the development of two serial structures, forelimbs and hindlimbs, is not well understood. Specifically, HAND2 has been shown to regulate Shh directly to initiate its expression in the posterior margin of the limb mesenchyme. Although the Hand2-Shh morphoregulatory system operates in both the forelimb and hindlimb bud, a recent analysis suggested that its upstream regulation is different in the forelimb and hindlimb bud. A combination of all four Hox9 genes is required for Hand2 expression in the forelimb-forming region; however, it remains elusive what genetic system regulates the Hand2-Shh pathway in the hindlimb-forming region. By conditional inactivation of Islet1 in the hindlimb-forming region using the Hoxb6Cre transgene, we show that Islet1 is required for establishing the posterior hindlimb field, but not the forelimb field, upstream of the Hand2-Shh pathway. Inactivation of Islet1 caused the loss of posterior structures in the distal and proximal regions, specifically in the hindlimb. We found that Hand2 expression was downregulated in the hindlimb field and that Shh expression was severely impaired in the hindlimb bud. In the Hoxb6Cre; Islet1 mutant pelvis, the proximal element that is formed in a Shh-independent manner, displayed complementary defects in comparison with Pitx1(-/-) hindlimbs. This suggests that Islet1 and Pitx1 function in parallel during girdle development in hindlimbs, which is in contrast with the known requirement for Tbx5 in girdle development in forelimbs. Our studies have identified a role for Islet1 in hindlimb-specific development and have revealed Islet1 functions in two distinct processes: regulation upstream of the Hand2-Shh pathway and contributions to girdle development.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE. Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Delpretti S, Zakany J, Duboule D. A function for all posterior Hoxd genes during digit development? Dev Dyn 2012; 241:792-802. [PMID: 22374744 DOI: 10.1002/dvdy.23756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Four posterior Hoxd genes, from Hoxd13 to Hoxd10, are collectively regulated during the development of tetrapod digits. Besides the well-documented role of Hoxd13, the function of the neighboring genes has been difficult to evaluate due to the close genetic linkage and potential regulatory interferences. We used a combination of five small nested deletions in cis, involving from two to four consecutive genes of the Hoxd13 to Hoxd9 loci, in mice, to evaluate their combined functional importance. RESULTS We show that deletions leading to a gain of function of Hoxd13, via regulatory re-allocation, generate abnormal phenotypes, in agreement with the dominant negative role of this gene. We also show that Hoxd10, Hoxd11, and Hoxd12 all seem to play a genuine role in digit development, though less compelling than that of Hoxd13. In contrast, the nearby Hoxd9 contributed no measurable function in digits. CONCLUSIONS We conclude that a slight and transient deregulation of Hoxd13 expression can readily affect the relative lengths of limb segments and that all posterior Hoxd genes likely contribute to the final limb morphology. We discuss the difficulty to clearly assess the functional share of individual genes within such a gene family, where closely located neighbors, coding for homologous proteins, are regulated by a unique circuitry and all contribute to shape the distal parts of our appendages.
Collapse
Affiliation(s)
- Saskia Delpretti
- National Research Centre Frontiers in Genetics, School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | | | | |
Collapse
|
86
|
Towers M, Wolpert L, Tickle C. Gradients of signalling in the developing limb. Curr Opin Cell Biol 2011; 24:181-7. [PMID: 22169676 DOI: 10.1016/j.ceb.2011.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/07/2011] [Accepted: 11/14/2011] [Indexed: 01/24/2023]
Abstract
The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.
Collapse
Affiliation(s)
- Matthew Towers
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
87
|
Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG. Global gene expression analysis of murine limb development. PLoS One 2011; 6:e28358. [PMID: 22174793 PMCID: PMC3235105 DOI: 10.1371/journal.pone.0028358] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/07/2011] [Indexed: 01/11/2023] Open
Abstract
Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ∼30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Nicole M. Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Deepa Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Evan Maxwell
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Gabriela G. Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
88
|
Kawakami Y, Marti M, Kawakami H, Itou J, Quach T, Johnson A, Sahara S, O'Leary DDM, Nakagawa Y, Lewandoski M, Pfaff S, Evans SM, Izpisua Belmonte JC. Islet1-mediated activation of the β-catenin pathway is necessary for hindlimb initiation in mice. Development 2011; 138:4465-73. [PMID: 21937598 DOI: 10.1242/dev.065359] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional basis of vertebrate limb initiation, which is a well-studied system for the initiation of organogenesis, remains elusive. Specifically, involvement of the β-catenin pathway in limb initiation, as well as its role in hindlimb-specific transcriptional regulation, are under debate. Here, we show that the β-catenin pathway is active in the limb-forming area in mouse embryos. Furthermore, conditional inactivation of β-catenin as well as Islet1, a hindlimb-specific factor, in the lateral plate mesoderm results in a failure to induce hindlimb outgrowth. We further show that Islet1 is required for the nuclear accumulation of β-catenin and hence for activation of the β-catenin pathway, and that the β-catenin pathway maintains Islet1 expression. These two factors influence each other and function upstream of active proliferation of hindlimb progenitors in the lateral plate mesoderm and the expression of a common factor, Fgf10. Our data demonstrate that Islet1 and β-catenin regulate outgrowth and Fgf10-Fgf8 feedback loop formation during vertebrate hindlimb initiation. Our study identifies Islet1 as a hindlimb-specific transcriptional regulator of initiation, and clarifies the controversy regarding the requirement of β-catenin for limb initiation.
Collapse
Affiliation(s)
- Yasuhiko Kawakami
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
|
90
|
The interplay between morphogens and tissue growth. EMBO Rep 2011; 12:1003-10. [PMID: 21886183 DOI: 10.1038/embor.2011.172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022] Open
Abstract
Morphogens are conserved, secreted signalling molecules that regulate the size, shape and patterning of animal tissues and organs. Recent experimental evidence has emphasized the fundamental role of tissue growth in expanding the expression domains of morphogens and their target genes, in generating morphogen gradients and in modulating the response of cells to morphogens. Moreover, the classic view of how morphogens, particularly through their concentration gradient, regulate tissue size during development has been revisited recently. In this review, we discuss how morphogens and tissue growth affect each other, and we attempt to integrate genetic and molecular evidence from vertebrate and invertebrate model systems to put forward the idea that the interaction between growth and morphogens is a general feature of highly proliferative tissues.
Collapse
|
91
|
Maas SA, Suzuki T, Fallon JF. Identification of spontaneous mutations within the long-range limb-specific Sonic hedgehog enhancer (ZRS) that alter Sonic hedgehog expression in the chicken limb mutants oligozeugodactyly and silkie breed. Dev Dyn 2011; 240:1212-22. [PMID: 21509895 DOI: 10.1002/dvdy.22634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The evolutionarily conserved, non-coding ~800-base-pair (bp) zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactyly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb Shh expression, has a single bp change within the ZRS. Using an in vivo reporter assay to examine enhancer function in the chick limb, we demonstrate that the wild-type ZRS drives β-galactosidase reporter expression in the ZPA of both wild-type and ozd limbs. The Silkie ZRS drives β-galactosidase in both posterior and anterior Shh domains in wild-type limb buds. These results support the hypothesis that the ZRS integrates positive and negative prepatterned regulatory inputs in the chicken model system and demonstrate the utility of the chicken limb as an efficient genetic system for gene regulatory studies.
Collapse
Affiliation(s)
- Sarah A Maas
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
92
|
Rizgeliene R, Tutkuviene J. Skeleton pattern and joint formation in chorioallantoic grafts containing the distal parts of the chick wing bud. Anat Histol Embryol 2011; 41:21-30. [PMID: 21880061 DOI: 10.1111/j.1439-0264.2011.01098.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Skeleton pattern formation was examined in chick wing bud grafts using the chorioallantoic grafting method. The distal parts of the wing bud were excised from the donor wing and transplanted onto the chorioallantoic membrane (the experimental groups). Transplants with intact limb bud material served as the control group. The skeleton pattern formation in the grafts depended on the amount of transplanted material and donor's limb bud stage. The younger the donor's stage and the bigger the piece of the transplanted material the more proximal parts grafts had, more retarded growth and abnormal skeleton in the zeugopod and autopod was. The percentage of the signs of insufficient blood supply in the experimental groups was less than that in the control group. As the amount of the transplanted limb bud material decreased and donor's limb bud aged, post-axial polydactyly changed to the pre-axial one.
Collapse
Affiliation(s)
- R Rizgeliene
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, Vilnius, Lithuania.
| | | |
Collapse
|
93
|
Harrison NC, Diez del Corral R, Vasiev B. Coordination of cell differentiation and migration in mathematical models of caudal embryonic axis extension. PLoS One 2011; 6:e22700. [PMID: 21829483 PMCID: PMC3145656 DOI: 10.1371/journal.pone.0022700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 07/05/2011] [Indexed: 12/02/2022] Open
Abstract
Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for the simulation of experimental observations (ours and those known from the literature) in order to examine possible mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression. Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation.
Collapse
Affiliation(s)
- Nigel C. Harrison
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Bakhtier Vasiev
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
94
|
Zhu J, Mackem S. Analysis of mutants with altered shh activity and posterior digit loss supports a biphasic model for shh function as a morphogen and mitogen. Dev Dyn 2011; 240:1303-10. [PMID: 21509901 PMCID: PMC3108043 DOI: 10.1002/dvdy.22637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sonic hedgehog (Shh) controls the number and type of digits formed. Using a conditional genetic approach for timed removal of Shh, we previously proposed a biphasic model of Shh function: a transient patterning phase, during which digit progenitors are specified, and an extended proliferative phase, during which expansion of progenitor pools enables digit formation. Other models favor a close integration of digit patterning and expansion, with sequential promotion to more posterior identity over time, apparently supported by some mutants with selective posterior digit loss. To further test these models, we analyzed the dynamics of Shh activity in several oligodactylous mutants with different types of digit loss. The profile of Shh activity and phenotypic outcome in these mutants supports a biphasic over an integrated temporal model. Eomesodermin expression, as an independent marker of posterior digit identity, confirmed that proper digit 4 specification requires only the transient phase of Shh activity.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI-Frederick, Frederick, MD 21702
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
95
|
Biesecker LG. Polydactyly: how many disorders and how many genes? 2010 update. Dev Dyn 2011; 240:931-42. [PMID: 21445961 PMCID: PMC3088011 DOI: 10.1002/dvdy.22609] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 01/26/2023] Open
Abstract
Limb development is clinically and biologically important. Polydactyly is common and caused by aberrant anterior-posterior patterning. Human disorders that include polydactyly are diverse. To facilitate an understanding of the biology of limb development, cataloging the genes that are mutated in patients with polydactyly would be useful. In 2002, I characterized human phenotypes that included polydactyly. Subsequently, many advances have occurred with refinement of clinical entities and identification of numerous genes. Here, I update human polydactyly entities by phenotype and mutated gene. This survey demonstrates phenotypes with overlapping manifestations, genetic heterogeneity, and distinct phenotypes generated from mutations in single genes. Among 310 clinical entities, 80 are associated with mutations in 99 genes. These results show that knowledge of limb patterning genetics is improving rapidly. Soon, we will have a comprehensive toolkit of genes important for limb development, which will lead to regenerative therapies for limb anomalies.
Collapse
Affiliation(s)
- Leslie G Biesecker
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
96
|
Fisher M, Downie H, Welten MCM, Delgado I, Bain A, Planzer T, Sherman A, Sang H, Tickle C. Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing. PLoS One 2011; 6:e18661. [PMID: 21526123 PMCID: PMC3081307 DOI: 10.1371/journal.pone.0018661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/08/2011] [Indexed: 11/23/2022] Open
Abstract
Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.
Collapse
Affiliation(s)
- Malcolm Fisher
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Helen Downie
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Monique C. M. Welten
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| | - Irene Delgado
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Andrew Bain
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Thorsten Planzer
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Helen Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Cheryll Tickle
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, United Kingdom
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
97
|
Probst S, Kraemer C, Demougin P, Sheth R, Martin GR, Shiratori H, Hamada H, Iber D, Zeller R, Zuniga A. SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development 2011; 138:1913-23. [PMID: 21471156 DOI: 10.1242/dev.063966] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential roles of SHH in anteroposterior (AP) and AER-FGF signalling in proximodistal (PD) limb bud development are well understood. In addition, these morphoregulatory signals are key components of the self-regulatory SHH/GREM1/AER-FGF feedback signalling system that regulates distal progression of limb bud development. This study uncovers an additional signalling module required for coordinated progression of limb bud axis development. Transcriptome analysis using Shh-deficient mouse limb buds revealed that the expression of proximal genes was distally extended from early stages onwards, which pointed to a more prominent involvement of SHH in PD limb axis development. In particular, retinoic acid (RA) target genes were upregulated proximally, while the expression of the RA-inactivating Cyp26b1 enzyme was downregulated distally, pointing to increased RA activity in Shh-deficient mouse limb buds. Further genetic and molecular analysis established that Cyp26b1 expression is regulated by AER-FGF signalling. During initiation of limb bud outgrowth, the activation of Cyp26b1 expression creates a distal 'RA-free' domain, as indicated by complementary downregulation of a transcriptional sensor of RA activity. Subsequently, Cyp26b1 expression increases as a consequence of SHH-dependent upregulation of AER-FGF signalling. To better understand the underlying signalling interactions, computational simulations of the spatiotemporal expression patterns and interactions were generated. These simulations predicted the existence of an antagonistic AER-FGF/CYP26B1/RA signalling module, which was verified experimentally. In summary, SHH promotes distal progression of limb development by enhancing CYP26B1-mediated RA clearance as part of a signalling network linking the SHH/GREM1/AER-FGF feedback loop to the newly identified AER-FGF/CYP26B1/RA module.
Collapse
Affiliation(s)
- Simone Probst
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Dunn IC, Paton IR, Clelland AK, Sebastian S, Johnson EJ, McTeir L, Windsor D, Sherman A, Sang H, Burt DW, Tickle C, Davey MG. The chicken polydactyly (Po) locus causes allelic imbalance and ectopic expression of Shh during limb development. Dev Dyn 2011; 240:1163-72. [PMID: 21465618 DOI: 10.1002/dvdy.22623] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis-regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly.
Collapse
Affiliation(s)
- Ian C Dunn
- Division of Genetics and Genomics, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Hasson P. "Soft" tissue patterning: muscles and tendons of the limb take their form. Dev Dyn 2011; 240:1100-7. [PMID: 21438070 DOI: 10.1002/dvdy.22608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2011] [Indexed: 12/18/2022] Open
Abstract
The musculoskeletal system grants our bodies a vast range of movements. Because it is mainly composed of easily identifiable components, it serves as an ideal model to study patterning of the specific tissues that make up the organ. Surprisingly, although critical for the function of the musculoskeletal system, understanding of the embryonic processes that regulate muscle and tendon patterning is very limited. The recent identification of specific markers and the reagents stemming from them has revealed some of the molecular events regulating patterning of these soft tissues. This review will focus on some of the current work, with an emphasis on the roles of the muscle connective tissue, and discuss several key points that addressing them will advance our understanding of these patterning events.
Collapse
Affiliation(s)
- Peleg Hasson
- Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel.
| |
Collapse
|
100
|
Capellini TD, Zappavigna V, Selleri L. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 2011; 240:1063-86. [PMID: 21416555 DOI: 10.1002/dvdy.22605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 12/14/2022] Open
Abstract
Limb development has long provided an excellent model for understanding the genetic principles driving embryogenesis. Studies utilizing chick and mouse have led to new insights into limb patterning and morphogenesis. Recent research has centered on the regulatory networks underlying limb development. Here, we discuss the hierarchical, overlapping, and iterative roles of Pbx family members in appendicular development that have emerged from genetic analyses in the mouse. Pbx genes are essential in determining limb bud positioning, early bud formation, limb axes establishment and coordination, and patterning and morphogenesis of most elements of the limb and girdle. Pbx proteins directly regulate critical effectors of limb and girdle development, including morphogen-encoding genes like Shh in limb posterior mesoderm, and transcription factor-encoding genes like Alx1 in pre-scapular domains. Interestingly, at least in limb buds, Pbx appear to act not only as Hox cofactors, but also in the upstream control of 5' HoxA/D gene expression.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|