51
|
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1. Proc Natl Acad Sci U S A 2015; 112:16048-53. [PMID: 26655738 DOI: 10.1073/pnas.1521675112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We performed a screen for genetic suppressors of cobra, an Arabidopsis mutant with defects in cellulose formation and an increased ratio of unesterified/esterified pectin. We identified a suppressor named mongoose1 (mon1) that suppressed the growth defects of cobra, partially restored cellulose levels, and restored the esterification ratio of pectin to wild-type levels. mon1 was mapped to the MEDIATOR16 (MED16) locus, a tail mediator subunit, also known as SENSITIVE TO FREEZING6 (SFR6). When separated from the cobra mutation, mutations in MED16 caused resistance to cellulose biosynthesis inhibitors, consistent with their ability to suppress the cobra cellulose deficiency. Transcriptome analysis revealed that a number of cell wall genes are misregulated in med16 mutants. Two of these genes encode pectin methylesterase inhibitors, which, when ectopically expressed, partially suppressed the cobra phenotype. This suggests that cellulose biosynthesis can be affected by the esterification levels of pectin, possibly through modifying cell wall integrity or the interaction of pectin and cellulose.
Collapse
|
52
|
Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res 2015; 44:1591-612. [PMID: 26590257 PMCID: PMC4770211 DOI: 10.1093/nar/gkv1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/18/2015] [Indexed: 12/27/2022] Open
Abstract
Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
53
|
Li HJ, Zhu SS, Zhang MX, Wang T, Liang L, Xue Y, Shi DQ, Liu J, Yang WC. Arabidopsis CBP1 Is a Novel Regulator of Transcription Initiation in Central Cell-Mediated Pollen Tube Guidance. THE PLANT CELL 2015; 27:2880-93. [PMID: 26462908 PMCID: PMC4682316 DOI: 10.1105/tpc.15.00370] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/22/2015] [Indexed: 05/04/2023]
Abstract
In flowering plants, sperm cells are delivered to the embryo sac by a pollen tube guided by female signals. Both the gametic and synergid cells contribute to pollen tube attraction. Synergids secrete peptide signals that lure the tube, while the role of the gametic cells is unknown. Previously, we showed that CENTRAL CELL GUIDANCE (CCG) is essential for pollen tube attraction in Arabidopsis thaliana, but the molecular mechanism is unclear. Here, we identified CCG BINDING PROTEIN1 (CBP1) and demonstrated that it interacts with CCG, Mediator subunits, RNA polymerase II (Pol II), and central cell-specific AGAMOUS-like transcription factors. In addition, CCG interacts with TATA-box Binding Protein 1 and Pol II as a TFIIB-like transcription factor. CBP1-knockdown ovules are defective in pollen tube attraction. Expression profiling revealed that cysteine-rich peptide (CRP) transcripts were downregulated in ccg ovules. CCG and CBP1 coregulate a subset of CRPs in the central cell and the synergids, including the attractant LURE1. CBP1 is extensively expressed in multiple vegetative tissues and specifically in the central cell in reproductive growth. We propose that CBP1, via interaction with CCG and the Mediator complex, connects transcription factors and the Pol II machinery to regulate pollen tube attraction.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan-Shan Zhu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Xia Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Liang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
54
|
Wang C, Yao J, Du X, Zhang Y, Sun Y, Rollins JA, Mou Z. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum. PLANT PHYSIOLOGY 2015; 169:856-72. [PMID: 26143252 PMCID: PMC4577384 DOI: 10.1104/pp.15.00351] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Jin Yao
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Xuezhu Du
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Yanping Zhang
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Yijun Sun
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Jeffrey A Rollins
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| | - Zhonglin Mou
- Department of Microbiology and Cell Science (C.W., Z.M.) and Department of Plant Pathology (J.A.R.), University of Florida, Gainesville, Florida 32611;Department of Microbiology and Immunology, University of Buffalo, Buffalo, New York 14203 (J.Y., Y.S.);College of Life Science, Hubei University, Wuhan 430062, China (X.D.); andInterdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32601 (Y.Z.)
| |
Collapse
|
55
|
Jiang L, Clavijo JA, Sun L, Zhu X, Bhakta MS, Gezan SA, Carvalho M, Vallejos CE, Wu R. Plastic expression of heterochrony quantitative trait loci (hQTLs) for leaf growth in the common bean (Phaseolus vulgaris). THE NEW PHYTOLOGIST 2015; 207:872-82. [PMID: 25816915 PMCID: PMC6681149 DOI: 10.1111/nph.13386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/25/2015] [Indexed: 05/14/2023]
Abstract
Heterochrony, that is, evolutionary changes in the relative timing of developmental events and processes, has emerged as a key concept that links evolution and development. Genes associated with heterochrony encode molecular components of developmental timing mechanisms. However, our understanding of how heterochrony genes alter the expression of heterochrony in response to environmental changes remains very limited. We applied functional mapping to find quantitative trait loci (QTLs) responsible for growth trajectories of leaf area and leaf mass in the common bean (Phaseolus vulgaris) grown in two contrasting environments. We identified three major QTLs pleiotropically expressed under the two environments. Further characterization of the temporal pattern of these QTLs indicates that they are heterochrony QTLs (hQTLs) in terms of their role in influencing four heterochronic parameters: the timing of the inflection point, the timing of maximum acceleration and deceleration, and the duration of linear growth. The pattern of gene action by the hQTLs on each parameter was unique, being environmentally dependent and varying between two allometrically related leaf growth traits. These results provide new insights into the complexity of genetic mechanisms that control trait formation in plants and provide novel findings that will be of use in studying the evolutionary trends.
Collapse
Affiliation(s)
- Libo Jiang
- Center for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
| | - Jose A. Clavijo
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular BreedingNational Engineering Research Center for FloricultureBeijing Laboratory of Urban and Rural Ecological Environment and College of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Xuli Zhu
- Center for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
| | - Mehul S. Bhakta
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Salvador A. Gezan
- School of Forest Resources and ConservationUniversity of FloridaGainesvilleFL32611USA
| | - Melissa Carvalho
- School of Forest Resources and ConservationUniversity of FloridaGainesvilleFL32611USA
| | - C. Eduardo Vallejos
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Rongling Wu
- Center for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
- Center for Statistical GeneticsThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
56
|
Jun SE, Cho KH, Hwang JY, Abdel-Fattah W, Hammermeister A, Schaffrath R, Bowman JL, Kim GT. Comparative analysis of the conserved functions of Arabidopsis DRL1 and yeast KTI12. Mol Cells 2015; 38:243-50. [PMID: 25518926 PMCID: PMC4363724 DOI: 10.14348/molcells.2015.2297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022] Open
Abstract
Patterning of the polar axis during the early leaf developmental stage is established by cell-to-cell communication between the shoot apical meristem (SAM) and the leaf primordia. In a previous study, we showed that the DRL1 gene, which encodes a homolog of the Elongator-associated protein KTI12 of yeast, acts as a positive regulator of adaxial leaf patterning and shoot meristem activity. To determine the evolutionally conserved functions of DRL1, we performed a comparison of the deduced amino acid sequence of DRL1 and its yeast homolog, KTI12, and found that while overall homology was low, well-conserved domains were presented. DRL1 contained two conserved plant-specific domains. Expression of the DRL1 gene in a yeast KTI12-deficient yeast mutant suppressed the growth retardation phenotype, but did not rescue the caffeine sensitivity, indicating that the role of Arabidopsis Elongator-associated protein is partially conserved with yeast KTI12, but may have changed between yeast and plants in response to caffeine during the course of evolution. In addition, elevated expression of DRL1 gene triggered zymocin sensitivity, while overexpression of KTI12 maintained zymocin resistance, indicating that the function of Arabidopsis DRL1 may not overlap with yeast KTI12 with regards to toxin sensitivity. In this study, expression analysis showed that class-I KNOX genes were downregulated in the shoot apex, and that YAB and KAN were upregulated in leaves of the Arabidopsis drl1-101 mutant. Our results provide insight into the communication network between the SAM and leaf primordia required for the establishment of leaf polarity by mediating histone acetylation or through other mechanisms.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714,
Korea
| | - Kiu-Hyung Cho
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714,
Korea
| | - Ji-Young Hwang
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714,
Korea
| | - Wael Abdel-Fattah
- Institut für Biologie, FG Mikrobiologie, Universität Kassel,
Germany
| | | | - Raffael Schaffrath
- Department of Genetics, University of Leicester,
UK
- Institut für Biologie, FG Mikrobiologie, Universität Kassel,
Germany
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne,
Australia
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714,
Korea
| |
Collapse
|
57
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
58
|
Gillmor CS, Silva-Ortega CO, Willmann MR, Buendía-Monreal M, Poethig RS. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. Development 2014; 141:4580-9. [PMID: 25377553 DOI: 10.1242/dev.111229] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Temporal coordination of developmental programs is necessary for normal ontogeny, but the mechanism by which this is accomplished is still poorly understood. We have previously shown that two components of the Mediator CDK8 module encoded by CENTER CITY (CCT; Arabidopsis MED12) and GRAND CENTRAL (GCT; Arabidopsis MED13) are required for timing of pattern formation during embryogenesis. A morphological, molecular and genomic analysis of the post-embryonic phenotype of gct and cct mutants demonstrated that these genes also promote at least three subsequent developmental transitions: germination, vegetative phase change, and flowering. Genetic and molecular analyses indicate that GCT and CCT operate in parallel to gibberellic acid, a phytohormone known to regulate these same three transitions. We demonstrate that the delay in vegetative phase change in gct and cct is largely due to overexpression of miR156, and that the delay in flowering is due in part to upregulation of FLC. Thus, GCT and CCT coordinate vegetative and floral transitions by repressing the repressors miR156 and FLC. Our results suggest that MED12 and MED13 act as global regulators of developmental timing by fine-tuning the expression of temporal regulatory genes.
Collapse
Affiliation(s)
- C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia O Silva-Ortega
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico
| | - Matthew R Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
59
|
Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. THE PLANT CELL 2014; 26:4149-70. [PMID: 25281690 PMCID: PMC4247566 DOI: 10.1105/tpc.114.128611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea.
Collapse
Affiliation(s)
- Yingfang Zhu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
60
|
Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 2014; 514:624-7. [PMID: 25209660 DOI: 10.1038/nature13620] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2014] [Indexed: 11/08/2022]
Abstract
Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.
Collapse
|
61
|
Raya-González J, Ortiz-Castro R, Ruíz-Herrera LF, Kazan K, López-Bucio J. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:880-894. [PMID: 24784134 PMCID: PMC4044844 DOI: 10.1104/pp.114.239806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/24/2014] [Indexed: 05/22/2023]
Abstract
Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Randy Ortiz-Castro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Kemal Kazan
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| |
Collapse
|
62
|
Avendaño-Vázquez AO, Cordoba E, Llamas E, San Román C, Nisar N, De la Torre S, Ramos-Vega M, Gutiérrez-Nava MDLL, Cazzonelli CI, Pogson BJ, León P. An Uncharacterized Apocarotenoid-Derived Signal Generated in ζ-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. THE PLANT CELL 2014; 26:2524-2537. [PMID: 24907342 PMCID: PMC4114949 DOI: 10.1105/tpc.114.123349] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 05/18/2023]
Abstract
In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.
Collapse
Affiliation(s)
- Aida-Odette Avendaño-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ernesto Llamas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carolina San Román
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Susana De la Torre
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Maricela Ramos-Vega
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - María de la Luz Gutiérrez-Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, New South Wales 2753, Australia
| | - Barry James Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
63
|
Seefried WF, Willmann MR, Clausen RL, Jenik PD. Global Regulation of Embryonic Patterning in Arabidopsis by MicroRNAs. PLANT PHYSIOLOGY 2014; 165:670-687. [PMID: 24784759 PMCID: PMC4044841 DOI: 10.1104/pp.114.240846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/29/2014] [Indexed: 05/19/2023]
Abstract
The development of the embryo in Arabidopsis (Arabidopsis thaliana) involves a carefully controlled set of cell divisions and cell fate decisions that lead to a mature embryo containing shoot and root meristems and all basic tissue types. Over the last 20 years, a number of transcriptional regulators of embryonic patterning have been described, but little is known about the role of posttranscriptional regulators such as microRNAs (miRNAs). Previous work has centered on the study of null or very weak alleles of miRNA biosynthetic genes, but these mutants either arrest early in embryogenesis or have wild-type-looking embryos. Here, we significantly extend those analyses by characterizing embryos mutant for a strong hypomorphic allele of DICER-LIKE1 (dcl1-15). Our data demonstrate that miRNAs are required for the patterning of most regions of the embryo, with the exception of the protoderm. In mutant embryos with the most severe morphological defects, the majority of tissue identities are lost. Different levels of miRNAs appear to be required to specify cell fates in various regions of the embryo. The suspensor needs the lowest levels, followed by the root apical meristem and hypocotyl, cotyledons, and shoot apical meristem. Furthermore, we show that erecta acts as a suppressor of dcl1-15, a novel role for this signaling pathway in embryos. Our results also indicate that the regulation of the messenger RNA levels of miRNA targets involves not just the action of miRNAs but has a significant transcriptional component as well.
Collapse
Affiliation(s)
- William F Seefried
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003 (W.F.S., R.L.C., P.D.J.); andDepartment of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (M.R.W.)
| | - Matthew R Willmann
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003 (W.F.S., R.L.C., P.D.J.); andDepartment of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (M.R.W.)
| | - Rachel L Clausen
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003 (W.F.S., R.L.C., P.D.J.); andDepartment of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (M.R.W.)
| | - Pablo D Jenik
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003 (W.F.S., R.L.C., P.D.J.); andDepartment of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (M.R.W.)
| |
Collapse
|
64
|
A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013; 11:e1001732. [PMID: 24339748 PMCID: PMC3858237 DOI: 10.1371/journal.pbio.1001732] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
HaRxL44, a secreted effector from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis, enhances disease susceptibility by interacting with and degrading Mediator subunit MED19a, thereby perturbing plant defense gene transcription. Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. The highly conserved Mediator complex plays an essential role in transcriptional regulation by providing a molecular bridge between transcription factors and RNA polymerase II. Recent studies in Arabidopsis have revealed that it also performs an essential role in plant defence. However, it remains unknown how pathogens manipulate Mediator function in order to increase a plant's susceptibility to infection. In this article, we show that a secreted effector, HaRxL44, from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa), interacts with and degrades the Mediator subunit MED19a, resulting in the alteration of plant defence gene transcription. This effector-mediated interference with host transcriptional regulation perturbs the balance between jasmonic acid/ethylene (JA/ET) and salicylic acid (SA)–dependent defence. HaRxL44 interaction with MED19a results in reduced SA-regulated gene expression, indicating that this pathogen effector modulates host transcription to promote virulence. The resulting alteration in defence transcription patterns compromises the plant's ability to defend itself against pathogens, such as Hpa, that establish long-term parasitic interactions with living host cells via haustoria (a pathogen structure that creates an expanded host/parasite interface to extract nutrients) but not against necrotrophic pathogens that kill host cells. HaRxL44 is unlikely to be the sole effector that accomplishes this shift in hormonal balance, and other nuclear HaRxL proteins were reported by other researchers to interact with Mediator components, as well as with other regulators of the JA/ET signalling pathway. Functional analyses of these effectors should facilitate the discovery of new components of the plant immune system. These data show that pathogens can target fundamental mechanisms of host regulation in order to tip the balance of signalling pathways to suppress defence and favour parasitism.
Collapse
|
65
|
Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013. [PMID: 24339748 DOI: 10.1371/journal.pbio] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.
Collapse
|
66
|
Pérez AC, Goossens A. Jasmonate signalling: a copycat of auxin signalling? PLANT, CELL & ENVIRONMENT 2013; 36:2071-84. [PMID: 23611666 DOI: 10.1111/pce.12121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 05/22/2023]
Abstract
Plant hormones regulate almost all aspects of plant growth and development. The past decade has provided breakthrough discoveries in phytohormone sensing and signal transduction, and highlighted the striking mechanistic similarities between the auxin and jasmonate (JA) signalling pathways. Perception of auxin and JA involves the formation of co-receptor complexes in which hormone-specific E3-ubiquitin ligases of the SKP1-Cullin-F-box protein (SCF) type interact with specific repressor proteins. Across the plant kingdom, the Aux/IAA and the JASMONATE-ZIM DOMAIN (JAZ) proteins correspond to the auxin- and JA-specific repressors, respectively. In the absence of the hormones, these repressors form a complex with transcription factors (TFs) specific for both pathways. They also recruit several proteins, among which the general co-repressor TOPLESS, and thereby prevent the TFs from activating gene expression. The hormone-mediated interaction between the SCF and the repressors targets the latter for 26S proteasome-mediated degradation, which, in turn, releases the TFs to allow modulating hormone-dependent gene expression. In this review, we describe the similarities and differences in the auxin and JA signalling cascades with respect to the protein families and the protein domains involved in the formation of the pathway-specific complexes.
Collapse
Affiliation(s)
- A Cuéllar Pérez
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium; Department of Plant Biotechnology & Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | | |
Collapse
|
67
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
68
|
Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:824-834. [PMID: 23773763 DOI: 10.1111/jipb.12086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton Alberta, Canada, T6G 2E9
| | | |
Collapse
|
69
|
Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T, Kerstetter R, Michaels S, Barton MK. Establishing a framework for the Ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III homeodomain leucine zipper and KANADI regulation. THE PLANT CELL 2013; 25:3228-49. [PMID: 24076978 PMCID: PMC3809529 DOI: 10.1105/tpc.113.111518] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 05/18/2023]
Abstract
The broadly conserved Class III homeodomain leucine zipper (HD-ZIPIII) and KANADI transcription factors have opposing and transformational effects on polarity and growth in all tissues and stages of the plant's life. To obtain a comprehensive understanding of how these factors work, we have identified transcripts that change in response to induced HD-ZIPIII or KANADI function. Additional criteria used to identify high-confidence targets among this set were presence of an adjacent HD-ZIPIII binding site, expression enriched within a subdomain of the shoot apical meristem, mutant phenotype showing defect in polar leaf and/or meristem development, physical interaction between target gene product and HD-ZIPIII protein, opposite regulation by HD-ZIPIII and KANADI, and evolutionary conservation of the regulator-target relationship. We find that HD-ZIPIII and KANADI regulate tissue-specific transcription factors involved in subsidiary developmental decisions, nearly all major hormone pathways, and new actors (such as indeterminate domain4) in the ad/abaxial regulatory network. Multiple feedback loops regulating HD-ZIPIII and KANADI are identified, as are mechanisms through which HD-ZIPIII and KANADI oppose each other. This work lays the foundation needed to understand the components, structure, and workings of the ad/abaxial regulatory network directing basic plant growth and development.
Collapse
Affiliation(s)
- Brenda J. Reinhart
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Tie Liu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nicole R. Newell
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Enrico Magnani
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Tengbo Huang
- Rutgers University of New Jersey, New Brunswick, New Jersey 08901
| | | | | | - M. Kathryn Barton
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
70
|
Zhang X, Yao J, Zhang Y, Sun Y, Mou Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:484-97. [PMID: 23607369 DOI: 10.1111/tpj.12216] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 05/20/2023]
Abstract
Pathogen infection in plants triggers large-scale transcriptional changes, both locally and systemically. Emerging evidence suggests that the Arabidopsis Mediator complex plays a crucial role in these transcriptional changes. Mediator is highly conserved in eukaryotes, and its core comprises more than 20 subunits organized into three modules named head, middle and tail. The head and middle modules interact with general transcription factors and RNA polymerase II, whereas the tail module associates with activators, and signals through the head and middle modules to the basal transcription machinery. In Arabidopsis, three tail module subunits, MED14, MED15 and MED16, have been identified. Both MED15 and MED16 have been implicated in plant immunity, but the role of MED14 has not been established. Here, we report the characterization of an Arabidopsis T-DNA insertion mutant of the MED14 gene. Similarly to the med15 and/or med16 mutations, the med14 mutation significantly suppresses salicylic acid-induced defense responses, alters transcriptional changes induced by the avirulent bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000/avrRpt2, and renders plants susceptible to both Pst DC3000/avrRpt2 and Pst DC3000. The med14 mutation also completely compromises biological induction of systemic acquired resistance (SAR), indicating that the tail module as a whole is essential for SAR. Interestingly, unlike the med16 mutation, which differentially affects expression of several SAR positive and negative regulators, med14 inhibits induction of a large group of defense genes, including both SAR positive and negative regulators, suggesting that individual subunits of the Mediator tail module employ distinct mechanisms to regulate plant immune responses.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
71
|
Tameshige T, Fujita H, Watanabe K, Toyokura K, Kondo M, Tatematsu K, Matsumoto N, Tsugeki R, Kawaguchi M, Nishimura M, Okada K. Pattern dynamics in adaxial-abaxial specific gene expression are modulated by a plastid retrograde signal during Arabidopsis thaliana leaf development. PLoS Genet 2013; 9:e1003655. [PMID: 23935517 PMCID: PMC3723520 DOI: 10.1371/journal.pgen.1003655] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Department of Botany, Kyoto University, Kyoto, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hironori Fujita
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | | | - Koichi Toyokura
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Maki Kondo
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | | | - Ryuji Tsugeki
- Department of Botany, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Mikio Nishimura
- Division of Cell Mechanisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| |
Collapse
|
72
|
Burroughs AM, Iyer LM, Aravind L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol Direct 2013; 8:13. [PMID: 23758928 PMCID: PMC3702460 DOI: 10.1186/1745-6150-8-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/05/2013] [Indexed: 01/12/2023] Open
Abstract
Background The PIWI module, found in the PIWI/AGO superfamily of proteins, is a critical component of several cellular pathways including germline maintenance, chromatin organization, regulation of splicing, RNA interference, and virus suppression. It binds a guide strand which helps it target complementary nucleic strands. Results Here we report the discovery of two divergent, novel families of PIWI modules, the first such to be described since the initial discovery of the PIWI/AGO superfamily over a decade ago. Both families display conservation patterns consistent with the binding of oligonucleotide guide strands. The first family is bacterial in distribution and is typically encoded by a distinctive three-gene operon alongside genes for a restriction endonuclease fold enzyme and a helicase of the DinG family. The second family is found only in eukaryotes. It is the core conserved module of the Med13 protein, a subunit of the CDK8 subcomplex of the transcription regulatory Mediator complex. Conclusions Based on the presence of the DinG family helicase, which specifically acts on R-loops, we infer that the first family of PIWI modules is part of a novel RNA-dependent restriction system which could target invasive DNA from phages, plasmids or conjugative transposons. It is predicted to facilitate restriction of actively transcribed invading DNA by utilizing RNA guides. The PIWI family found in the eukaryotic Med13 proteins throws new light on the regulatory switch through which the CDK8 subcomplex modulates transcription at Mediator-bound promoters of highly transcribed genes. We propose that this involves recognition of small RNAs by the PIWI module in Med13 resulting in a conformational switch that propagates through the Mediator complex. Reviewers This article was reviewed by Sandor Pongor, Frank Eisenhaber and Balaji Santhanam.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
73
|
Abstract
Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.
Collapse
|
74
|
Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS One 2013; 8:e53924. [PMID: 23326539 PMCID: PMC3543355 DOI: 10.1371/journal.pone.0053924] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022] Open
Abstract
Mediator is a conserved multi-protein complex that plays an important role in regulating transcription by mediating interactions between transcriptional activator proteins and RNA polymerase II. Much evidence exists that Mediator plays a constitutive role in the transcription of all genes transcribed by RNA polymerase II. However, evidence is mounting that specific Mediator subunits may control the developmental regulation of specific subsets of RNA polymerase II-dependent genes. Although the Mediator complex has been extensively studied in yeast and mammals, only a few reports on Mediator function in flowering time control of plants, little is known about Mediator function in floral organ identity. Here we show that in Arabidopsis thaliana, MEDIATOR SUBUNIT 18 (MED18) affects flowering time and floral organ formation through FLOWERING LOCUS C (FLC) and AGAMOUS (AG). A MED18 loss-of-function mutant showed a remarkable syndrome of later flowering and altered floral organ number. We show that FLC and AG mRNA levels and AG expression patterns are altered in the mutant. Our results support parallels between the regulation of FLC and AG and demonstrate a developmental role for Mediator in plants.
Collapse
Affiliation(s)
- Zhengui Zheng
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ZZ); (DGO)
| | - Hexin Guan
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Francisca Leal
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Paris H. Grey
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - David G. Oppenheimer
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ZZ); (DGO)
| |
Collapse
|
75
|
Sundaravelpandian K, Chandrika NNP, Schmidt W. PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:151-161. [PMID: 23106228 DOI: 10.1111/nph.12000] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/16/2012] [Indexed: 05/18/2023]
Abstract
Root hair morphogenesis is driven by an amalgam of interacting processes controlled by complex signaling events. Redox processes and transcriptional control are critical for root hair development. However, the molecular mechanisms that integrate redox state and transcription are largely unknown. To elucidate a possible role of transcriptional Mediators in root hair formation, we analyzed the Arabidopsis root hair phenotype of T-DNA insertion lines that harbor homozygous mutations in genes encoding Mediator subunits. Genetic evidence indicates that the Mediator subunits PFT1/MED25 and MED8 are critical for root hair differentiation, but act via separate mechanisms. Transcriptional profiling of pft1 roots revealed that PFT1 activates a subset of hydrogen peroxide (H(2)O(2))-producing class III peroxidases. pft1 mutants showed perturbed H(2)O(2) and superoxide (O(2)(·-)) distribution, suggesting that PFT1 is essential to maintain redox homeostasis in the root. Chemical treatments rescued the pft1 mutant phenotype, indicating that correct reactive oxygen species (ROS) distribution is an essential prerequisite for root hair differentiation. In addition, PFT1 positively regulates cell wall remodeling genes that are essential for root hair formation. Our results demonstrate that PFT1 maintains ROS distribution which, in turn, controls root hair differentiation. Thus, our findings reveal a novel mechanism in which the Mediator controls ROS homeostasis by regulating the transcriptional machinery.
Collapse
Affiliation(s)
- Kalaipandian Sundaravelpandian
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Nulu Naga Prafulla Chandrika
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Cellular Biology, Taiwan International Graduate Program, Academia Sinica, National Defense Medical Center, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Molecular and Cellular Biology, Taiwan International Graduate Program, Academia Sinica, National Defense Medical Center, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
76
|
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 2012; 8:e1003093. [PMID: 23284289 PMCID: PMC3527224 DOI: 10.1371/journal.pgen.1003093] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian J. Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elisabeth Svedin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Katherine S. Xue
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
77
|
Pasrija R, Thakur JK. Analysis of differential expression of Mediator subunit genes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1676-86. [PMID: 23072992 PMCID: PMC3578909 DOI: 10.4161/psb.22438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mediator is a conserved eukaryotic multiprotein complex required by RNA polymerase II for transcription of its target genes. Till date, there is no report explaining the signals that affect the overall concentration of individual Med subunits. In this report, we have analyzed the effect of different phytohormones and stresses on the transcript level of Med genes in Arabidopsis. Hormones like auxin and JA, and cold stress did not show significant effect. ABA moderately increased the transcript abundance of more than 70% of AtMed genes analyzed in this study. However, there was noticeable change in the transcript level of several AtMed genes in response to BR. Stresses like high light, dark and salt also caused significant change in the transcript abundance of many AtMed genes. These data reveal that different environmental cues can affect stoichiometric concentration of Med subunits by affecting the transcription of their respective genes. This may, in turn, affect the overall arrangement of functional Mediator complex. This also suggests that some subunits may have some specific functions to play in response different signals.
Collapse
|
78
|
Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu MF, Pfluger J, Gillmor CS, Gallagher KL, Wagner D. Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:1000-14. [PMID: 23062007 PMCID: PMC3561502 DOI: 10.1111/tpj.12009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SWI2/SNF2 chromatin remodeling ATPases play important roles in plant and metazoan development. Whereas metazoans generally encode one or two SWI2/SNF2 ATPase genes, Arabidopsis encodes four such chromatin regulators: the well-studied BRAHMA and SPLAYED ATPases, as well as two closely related non-canonical SWI2/SNF2 ATPases, CHR12 and CHR23. No developmental role has as yet been described for CHR12 and CHR23. Here, we show that although strong single chr12 or chr23 mutants are morphologically indistinguishable from the wild type, chr12 chr23 double mutants cause embryonic lethality. The double mutant embryos fail to initiate root and shoot meristems, and display few and aberrant cell divisions. Weak double mutant embryos give rise to viable seedlings with dramatic defects in the maintenance of both the shoot and the root stem cell populations. Paradoxically, the stem cell defects are correlated with increased expression of the stem cell markers WUSCHEL and WOX5. During subsequent development, the meristem defects are partially overcome to allow for the formation of very small, bushy adult plants. Based on the observed morphological defects, we named the two chromatin remodelers MINUSCULE 1 and 2. Possible links between minu1 minu2 defects and defects in hormone signaling and replication-coupled chromatin assembly are discussed.
Collapse
Affiliation(s)
- Yi Sang
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
| | - Claudia O. Silva-Ortega
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV-IPN, Irapuato, Guanajuato, C.P 36821, MEXICO
| | - Shuang Wu
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
| | - Jennifer Pfluger
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV-IPN, Irapuato, Guanajuato, C.P 36821, MEXICO
| | - Kimberly L. Gallagher
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
- authors for correspondence: Doris Wagner, tel: 215-898-0483, fax: 215 898-8780, ; Kimberly L. Gallagher, tel: 215 746-3605, fax: 215 898-8780,
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA, 19104
- authors for correspondence: Doris Wagner, tel: 215-898-0483, fax: 215 898-8780, ; Kimberly L. Gallagher, tel: 215 746-3605, fax: 215 898-8780,
| |
Collapse
|
79
|
Iñigo S, Giraldez AN, Chory J, Cerdán PD. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. PLANT PHYSIOLOGY 2012; 160:1662-73. [PMID: 22992513 PMCID: PMC3490578 DOI: 10.1104/pp.112.205500] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 05/19/2023]
Abstract
The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called "activation by destruction." Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2-dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1-dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants.
Collapse
|
80
|
Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:541-55. [PMID: 22822211 PMCID: PMC3440227 DOI: 10.1104/pp.112.202697] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/20/2012] [Indexed: 05/18/2023]
Abstract
The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.
Collapse
Affiliation(s)
- Volkan Çevik
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. THE PLANT CELL 2012; 24:2898-916. [PMID: 22822206 PMCID: PMC3426122 DOI: 10.1105/tpc.112.098277] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 05/18/2023]
Abstract
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)-triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.
Collapse
|
82
|
Dorcey E, Rodriguez-Villalon A, Salinas P, Santuari L, Pradervand S, Harshman K, Hardtke CS. Context-dependent dual role of SKI8 homologs in mRNA synthesis and turnover. PLoS Genet 2012; 8:e1002652. [PMID: 22511887 PMCID: PMC3325215 DOI: 10.1371/journal.pgen.1002652] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/28/2012] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3–GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context. The production and turnover of messenger RNAs (mRNAs) are conserved processes in eukaryotes, from single-cell organisms to plants and mammals. To some degree, this is also true for modulators of these processes, such as the Paf1 and SKI complexes. One particular protein, SKI8, has been described to have a role in the SKI complex, which influences mRNA stability, both in yeast and in mammals. Moreover, in yeast SKI8 has an additional role in meiotic recombination, whereas in humans it influences mRNA production through association with the Paf1 complex. This functional divergence is commonly thought to arise from differences in protein sequence between the yeast and mammalian SKI8 homologs. Here we show that the conserved SKI8 homolog of the model plant Arabidopsis acts in the SKI complex as well as the Paf1 complex, similar to human. However, using an Arabidopsis ski8 mutant as a tool, we show that yeast SKI8 can fulfill all roles of Arabidopsis SKI8 if introduced into Arabidopsis cells. Thus, it appears that the functional divergence of SKI8 homologs might a priori be related to species-specific cellular context rather than divergence in protein sequence.
Collapse
Affiliation(s)
- Eavan Dorcey
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Paula Salinas
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Luca Santuari
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Pradervand
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
83
|
Imura Y, Kobayashi Y, Yamamoto S, Furutani M, Tasaka M, Abe M, Araki T. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:287-303. [PMID: 22247249 PMCID: PMC3278046 DOI: 10.1093/pcp/pcs002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/05/2012] [Indexed: 05/22/2023]
Abstract
The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative regulatory network has been proposed to create robustness as well as plasticity of the regulation. Although knowledge of key genes and their regulation has been accumulated, there still remains much to learn about how they are organized into an integrative regulatory network. Here, we have analyzed the CRYPTIC PRECOCIOUS (CRP) gene for the Arabidopsis counterpart of the MED12 subunit of the Mediator. A novel dominant mutant, crp-1D, which causes up-regulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL) and APETALA1 (AP1) expression in a FLOWERING LOCUS T (FT)-dependent manner, was identified in an enhancer screen of the early-flowering phenotype of 35S::FT. Genetic and molecular analysis of both crp-1D and crp loss-of-function alleles showed that MED12/CRP is required not only for proper regulation of SOC1, FUL and AP1, but also for up-regulation of FT, TWIN SISTER OF FT (TSF) and FD, and down-regulation of FLOWERING LOCUS C (FLC). These observations suggest that MED12/CRP is a novel flowering regulator with multiple regulatory target steps both upstream and downstream of the key flowering regulators including FT florigen. Our work, taken together with recent studies of other Mediator subunit genes, supports an emerging view that the Mediator plays multiple roles in the regulation of flowering.
Collapse
Affiliation(s)
- Yuri Imura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Kobayashi
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Sumiko Yamamoto
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Genome Informatics Laboratory, CIB-DDBJ, National Institute of Genetics, ROIS, Shizuoka, 411-8540 Japan
| | - Masahiko Furutani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101 Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101 Japan
| | - Mitsutomo Abe
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
- *Corresponding author: E-mail, ; Fax, +81-75-753-6470.
| |
Collapse
|
84
|
Xu R, Li Y. The Mediator complex subunit 8 regulates organ size in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:182-3. [PMID: 22353872 PMCID: PMC3405701 DOI: 10.4161/psb.18803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Control of final organ size is a fundamental and core process of development of all multicellular organisms, but the mechanisms that set the final size of determinate organs are largely unknown. In a recent study, we demonstrated that the Mediator complex subunit 25 (MED25/PFT1), which is involved in the transcriptional regulation of gene expression, controls the final size of determinate organs by restricting both cell proliferation and cell expansion. med25 mutants formed large organs with larger and slightly more cells, whereas plants overexpressing MED25 produced small organs due to a reduction in both cell number and cell size. Here, we show that a loss-of-function mutation in the Mediator complex subunit 8 (MED8) causes small flowers as a result of reduced cell expansion. Analysis of the med8 med25-2 double mutant reveals that MED8 acts independently of MED25 to regulate cell expansion and organ growth. Taken together, our findings show that MED8 and MED25 play an important role in regulating organ size. Further identification of upstream and downstream components of MED8 and MED25 will help understand how the Mediator complex is involved in organ size control in plants.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
- Graduate School; Chinese Academy of Sciences; Beijing, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
- * Correspondence to: Yunhai Li;
| |
Collapse
|
85
|
Mathur S, Vyas S, Kapoor S, Tyagi AK. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. PLANT PHYSIOLOGY 2011; 157:1609-27. [PMID: 22021418 PMCID: PMC3327187 DOI: 10.1104/pp.111.188300] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/20/2011] [Indexed: 05/20/2023]
Abstract
The Mediator (Med) complex relays regulatory information from DNA-bound transcription factors to the RNA polymerase II in eukaryotes. This macromolecular unit is composed of three core subcomplexes in addition to a separable kinase module. In this study, conservation of Meds has been investigated in 16 plant species representing seven diverse groups across the plant kingdom. Using Hidden Markov Model-based conserved motif searches, we have identified all the known yeast/metazoan Med components in one or more plant groups, including the Med26 subunits, which have not been reported so far for any plant species. We also detected orthologs for the Arabidopsis (Arabidopsis thaliana) Med32, -33, -34, -35, -36, and -37 in all the plant groups, and in silico analysis identified the Med32 and Med33 subunits as apparent orthologs of yeast/metazoan Med2/29 and Med5/24, respectively. Consequently, the plant Med complex appears to be composed of one or more members of 34 subunits, as opposed to 25 and 30 members in yeast and metazoans, respectively. Despite low similarity in primary Med sequences between the plants and their fungal/metazoan partners, secondary structure modeling of these proteins revealed a remarkable similarity between them, supporting the conservation of Med organization across kingdoms. Phylogenetic analysis between plant, human, and yeast revealed single clade relatedness for 29 Med genes families in plants, plant Meds being closer to human than to yeast counterparts. Expression profiling of rice (Oryza sativa) and Arabidopsis Med genes reveals that Meds not only act as a basal regulator of gene expression but may also have specific roles in plant development and under abiotic stress conditions.
Collapse
|
86
|
Wang F, Wei H, Tong Z, Zhang X, Yang Z, Lan T, Duan Y, Wu W. Knockdown of NtMed8, a Med8-like gene, causes abnormal development of vegetative and floral organs in tobacco (Nicotiana tabacum L.). PLANT CELL REPORTS 2011; 30:2117-29. [PMID: 21744120 DOI: 10.1007/s00299-011-1118-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/08/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Med8, a subunit of mediator complex, has proved to possess crucial functions in many organisms from yeast to human. In plant, the med8 mutant of Arabidopsis thaliana displayed delayed anthesis and increased number of leaves during the vegetative period. However, the roles of Med8 in other flowering plants are still unknown. To investigate the function of Med8 ortholog in tobacco (Nicotiana tabacum L.; named as NtMed8), we created transgenic tobacco plants with repressed NtMed8 expression mediated by RNA interference (RNAi). Compared with the wild type, the NtMed8-RNAi plants exhibited: more leaves with smaller but thicker blades; larger cells and vascular bundles with lower stomata density in leaves; swelled chloroplasts with thicker and lumen-enlarged thylakoids; weaker root system with fewer lateral roots; larger flowers and floral organs; flowering earlier under long day, but later under short day conditions; and male sterile with larger but less germinable pollens. In addition, quantitative RT-PCR indicated that NtMed8 is expressed in both vegetative and floral tissues. Subcellular localization analysis by transient expression of fusion protein in Nicotiana benthamiana leaves showed that NtMed8 was located in both plasma membrane and nucleus. These results suggest that NtMed8 plays important roles in both vegetative and reproductive development, and the function of Med8 appears to be, at least partially, conserved in flowering plants.
Collapse
Affiliation(s)
- Fengqing Wang
- College of Agriculture and Biotechnology, Zhejiang University, 310029, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K. Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 2011; 22:741-8. [DOI: 10.1016/j.semcdb.2011.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
|
88
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
89
|
Ito J, Sono T, Tasaka M, Furutani M. MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:539-552. [PMID: 21257604 DOI: 10.1093/pcp/pcr013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phytohormone auxin is a key regulator of organogenesis in plants and is distributed asymmetrically via polar transport. However, the precise mechanisms underlying auxin-mediated organogenesis remain elusive. Here, we have analyzed the macchi-bou 2 (mab2) mutant identified in a pinoid (pid) enhancer mutant screen. Seedlings homozygous for either mab2 or pid showed only mild phenotypic effects on cotyledon positions and/or numbers. In contrast, mab2 pid double mutant seedlings completely lacked cotyledons, indicating a synergistic interaction. We found that mab2 homozygous embryos had defective patterns of cell division and showed aberrant cotyledon organogenesis. Further analysis revealed that the mab2 mutation affected auxin response but not auxin transport in the embryos, suggesting the involvement of MAB2 in auxin response during embryogenesis. MAB2 encodes an Arabidopsis ortholog of MED13, a putative regulatory module component of the Mediator complex. Mediator is a multicomponent complex that is evolutionarily conserved in eukaryotes and its regulatory module associates with Mediator to control the interaction of Mediator and RNA polymerase II. MAB2 interacts with a regulatory module component in yeast cells. Taken together, our data suggest that MAB2 plays a crucial role in embryo patterning and cotyledon organogenesis, possibly through modulating expression of specific genes such as auxin-responsive genes.
Collapse
Affiliation(s)
- Jun Ito
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101 Japan
| | | | | | | |
Collapse
|
90
|
De Smet I, Beeckman T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 2011; 12:177-88. [PMID: 21346731 DOI: 10.1038/nrm3064] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
91
|
Szakonyi D, Byrne ME. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:269-81. [PMID: 21223391 DOI: 10.1111/j.1365-313x.2010.04422.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ribosomal proteins are integral to ribosome biogenesis, and function in protein synthesis. In higher eukaryotes, loss of cytoplasmic ribosomal proteins results in a reduced growth rate as well as developmental defects. To what extent and how ribosomal proteins affect development is currently not known. Here we describe a semi-dominant mutation in the cytoplasmic ribosomal protein gene RPL27aC that affects multiple aspects of plant shoot development, including leaf patterning, inflorescence and floral meristem function, and seed set. In the embryo, RPL27aC is required to maintain the growth rate and for the transition from radial to bilateral symmetry associated with initiation of cotyledons. rpl27ac-1d embryos undergo stereotypical patterning to establish a globular embryo. However, a temporal delay in initiation and outgrowth of cotyledon primordia leads to development of an enlarged globular embryo prior to apical domain patterning. Defects in embryo development are coincident with tissue-specific ectopic expression of the shoot meristem genes SHOOT MERISTEMLESS (STM) and CUP-SHAPED COTYLEDON2 (CUC2), in addition to delayed expression of the abaxial gene FILAMENTOUS FLOWER (FIL) and mis-regulation of the auxin efflux effector PIN-FORMED1 (PIN1). Genetic interactions with other ribosomal protein mutants indicate that RPL27aC is a component of the ribosome. We propose that RPL27aC regulates discrete developmental events by controlling spatial and temporal expression of developmental patterning genes via an as yet undefined process involving the ribosome.
Collapse
|
92
|
Kidd BN, Aitken EA, Schenk PM, Manners JM, Kazan K. Plant mediator: mediating the jasmonate response. PLANT SIGNALING & BEHAVIOR 2010; 5:718-20. [PMID: 20383062 PMCID: PMC3001569 DOI: 10.4161/psb.5.6.11647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 05/19/2023]
Abstract
Jasmonate (JA) signaling plays an important role in regulating both plant defense and development. We have recently reported that the phytochrome and flowering time1 (PFT1) gene, which encodes the mediator25 subunit of the plant Mediator complex, is a key regulator of JA regulated transcription. We showed that the pft1 mutant had attenuated expression of a wide range of JA responsive genes and altered resistance to fungal pathogens. Here we examine the position of PFT1/MED25 within the JA pathway and discuss its role in "mediating" the JA response.
Collapse
Affiliation(s)
- Brendan N Kidd
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | | | | | | | | |
Collapse
|
93
|
Abstract
Most leaves are dorsiventrally flattened and develop clearly defined upper and lower surfaces. Light capturing is the specialization of the adaxial or upper surface and the abaxial or lower surface is specialized for gas exchange (Fig. 5.1). This division into adaxial and abaxial domains is also key for the outgrowth of the leaf blade or lamina, which occurs along the boundary between the upper and lower sides. How this polarity is set up is not clear but genetic analysis in a range of species suggests that several highly conserved interlocking pathways are involved. Positional information from the meristem is reinforced by signaling through the epidermal layer as the meristem grows away from the leaf primordium. Opposing ta-siRNA and miRNA gradients help refine distinct adaxial and abaxial sides, and mutual inhibition between the genes expressed on each side stabilizes the boundary. In this review we consider how recent work in a range of species is clarifying our understanding of these processes.
Collapse
|