51
|
Sethi S, Wang JW. A versatile genetic tool for post-translational control of gene expression in Drosophila melanogaster. eLife 2017; 6:30327. [PMID: 29140243 PMCID: PMC5703639 DOI: 10.7554/elife.30327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Several techniques have been developed to manipulate gene expression temporally in intact neural circuits. However, the applicability of current tools developed for in vivo studies in Drosophila is limited by their incompatibility with existing GAL4 lines and side effects on physiology and behavior. To circumvent these limitations, we adopted a strategy to reversibly regulate protein degradation with a small molecule by using a destabilizing domain (DD). We show that this system is effective across different tissues and developmental stages. We further show that this system can be used to control in vivo gene expression levels with low background, large dynamic range, and in a reversible manner without detectable side effects on the lifespan or behavior of the animal. Additionally, we engineered tools for chemically controlling gene expression (GAL80-DD) and recombination (FLP-DD). We demonstrate the applicability of this technology in manipulating neuronal activity and for high-efficiency sparse labeling of neuronal populations.
Collapse
Affiliation(s)
- Sachin Sethi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| |
Collapse
|
52
|
The morphology of antennal lobe projection neurons is controlled by a POU-domain transcription factor Bmacj6 in the silkmoth Bombyx mori. Sci Rep 2017; 7:14050. [PMID: 29070905 PMCID: PMC5656611 DOI: 10.1038/s41598-017-14578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
How to wire a neural circuit is crucial for the functioning of the nervous system. Here, we describe the neuroanatomy of the olfactory neurons in the spli mutant strain of silkmoth (Bombyx mori) to investigate the function of a transcription factor involved in neuronal wiring in the central olfactory circuit. The genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted in the spli mutant. We report the neuroanatomical abnormality in the morphology of the antennal lobe projection neurons (PNs) that process the sex pheromone. In addition to the mis-targeting of dendrites and axons, we found axonal bifurcation within the PNs. These results indicate that the morphology of neurons in the pheromone processing pathway is modified by Bmacj6.
Collapse
|
53
|
Strube-Bloss MF, Grabe V, Hansson BS, Sachse S. Calcium imaging revealed no modulatory effect on odor-evoked responses of the Drosophila antennal lobe by two populations of inhibitory local interneurons. Sci Rep 2017; 7:7854. [PMID: 28798324 PMCID: PMC5552818 DOI: 10.1038/s41598-017-08090-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Although we have considerable knowledge about how odors are represented in the antennal lobe (AL), the insects’ analogue to the olfactory bulb, we still do not fully understand how the different neurons in the AL network contribute to the olfactory code. In Drosophila melanogaster we can selectively manipulate specific neuronal populations to elucidate their function in odor processing. Here we silenced the synaptic transmission of two distinct subpopulations of multiglomerular GABAergic local interneurons (LN1 and LN2) using shibire (shits) and analyzed their impact on odor-induced glomerular activity at the AL input and output level. We verified that the employed shits construct effectively blocked synaptic transmission to the AL when expressed in olfactory sensory neurons. Notably, selective silencing of both LN populations did not significantly affect the odor-evoked activity patterns in the AL. Neither the glomerular input nor the glomerular output activity was modulated in comparison to the parental controls. We therefore conclude that these LN subpopulations, which cover one third of the total LN number, are not predominantly involved in odor identity coding per se. As suggested by their broad innervation patterns and contribution to long-term adaptation, they might contribute to AL–computation on a global and longer time scale.
Collapse
Affiliation(s)
- Martin F Strube-Bloss
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.,Department of Behavioral Physiology & Sociobiology, Theodor-Boveri-Institute of Bioscience, Biocenter University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Veit Grabe
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
54
|
Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of Drosophila. J Neurosci 2017; 37:7318-7331. [PMID: 28659283 DOI: 10.1523/jneurosci.0192-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/20/2017] [Accepted: 06/19/2017] [Indexed: 11/21/2022] Open
Abstract
Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity.SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and gene expression. In this study, we use a pair of identified serotonergic neurons within the Drosophila olfactory system as a model to establish a framework for modulatory neuron connectivity. We demonstrate that individual modulatory neurons can integrate neuron class-specific input from their target network, which is often nonreciprocal. Additionally, modulatory neuron output can be stereotyped, yet nonuniform, across network regions. Our results provide new insight into the synaptic relationships that underlie network function of modulatory neurons.
Collapse
|
55
|
Mosca TJ, Luginbuhl DJ, Wang IE, Luo L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 2017; 6. [PMID: 28606304 PMCID: PMC5469616 DOI: 10.7554/elife.27347] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
56
|
Shimizu K, Stopfer M. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila. Front Neural Circuits 2017; 11:30. [PMID: 28515683 PMCID: PMC5413558 DOI: 10.3389/fncir.2017.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022] Open
Abstract
In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral horn (LH). Most excitatory PNs (ePNs), project through the medial ALT (mALT) to the mushroom body (MB) and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH. However, little is known about the properties and functions of vPNs at their dendritic branches in the AL. Here, we used optogenetic and patch clamp techniques to investigate the functional roles of vPNs in the AL. Surprisingly, our results show that specific activation of vPNs reliably elicits strong excitatory postsynaptic potentials (EPSPs) in ePNs. Moreover, the connections between vPNs and ePNs are mediated by direct chemical synapses. Neither pulses of GABA, nor pharmagological, or genetic blockade of GABAergic transmission gave results consistent with the involvement of GABA in vPN-ePN excitatory transmission. These unexpected results suggest new roles for the vPN population in olfactory information processing.
Collapse
Affiliation(s)
- Kazumichi Shimizu
- National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD, USA
| | - Mark Stopfer
- National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
57
|
Shen HC, Chu SY, Hsu TC, Wang CH, Lin IY, Yu HH. Semaphorin-1a prevents Drosophila olfactory projection neuron dendrites from mis-targeting into select antennal lobe regions. PLoS Genet 2017; 13:e1006751. [PMID: 28448523 PMCID: PMC5426794 DOI: 10.1371/journal.pgen.1006751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023] Open
Abstract
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry. In the Drosophila olfactory system, olfactory projection neurons (PNs) are derived from four neural stem cells (called neuroblasts) during the development. Intriguingly, these PNs generate complex dendritic patterns within the primary olfactory center of the brain, the antennal lobe (AL), to relay odorant information from olfactory sensory neurons in the periphery to neurons in higher olfactory centers. In this study, we investigate how various types of PNs use a repulsive transmembrane protein Semaphorin-1a (Sema-1a) to establish appropriate dendritic patterns within the AL. Previously, Sema-1a was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL. In contrast, we disclose an unknown role of Sema-1a, in which this neuronal protein acts to keep dendrites of various types of PNs produced from different neuroblasts away from select AL regions, thereby enabling the dendrites of the same types of PNs to sort correctly into destined glomeruli within the developing AL for assembly of the functional olfactory neural circuitry.
Collapse
Affiliation(s)
- Hung-Chang Shen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chi Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ya Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
58
|
Minocha S, Boll W, Noll M. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain. PLoS One 2017; 12:e0176002. [PMID: 28441464 PMCID: PMC5404782 DOI: 10.1371/journal.pone.0176002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
The paired box gene Pox neuro (Poxn) is expressed in two bilaterally symmetric neuronal clusters of the developing adult Drosophila brain, a protocerebral dorsal cluster (DC) and a deutocerebral ventral cluster (VC). We show that all cells that express Poxn in the developing brain are postmitotic neurons. During embryogenesis, the DC and VC consist of only 20 and 12 neurons that express Poxn, designated embryonic Poxn-neurons. The number of Poxn-neurons increases only during the third larval instar, when the DC and VC increase dramatically to about 242 and 109 Poxn-neurons, respectively, virtually all of which survive to the adult stage, while no new Poxn-neurons are added during metamorphosis. Although the vast majority of Poxn-neurons express Poxn only during third instar, about half of them are born by the end of embryogenesis, as demonstrated by the absence of BrdU incorporation during larval stages. At late third instar, embryonic Poxn-neurons, which begin to express Poxn during embryogenesis, can be easily distinguished from embryonic-born and larval-born Poxn-neurons, which begin to express Poxn only during third instar, (i) by the absence of Pros, (ii) their overt differentiation of axons and neurites, and (iii) the strikingly larger diameter of their cell bodies still apparent in the adult brain. The embryonic Poxn-neurons are primary neurons that lay out the pioneering tracts for the secondary Poxn-neurons, which differentiate projections and axons that follow those of the primary neurons during metamorphosis. The DC and the VC participate only in two neuropils of the adult brain. The DC forms most, if not all, of the neurons that connect the bulb (lateral triangle) with the ellipsoid body, a prominent neuropil of the central complex, while the VC forms most of the ventral projection neurons of the antennal lobe, which connect it ipsilaterally to the lateral horn, bypassing the mushroom bodies. In addition, Poxn-neurons of the VC are ventral local interneurons of the antennal lobe. In the absence of Poxn protein in the developing brain, embryonic Poxn-neurons stall their projections and cannot find their proper target neuropils, the bulb and ellipsoid body in the case of the DC, or the antennal lobe and lateral horn in the case of the VC, whereby the absence of the ellipsoid body neuropil is particularly striking. Poxn is thus crucial for pathfinding both in the DC and VC. Additional implications of our results are discussed.
Collapse
Affiliation(s)
- Shilpi Minocha
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
59
|
Omoto JJ, Keleş MF, Nguyen BCM, Bolanos C, Lovick JK, Frye MA, Hartenstein V. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations. Curr Biol 2017; 27:1098-1110. [PMID: 28366740 PMCID: PMC5446208 DOI: 10.1016/j.cub.2017.02.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/05/2023]
Abstract
The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet Fatih Keleş
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bao-Chau Minh Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cheyenne Bolanos
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Kelly Lovick
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Arthur Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
60
|
Syed MH, Mark B, Doe CQ. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. eLife 2017; 6:26287. [PMID: 28394252 PMCID: PMC5403213 DOI: 10.7554/elife.26287] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.
Collapse
Affiliation(s)
- Mubarak Hussain Syed
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Brandon Mark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
61
|
Schultzhaus JN, Saleem S, Iftikhar H, Carney GE. The role of the Drosophila lateral horn in olfactory information processing and behavioral response. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:29-37. [PMID: 27871975 DOI: 10.1016/j.jinsphys.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Sehresh Saleem
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Hina Iftikhar
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Ginger E Carney
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
62
|
Second-Generation Drosophila Chemical Tags: Sensitivity, Versatility, and Speed. Genetics 2017; 205:1399-1408. [PMID: 28209589 PMCID: PMC5378102 DOI: 10.1534/genetics.116.199281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 11/22/2022] Open
Abstract
Thick tissue specimens present major challenges for labeling cells and subcellular structures in a rapid and reliable manner. Sutcliffe et al. present... Labeling and visualizing cells and subcellular structures within thick tissues, whole organs, and even intact animals is key to studying biological processes. This is particularly true for studies of neural circuits where neurons form submicron synapses but have arbors that may span millimeters in length. Traditionally, labeling is achieved by immunofluorescence; however, diffusion of antibody molecules (>100 kDa) is slow and often results in uneven labeling with very poor penetration into the center of thick specimens; these limitations can be partially addressed by extending staining protocols to over a week (Drosophila brain) and months (mice). Recently, we developed an alternative approach using genetically encoded chemical tags CLIP, SNAP, Halo, and TMP for tissue labeling; this resulted in >100-fold increase in labeling speed in both mice and Drosophila, at the expense of a considerable drop in absolute sensitivity when compared to optimized immunofluorescence staining. We now present a second generation of UAS- and LexA-responsive CLIPf, SNAPf, and Halo chemical labeling reagents for flies. These multimerized tags, with translational enhancers, display up to 64-fold increase in sensitivity over first-generation reagents. In addition, we developed a suite of conditional reporters (4xSNAPf tag and CLIPf-SNAPf-Halo2) that are activated by the DNA recombinase Bxb1. Our new reporters can be used with weak and strong GAL4 and LexA drivers and enable stochastic, intersectional, and multicolor Brainbow labeling. These improvements in sensitivity and experimental versatility, while still retaining the substantial speed advantage that is a signature of chemical labeling, should significantly increase the scope of this technology.
Collapse
|
63
|
|
64
|
Sizemore TR, Dacks AM. Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Sci Rep 2016; 6:37119. [PMID: 27845422 PMCID: PMC5109230 DOI: 10.1038/srep37119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, 26505, United States of America
| |
Collapse
|
65
|
Boyan GS, Liu Y. Development of the Neurochemical Architecture of the Central Complex. Front Behav Neurosci 2016; 10:167. [PMID: 27630548 PMCID: PMC5005427 DOI: 10.3389/fnbeh.2016.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.
Collapse
Affiliation(s)
- George S. Boyan
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| |
Collapse
|
66
|
Bell JS, Wilson RI. Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels. Neuron 2016; 91:425-38. [PMID: 27373835 DOI: 10.1016/j.neuron.2016.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The olfactory system is divided into processing channels (glomeruli), each receiving input from a different type of olfactory receptor neuron (ORN). Here we investigated how glomeruli combine to control behavior in freely walking Drosophila. We found that optogenetically activating single ORN types typically produced attraction, although some ORN types produced repulsion. Attraction consisted largely of a behavioral program with the following rules: at fictive odor onset, flies walked upwind, and at fictive odor offset, they reversed. When certain pairs of attractive ORN types were co-activated, the level of the behavioral response resembled the sum of the component responses. However, other pairs of attractive ORN types produced a response resembling the larger component (max pooling). Although activation of different ORN combinations produced different levels of behavior, the rules of the behavioral program were consistent. Our results illustrate a general method for inferring how groups of neurons work together to modulate behavioral programs.
Collapse
Affiliation(s)
- Joseph S Bell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
67
|
Antennal-lobe tracts in the noctuid moth, Heliothis virescens: new anatomical findings. Cell Tissue Res 2016; 366:23-35. [PMID: 27352608 DOI: 10.1007/s00441-016-2448-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
As in other insects, three main tracts in the moth brain form parallel connections between the antennal lobe and the protocerebrum. These tracts, which consist of the antennal-lobe projection-neuron axons, target two main areas in the protocerebrum, the calyces of the mushroom bodies and the lateral horn. In spite of the solid neuroanatomical knowledge already established, there are still unresolved issues regarding the antennal-lobe tracts of the moth. One is the proportion of lateral-tract neurons targeting the calyces. In the study presented here, we have performed both retrograde and anterograde labeling of the antennal-lobe projection neurons in the brain of the moth, Heliothis virescens. The results from the retrograde staining, obtained by applying dye in the calyces, demonstrated that the direct connection between the antennal lobe and this neuropil is maintained primarily by the medial antennal-lobe tract; only a few axons confined to the lateral tract were found to innervate the calyces. In addition, these staining experiments, which allowed us to explore the arborization pattern of labeled neurons within the antennal lobe, resulted in new findings regarding anatomical arrangement of roots and cell body clusters linked to the medial tract. The results from the anterograde staining, obtained by applying dye into the antennal lobe, visualized the total assembly of axons passing along the antennal-lobe tracts. In addition to the three classical tracts, we found a transverse antennal-lobe tract not previously described in the moth. Also, these staining experiments revealed an organized neuropil in the lateral horn formed by terminals of the four antennal-lobe tracts.
Collapse
|
68
|
Shen HC, Wei JY, Chu SY, Chung PC, Hsu TC, Yu HH. Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron. PLoS One 2016; 11:e0155384. [PMID: 27163287 PMCID: PMC4862648 DOI: 10.1371/journal.pone.0155384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 01/04/2023] Open
Abstract
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry.
Collapse
Affiliation(s)
- Hung-Chang Shen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Yi Wei
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Chi Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chi Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Yang CP, Fu CC, Sugino K, Liu Z, Ren Q, Liu LY, Yao X, Lee LP, Lee T. Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting. Development 2015; 143:411-21. [PMID: 26700685 DOI: 10.1242/dev.129163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
Abstract
A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.
Collapse
Affiliation(s)
- Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chi-Cheng Fu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyong Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke P Lee
- Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
70
|
Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK, Wasserman SA, Kim SM, Wang JW. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 2015; 4:e08298. [PMID: 26208339 PMCID: PMC4531282 DOI: 10.7554/elife.08298] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
The internal state of an organism influences its perception of attractive or aversive stimuli and thus promotes adaptive behaviors that increase its likelihood of survival. The mechanisms underlying these perceptual shifts are critical to our understanding of how neural circuits support animal cognition and behavior. Starved flies exhibit enhanced sensitivity to attractive odors and reduced sensitivity to aversive odors. Here, we show that a functional remodeling of the olfactory map is mediated by two parallel neuromodulatory systems that act in opposing directions on olfactory attraction and aversion at the level of the first synapse. Short neuropeptide F sensitizes an antennal lobe glomerulus wired for attraction, while tachykinin (DTK) suppresses activity of a glomerulus wired for aversion. Thus we show parallel neuromodulatory systems functionally reconfigure early olfactory processing to optimize detection of nutrients at the risk of ignoring potentially toxic food resources.
Collapse
Affiliation(s)
- Kang I Ko
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Cory M Root
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Scott A Lindsay
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Orel A Zaninovich
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Steven A Wasserman
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Susy M Kim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
71
|
Hartenstein V, Younossi-Hartenstein A, Lovick JK, Kong A, Omoto JJ, Ngo KT, Viktorin G. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain. Dev Biol 2015; 406:14-39. [PMID: 26141956 DOI: 10.1016/j.ydbio.2015.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 11/15/2022]
Abstract
Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA.
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | | |
Collapse
|
72
|
Lovick JK, Hartenstein V. Hydroxyurea-mediated neuroblast ablation establishes birth dates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain. Dev Biol 2015; 402:32-47. [PMID: 25773365 PMCID: PMC4472457 DOI: 10.1016/j.ydbio.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/27/2022]
Abstract
The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations ("macro-circuitry"). Two phases of neuroblast proliferation, the first in the embryo and the second during the larval phase (following a period of mitotic quiescence), produce primary and secondary lineages, respectively. Using temporally controlled pulses of hydroxyurea (HU) to ablate neuroblasts and their corresponding secondary lineages during the larval phase, we analyzed the effect on development of primary and secondary lineages in the late larval and adult brain. Our findings indicate that timing of neuroblast re-activation is highly stereotyped, allowing us to establish "birth dates" for all secondary lineages. Furthermore, our results demonstrate that, whereas the trajectory and projection pattern of primary and secondary lineages is established in a largely independent manner, the final branching pattern of secondary neurons is dependent upon the presence of appropriate neuronal targets. Taken together, our data provide new insights into the degree of neuronal plasticity during Drosophila brain development.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
73
|
Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L. A transcriptional reporter of intracellular Ca(2+) in Drosophila. Nat Neurosci 2015; 18:917-25. [PMID: 25961791 PMCID: PMC4446202 DOI: 10.1038/nn.4016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
Intracellular Ca2+ is a widely used neuronal activity indicator. Here we describe a transcriptional reporter of intracellular Ca2+ (TRIC) in Drosophila, which uses a binary expression system to report Ca2+-dependent interactions between calmodulin and its target peptide. We show that in vitro assays predict in vivo properties of TRIC, and that TRIC signals in sensory systems depend on neuronal activity. TRIC can quantitatively monitor neuronal responses that change slowly, such as those of neuropeptide F-expressing neurons to sexual deprivation and neuroendocrine pars intercerebralis (PI) cells to food and arousal. Furthermore, TRIC-induced expression of a neuronal silencer in nutrient activated cells enhanced stress resistance, providing proof-of-principle that TRIC can be used for circuit manipulation. Thus, TRIC facilitates the monitoring and manipulation of neuronal activity, especially those reflecting slow changes in physiological states that are poorly captured by existing methods. TRIC’s modular design should enable optimization and adaptation to other organisms.
Collapse
Affiliation(s)
- Xiaojing J Gao
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiefu Li
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Liqun Luo
- 1] Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA. [2] Department of Neurobiology, Stanford University, Stanford, California, USA
| |
Collapse
|
74
|
Sen S, Cao D, Choudhary R, Biagini S, Wang JW, Reichert H, VijayRaghavan K. Genetic transformation of structural and functional circuitry rewires the Drosophila brain. eLife 2014; 3. [PMID: 25546307 PMCID: PMC4307181 DOI: 10.7554/elife.04407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/23/2014] [Indexed: 12/05/2022] Open
Abstract
Acquisition of distinct neuronal identities during development is critical for the assembly of diverse functional neural circuits in the brain. In both vertebrates and invertebrates, intrinsic determinants are thought to act in neural progenitors to specify their identity and the identity of their neuronal progeny. However, the extent to which individual factors can contribute to this is poorly understood. We investigate the role of orthodenticle in the specification of an identified neuroblast (neuronal progenitor) lineage in the Drosophila brain. Loss of orthodenticle from this neuroblast affects molecular properties, neuroanatomical features, and functional inputs of progeny neurons, such that an entire central complex lineage transforms into a functional olfactory projection neuron lineage. This ability to change functional macrocircuitry of the brain through changes in gene expression in a single neuroblast reveals a surprising capacity for novel circuit formation in the brain and provides a paradigm for large-scale evolutionary modification of circuitry. DOI:http://dx.doi.org/10.7554/eLife.04407.001 The cells in the brain—including the neurons that transmit information—work together in groups called neural circuits. These cells develop from precursor cells called neuroblasts. Each neuroblast can produce many cells, and it is likely that cells that develop from the same neuroblast work together in the adult brain in the same neural circuit. How the adult cells develop into their final form plays an important role in creating a neural circuit, but this process is not fully understood. In many animals, the complexity of their brain makes it difficult to follow how each individual neuroblast develops. However, all of the neuroblasts in the relatively simple brain of the fruit fly Drosophila have been identified. Furthermore, the genes responsible for establishing the initial identity of each neuroblast in the Drosophila brain are known. These genes may also determine which adult neurons develop from the neuroblast, and when each type of neuron is produced. However, the extent to which a single gene can influence the identity of neurons is unclear. Sen et al. focused on two types of neuroblasts, each of which, although found next to each other in the developing Drosophila brain, produces neurons for different neural circuits. One of the neuroblasts generates the olfactory neurons responsible for detecting smells; the other innervates the ‘central complex’ that has a number of roles, including controlling the fly's movements. A gene called orthodenticle is expressed by the central complex neuroblast, but not by the olfactory neuroblast, and helps to separate the two neural circuits into different regions of the fly brain. Sen et al. found that deleting the orthodenticle gene from the central complex neuroblast causes it to develop into olfactory neurons instead of central complex neurons. Tests showed that the modified neurons are completely transformed; they not only work like olfactory neurons, but they also have the same structure and molecular properties. Sen et al. have therefore demonstrated that it is possible to drastically alter the circuitry of the fruit fly brain by changing how one gene is expressed in one neuroblast. This suggests that new neural circuits can form relatively easily, and so could help us to understand how different brain structures and neural circuits evolved. DOI:http://dx.doi.org/10.7554/eLife.04407.002
Collapse
Affiliation(s)
- Sonia Sen
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Deshou Cao
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Ramveer Choudhary
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Silvia Biagini
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Jing W Wang
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | | | - K VijayRaghavan
- Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
75
|
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S. Decoding odor quality and intensity in the Drosophila brain. eLife 2014; 3:e04147. [PMID: 25512254 PMCID: PMC4270039 DOI: 10.7554/elife.04147] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022] Open
Abstract
To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information. DOI:http://dx.doi.org/10.7554/eLife.04147.001 Organisms need to sense and adapt to their environment in order to survive. Senses such as vision and smell allow an organism to absorb information about the external environment and translate it into a meaningful internal image. This internal image helps the organism to remember incidents and act accordingly when they encounter similar situations again. A typical example is when organisms are repeatedly attracted to odors that are essential for survival, such as food and pheromones, and are repulsed by odors that threaten survival. Strutz et al. addressed how attractiveness or repulsiveness of a smell, and also the strength of a smell, are processed by a part of the olfactory system called the lateral horn in fruit flies. This involved mapping the neuronal patterns that were generated in the lateral horn when a fly was exposed to particular odors. Strutz et al. found that a subset of neurons called inhibitory projection neurons processes information about whether the odor is attractive or repulsive, and that a second subset of these neurons process information about the intensity of the odor. Other insects, such as honey bees and hawk moths, have olfactory systems with a similar architecture and might also employ a similar spatial approach to encode information regarding the intensity and identity of odors. Locusts, on the other hand, employ a temporal approach to encoding information about odors. The work of Strutz et al. shows that certain qualities of odors are contained in a spatial map in a specific brain region of the fly. This opens up the question of how the information in this spatial map influences decisions made by the fly. DOI:http://dx.doi.org/10.7554/eLife.04147.002
Collapse
Affiliation(s)
- Antonia Strutz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jan Soelter
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Schmuker
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
76
|
Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S. Digitalin vivo3D atlas of the antennal lobe ofDrosophila melanogaster. J Comp Neurol 2014; 523:530-44. [DOI: 10.1002/cne.23697] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Veit Grabe
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Antonia Strutz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| |
Collapse
|
77
|
Kohsaka H, Takasu E, Morimoto T, Nose A. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Curr Biol 2014; 24:2632-42. [PMID: 25438948 DOI: 10.1016/j.cub.2014.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Animals control the speed of motion to meet behavioral demands. Yet, the underlying neuronal mechanisms remain poorly understood. Here we show that a class of segmentally arrayed local interneurons (period-positive median segmental interneurons, or PMSIs) regulates the speed of peristaltic locomotion in Drosophila larvae. RESULTS PMSIs formed glutamatergic synapses on motor neurons and, when optogenetically activated, inhibited motor activity, indicating that they are inhibitory premotor interneurons. Calcium imaging showed that PMSIs are rhythmically active during peristalsis with a short time delay in relation to motor neurons. Optogenetic silencing of these neurons elongated the duration of motor bursting and greatly reduced the speed of larval locomotion. CONCLUSIONS Our results suggest that PMSIs control the speed of axial locomotion by limiting, via inhibition, the duration of motor outputs in each segment. Similar mechanisms are found in the regulation of mammalian limb locomotion, suggesting that common strategies may be used to control the speed of animal movements in a diversity of species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Etsuko Takasu
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Morimoto
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akinao Nose
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
78
|
Mosca TJ, Luo L. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 2014; 3:e03726. [PMID: 25310239 PMCID: PMC4194450 DOI: 10.7554/elife.03726] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
Understanding information flow through neuronal circuits requires knowledge of their synaptic organization. In this study, we utilized fluorescent pre- and postsynaptic markers to map synaptic organization in the Drosophila antennal lobe, the first olfactory processing center. Olfactory receptor neurons (ORNs) produce a constant synaptic density across different glomeruli. Each ORN within a class contributes nearly identical active zone number. Active zones from ORNs, projection neurons (PNs), and local interneurons have distinct subglomerular and subcellular distributions. The correct number of ORN active zones and PN acetylcholine receptor clusters requires the Teneurins, conserved transmembrane proteins involved in neuromuscular synapse organization and synaptic partner matching. Ten-a acts in ORNs to organize presynaptic active zones via the spectrin cytoskeleton. Ten-m acts in PNs autonomously to regulate acetylcholine receptor cluster number and transsynaptically to regulate ORN active zone number. These studies advanced our ability to assess synaptic architecture in complex CNS circuits and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
79
|
Abstract
Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general.
Collapse
|
80
|
Sen S, Biagini S, Reichert H, VijayRaghavan K. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila. Biol Open 2014; 3:711-7. [PMID: 24996925 PMCID: PMC4133724 DOI: 10.1242/bio.20148524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic) and distal (axonal) neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Silvia Biagini
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India Present address: FIRC Institute of Molecular Oncology, Via Adamello, 16-20139 Milan, Italy
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - K VijayRaghavan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
81
|
Fusca D, Husch A, Baumann A, Kloppenburg P. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana). J Comp Neurol 2014; 521:3556-69. [PMID: 23749599 DOI: 10.1002/cne.23371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | | | | | | |
Collapse
|
82
|
Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front Neural Circuits 2014; 8:35. [PMID: 24782716 PMCID: PMC3988396 DOI: 10.3389/fncir.2014.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs) are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region) of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has pre-synaptic terminals in the calyx and post-synaptic branches in the MB lobes (output axonal area). We call this neuron the larval anterior paired lateral (APL) neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP) suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs), but few contacts with incoming projection neurons (PNs). Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a manner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.
Collapse
Affiliation(s)
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Takeshi Awasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge Cambridge, UK
| |
Collapse
|
83
|
Making Drosophila lineage–restricted drivers via patterned recombination in neuroblasts. Nat Neurosci 2014; 17:631-7. [DOI: 10.1038/nn.3654] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022]
|
84
|
Parallel pathways convey olfactory information with opposite polarities in Drosophila. Proc Natl Acad Sci U S A 2014; 111:3164-9. [PMID: 24516124 DOI: 10.1073/pnas.1317911111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In insects, olfactory information received by peripheral olfactory receptor neurons (ORNs) is conveyed from the antennal lobes (ALs) to higher brain regions by olfactory projection neurons (PNs). Despite the knowledge that multiple types of PNs exist, little is known about how these different neuronal pathways work cooperatively. Here we studied the Drosophila GABAergic mediolateral antennocerebral tract PNs (mlPNs), which link ipsilateral AL and lateral horn (LH), in comparison with the cholinergic medial tract PNs (mPNs). We examined the connectivity of mlPNs in ALs and found that most mlPNs received inputs from both ORNs and mPNs and participated in AL network function by forming gap junctions with other AL neurons. Meanwhile, mlPNs might innervate LH neurons downstream of mPNs, exerting a feedforward inhibition. Using dual-color calcium imaging, which enables a simultaneous monitoring of neural activities in two groups of PNs, we found that mlPNs exhibited robust odor responses overlapping with, but broader than, those of mPNs. Moreover, preferentially down-regulation of GABA in most mlPNs caused abnormal courtship and aggressive behaviors in male flies. These findings demonstrate that in Drosophila, olfactory information in opposite polarities are carried coordinately by two parallel and interacted pathways, which could be essential for appropriate behaviors.
Collapse
|
85
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2014; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
86
|
Twick I, Lee JA, Ramaswami M. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. PROGRESS IN BRAIN RESEARCH 2014; 208:3-38. [PMID: 24767477 DOI: 10.1016/b978-0-444-63350-7.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A ubiquitous feature of an animal's response to an odorant is that it declines when the odorant is frequently or continuously encountered. This decline in olfactory response, termed olfactory habituation, can have temporally or mechanistically different forms. The neural circuitry of the fruit fly Drosophila melanogaster's olfactory system is well defined in terms of component cells, which are readily accessible to functional studies and genetic manipulation. This makes it a particularly useful preparation for the investigation of olfactory habituation. In addition, the insect olfactory system shares many architectural and functional similarities with mammalian olfactory systems, suggesting that olfactory mechanisms in insects may be broadly relevant. In this chapter, we discuss the likely mechanisms of olfactory habituation in context of the participating cell types, their connectivity, and their roles in sensory processing. We overview the structure and function of key cell types, the mechanisms that stimulate them, and how they transduce and process odor signals. We then consider how each stage of olfactory processing could potentially contribute to behavioral habituation. After this, we overview a variety of recent mechanistic studies that point to an important role for potentiation of inhibitory synapses in the primary olfactory processing center, the antennal lobe, in driving the reduced response to familiar odorants. Following the discussion of mechanisms for short- and long-term olfactory habituation, we end by considering how these mechanisms may be regulated by neuromodulators, which likely play key roles in the induction, gating, or suppression of habituated behavior, and speculate on the relevance of these processes for other forms of learning and memory.
Collapse
Affiliation(s)
- Isabell Twick
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - John Anthony Lee
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Mani Ramaswami
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; National Centre for Biological Science, Bangalore, India
| |
Collapse
|
87
|
Kraft KF, Urbach R. Analysis of complete neuroblast cell lineages in the Drosophila embryonic brain via DiI labeling. Methods Mol Biol 2014; 1082:37-56. [PMID: 24048925 DOI: 10.1007/978-1-62703-655-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proper functioning of the brain relies on an enormous diversity of neural cells generated by neural stem cell-like neuroblasts (NBs). Each of the about 100 NBs in each side of brain generates a nearly invariant and unique cell lineage, consisting of specific neural cell types that develop in defined time periods. In this chapter we describe a method that labels entire NB lineages in the embryonic brain. Clonal DiI labeling allows us to follow the development of a NB lineage starting from the neuroectodermal precursor cell up to the fully developed cell clone in the first larval instar brain. We also show how to ablate individual cells within a NB clone, which reveals information about the temporal succession in which daughter cells are generated. Finally, we describe how to combine clonal DiI labeling with fluorescent antibody staining that permits relating protein expression to individual cells within a labeled NB lineage. These protocols make it feasible to uncover precise lineage relationships between a brain NB and its daughter cells, and to assign gene expression to individual clonal cells. Such lineage-based information is a critical key for understanding the cellular and molecular mechanisms that underlie specification of cell fates in spatial and temporal dimension in the embryonic brain.
Collapse
|
88
|
Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev Biol 2013; 384:258-89. [PMID: 23872236 PMCID: PMC3928077 DOI: 10.1016/j.ydbio.2013.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.
Collapse
Affiliation(s)
- Darren C. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K. Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wichanee Borisuthirattana
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
89
|
Mishra D, Chen YC, Yarali A, Oguz T, Gerber B. Olfactory memories are intensity specific in larval Drosophila. ACTA ACUST UNITED AC 2013; 216:1552-60. [PMID: 23596280 DOI: 10.1242/jeb.082222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.
Collapse
Affiliation(s)
- Dushyant Mishra
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, Würzburg, Germany
| | | | | | | | | |
Collapse
|
90
|
Parnas M, Lin AC, Huetteroth W, Miesenböck G. Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 2013; 79:932-44. [PMID: 24012006 PMCID: PMC3765961 DOI: 10.1016/j.neuron.2013.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. Distances between excitatory PN (ePN) signals predict innate odor discrimination Silencing ePN subsets has distance-specific behavioral consequences Inhibitory PNs (iPNs) increase the contrast between similar odor representations iPNs act by high-pass filtering transmitter release from ePNs
Collapse
Affiliation(s)
- Moshe Parnas
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | |
Collapse
|
91
|
Liang L, Li Y, Potter CJ, Yizhar O, Deisseroth K, Tsien RW, Luo L. GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. Neuron 2013; 79:917-31. [PMID: 24012005 DOI: 10.1016/j.neuron.2013.06.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 11/16/2022]
Abstract
We characterize an inhibitory circuit motif in the Drosophila olfactory system, parallel inhibition, which differs from feedforward or feedback inhibition. Excitatory and GABAergic inhibitory projection neurons (ePNs and iPNs) each receive input from antennal lobe glomeruli and send parallel output to the lateral horn, a higher center implicated in regulating innate olfactory behavior. Ca(2+) imaging of specific lateral horn neurons as an olfactory readout revealed that iPNs selectively suppressed food-related odor responses, but spared signal transmission from pheromone channels. Coapplying food odorant did not affect pheromone signal transmission, suggesting that the differential effects likely result from connection specificity of iPNs, rather than a generalized inhibitory tone. Ca(2+) responses in the ePN axon terminals show no detectable suppression by iPNs, arguing against presynaptic inhibition as a primary mechanism. The parallel inhibition motif may provide specificity in inhibition to funnel specific olfactory information, such as food and pheromone, into distinct downstream circuits.
Collapse
Affiliation(s)
- Liang Liang
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
93
|
Extremes of lineage plasticity in the Drosophila brain. Curr Biol 2013; 23:1908-13. [PMID: 24055154 DOI: 10.1016/j.cub.2013.07.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 01/10/2023]
Abstract
An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell cycle-dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.
Collapse
|
94
|
Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Dev Biol 2013; 384:228-57. [PMID: 23880429 DOI: 10.1016/j.ydbio.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Bldg, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
95
|
Lee T. Generating mosaics for lineage analysis in flies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:69-81. [PMID: 24902835 DOI: 10.1002/wdev.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By generating and studying mosaic organisms, we are learning how intricate tissues form as cells proliferate and diversify through organism development. FLP/FRT-mediated site-specific mitotic recombination permits the generation of mosaic flies with efficiency and control. With heat-inducible or tissue-specific FLP transgenes at our disposal, we can engineer mosaics carrying clones of homozygous cells that come from specific pools of heterozygous precursors. This permits detailed cell lineage analysis followed by mosaic analysis of gene functions in the underlying developmental processes. Expression of transgenes (e.g., reporters) only in the homozygous cells enables mosaic analysis in the complex nervous system. Tracing neuronal lineages by using mosaics revolutionized mechanistic studies of neuronal diversification and differentiation, exemplifying the power of genetic mosaics in developmental biology.
Collapse
Affiliation(s)
- Tzumin Lee
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| |
Collapse
|
96
|
Nair IS, Rodrigues V, Reichert H, VijayRaghavan K. The zinc finger transcription factor Jing is required for dendrite/axonal targeting in Drosophila antennal lobe development. Dev Biol 2013; 381:17-27. [PMID: 23810656 DOI: 10.1016/j.ydbio.2013.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
An important role in olfactory system development is played by transcription factors which act in sensory neurons or in their interneuron targets as cell autonomous regulators of downstream effectors such as cell surface molecules and signalling systems that control neuronal identity and process guidance. Some of these transcriptional regulators have been characterized in detail in the development of the neural elements that innervate the antennal lobe in the olfactory system of Drosophila. Here we identify the zinc finger transcription factor Jing as a cell autonomously acting transcriptional regulator that is required both for dendrite targeting of projection neurons and local interneurons as well as for axonal targeting of olfactory sensory neurons in Drosophila olfactory system development. Immunocytochemical analysis shows that Jing is widely expressed in the neural cells during postembryonic development. MARCM-based clonal analysis of projection neuron and local interneuron lineages reveals a requirement for Jing in dendrite targeting; Jing loss-of-function results in loss of innervation in specific glomeruli, ectopic innervation of inappropriate glomeruli, aberrant profuse dendrite arborisation throughout the antennal lobe, as well as mistargeting to other parts of the CNS. ey-FLP-based MARCM analysis of olfactory sensory neurons reveals an additional requirement for Jing in axonal targeting; mutational inactivation of Jing causes specific mistargeting of some olfactory sensory neuron axons to the DA1 glomerulus, reduction of targeting to other glomeruli, as well as aberrant stalling of axons in the antennal lobe. Taken together, these findings indicate that Jing acts as a key transcriptional control element in wiring of the circuitry in the developing olfactory sensory system in Drosophila.
Collapse
Affiliation(s)
- Indu S Nair
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | |
Collapse
|
97
|
Sen S, Reichert H, VijayRaghavan K. Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse. Open Biol 2013; 3:120177. [PMID: 23635521 PMCID: PMC3866872 DOI: 10.1098/rsob.120177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
98
|
Tanaka NK, Suzuki E, Dye L, Ejima A, Stopfer M. Dye fills reveal additional olfactory tracts in the protocerebrum of wild-type Drosophila. J Comp Neurol 2013; 520:4131-40. [PMID: 22592823 DOI: 10.1002/cne.23149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The antennal lobe (AL) is the primary olfactory center in insect brains. It receives sensory input from the olfactory sensory neurons (OSNs) and sends, through its projection neurons (PNs), reformatted output to secondary olfactory centers, including the mushroom body (MB) calyx and the lateral horn (LH) in the protocerebrum. By injecting dye into the AL of wild-type Drosophila, we identified previously unknown direct pathways between the AL and the ventrolateral, superior medial, and posterior lateral protocerebra. We found that most of these areas in the protocerebrum are connected with the AL through multiple tracts, suggesting that these areas are sites of convergence for olfactory information. Furthermore, areas such as the superior medial protocerebrum now appear to receive olfactory output both directly from the AL and indirectly from lobes of the MB and the LH, suggesting a degree of functional interaction among these areas. We also analyzed the length and number of fibers in each tract. We compare our results obtained from wild-type flies with recent results from transgenic strains and discuss how information about odorants is distributed to multiple protocerebral areas.
Collapse
Affiliation(s)
- Nobuaki K Tanaka
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
99
|
Tanaka NK, Endo K, Ito K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 2013; 520:4067-130. [PMID: 22592945 DOI: 10.1002/cne.23142] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The primary olfactory centers of both vertebrates and insects are characterized by glomerular structure. Each glomerulus receives sensory input from a specific type of olfactory sensory neurons, creating a topographic map of the odor quality. The primary olfactory center is also innervated by various types of neurons such as local neurons, output projection neurons (PNs), and centrifugal neurons from higher brain regions. Although recent studies have revealed how olfactory sensory input is conveyed to each glomerulus, it still remains unclear how the information is integrated and conveyed to other brain areas. By using the GAL4 enhancer-trap system, we conducted a systematic mapping of the neurons associated with the primary olfactory center of Drosophila, the antennal lobe (AL). We identified in total 29 types of neurons, among which 13 are newly identified in the present study. Analyses of arborizations of these neurons in the AL revealed how glomeruli are linked with each other, how different PNs link these glomeruli with multiple secondary sites, and how these secondary sites are organized by the projections of the AL-associated neurons.
Collapse
Affiliation(s)
- Nobuaki K Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
100
|
Ostrovsky A, Cachero S, Jefferis G. Clonal analysis of olfaction in Drosophila: generation of flies with mosaic labeling. Cold Spring Harb Protoc 2013; 2013:335-41. [PMID: 23547148 DOI: 10.1101/pdb.prot071712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clonal analysis with the MARCM (mosaic analysis with a repressible cell marker) system can be used for studying cell lineage, development, and anatomy in the Drosophila olfactory system and other parts of the fly brain. This protocol gives a method for generating flies with mosaic labeling. It describes how to establish a mating cage for MARCM in PNs (projection neurons) of the fly antennal lobe and then select appropriate flies for dissection and staining using immunohistochemistry. The protocol can be adapted to determine the birth order of neuroblast lineages or individual cells. Alternatively, it can be used to dissect a complicated Gal4 line into its component neuroblast lineages to help elucidate projection patterns and connectivity. Collecting newly hatched larvae during a short time window allows for precise control of the stage during development at which the heat shock is applied.
Collapse
|