51
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
52
|
He M, Bian Z. Association Between DLX4 Polymorphisms and Nonsyndromic Orofacial Clefts in a Chinese Han Population. Cleft Palate Craniofac J 2018; 56:357-362. [PMID: 29738288 DOI: 10.1177/1055665618775723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Distal-less 4 ( DLX4) was recently identified as the causative gene for a syndromic form of cleft lip with or without cleft palate, and further biological analyses have established the importance of Dlx4 gene in craniofacial development, which suggested DLX4 as a promising candidate to further investigate any possible association between DLX4 polymorphisms and risk to nonsyndromic orofacial clefts (NSOFCs). DESIGN Single-nucleotide polymorphisms (SNPs) with minor allele frequency >5% in the Han Chinese population which locate in the 5' flanking region, 5'/3'-untranslated region, or coding region with nonsynonymous changes in DLX4 were selected. Four SNPs (rs58769681, rs1058562, rs1058564, and rs8066341) were thus included in the following genotyping using the TaqMan 5'-exonuclease allelic discrimination assay in a case-control cohort with 1522 individuals. RESULTS None of SNPs were associated with NSOFCat the allele and genotype levels in general and stratified single-marker analysis, including genotypic distributions under different modes of inheritance. In linkage disequilibrium (LD) analysis, we found strong LD ( r2 > 0.8) between any 2 of the SNPs, respectively. Further haplotyping identified haplotypes C-C (formed by rs1058564 and rs1058562) and C-C-A (formed by rs1058564, rs1058562, and rs58769681) which reached the significance threshold ( P < .05); nevertheless, none of them survived the multiple comparison correction. CONCLUSIONS Our findings indicated the hypothesis that DLX4 variants contributing to NSOFC risk should be interpreted with caution. Further replications in diverse ethnic origins and larger cohorts are still warranted.
Collapse
Affiliation(s)
- Miao He
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhuan Bian
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
53
|
Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate Upper Jaw. Dev Cell 2018; 44:337-347.e5. [PMID: 29358039 PMCID: PMC5801120 DOI: 10.1016/j.devcel.2017.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023]
Abstract
The jaw is central to the extensive variety of feeding and predatory behaviors across vertebrates. The bones of the lower but not upper jaw form around an early-developing cartilage template. Whereas Endothelin1 patterns the lower jaw, the factors that specify upper-jaw morphology remain elusive. Here, we identify Nuclear Receptor 2f genes (Nr2fs) as enriched in and required for upper-jaw formation in zebrafish. Combinatorial loss of Nr2fs transforms maxillary components of the upper jaw into lower-jaw-like structures. Conversely, nr2f5 misexpression disrupts lower-jaw development. Genome-wide analyses reveal that Nr2fs repress mandibular gene expression and early chondrogenesis in maxillary precursors. Rescue of lower-jaw defects in endothelin1 mutants by reducing Nr2f dosage further demonstrates that Nr2f expression must be suppressed for normal lower-jaw development. We propose that Nr2fs shape the upper jaw by protecting maxillary progenitors from early chondrogenesis, thus preserving cells for later osteogenesis.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pauline Rataud
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kasra Behizad
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Del Rio
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Samuel G Cox
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
54
|
Askary A, Xu P, Barske L, Bay M, Bump P, Balczerski B, Bonaguidi MA, Crump JG. Genome-wide analysis of facial skeletal regionalization in zebrafish. Development 2017; 144:2994-3005. [PMID: 28705894 DOI: 10.1242/dev.151712] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Patterning of the facial skeleton involves the precise deployment of thousands of genes in distinct regions of the pharyngeal arches. Despite the significance for craniofacial development, how genetic programs drive this regionalization remains incompletely understood. Here we use combinatorial labeling of zebrafish cranial neural crest-derived cells (CNCCs) to define global gene expression along the dorsoventral axis of the developing arches. Intersection of region-specific transcriptomes with expression changes in response to signaling perturbations demonstrates complex roles for Endothelin 1 (Edn1) signaling in the intermediate joint-forming region, yet a surprisingly minor role in ventralmost regions. Analysis of co-variance across multiple sequencing experiments further reveals clusters of co-regulated genes, with in situ hybridization confirming the domain-specific expression of novel genes. We then created loss-of-function alleles for 12 genes and uncovered antagonistic functions of two new Edn1 targets, follistatin a (fsta) and emx2, in regulating cartilaginous joints in the hyoid arch. Our unbiased discovery and functional analysis of genes with regional expression in zebrafish arch CNCCs reveals complex regulation by Edn1 and points to novel candidates for craniofacial disorders.
Collapse
Affiliation(s)
- Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Pengfei Xu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul Bump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Bartosz Balczerski
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
55
|
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 2017; 427:219-229. [DOI: 10.1016/j.ydbio.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023]
|
56
|
Tavares ALP, Cox TC, Maxson RM, Ford HL, Clouthier DE. Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development. Development 2017; 144:2021-2031. [PMID: 28455376 DOI: 10.1242/dev.145144] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Jaw morphogenesis is a complex event mediated by inductive signals that establish and maintain the distinct developmental domains required for formation of hinged jaws, the defining feature of gnathostomes. The mandibular portion of pharyngeal arch 1 is patterned dorsally by Jagged-Notch signaling and ventrally by endothelin receptor A (EDNRA) signaling. Loss of EDNRA signaling disrupts normal ventral gene expression, the result of which is homeotic transformation of the mandible into a maxilla-like structure. However, loss of Jagged-Notch signaling does not result in significant changes in maxillary development. Here we show in mouse that the transcription factor SIX1 regulates dorsal arch development not only by inducing dorsal Jag1 expression but also by inhibiting endothelin 1 (Edn1) expression in the pharyngeal endoderm of the dorsal arch, thus preventing dorsal EDNRA signaling. In the absence of SIX1, but not JAG1, aberrant EDNRA signaling in the dorsal domain results in partial duplication of the mandible. Together, our results illustrate that SIX1 is the central mediator of dorsal mandibular arch identity, thus ensuring separation of bone development between the upper and lower jaws.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy C Cox
- Department of Pediatrics (Craniofacial Medicine), University of Washington, and Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Robert M Maxson
- Department of Biochemistry and Molecular Biology and Norris Cancer Center, University of Southern California, Los Angeles, CA 87654, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
57
|
Iklé JM, Tavares ALP, King M, Ding H, Colombo S, Firulli BA, Firulli AB, Targoff KL, Yelon D, Clouthier DE. Nkx2.5 regulates endothelin converting enzyme-1 during pharyngeal arch patterning. Genesis 2017; 55. [PMID: 28109039 DOI: 10.1002/dvg.23021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
In gnathostomes, dorsoventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches is crucial for the development of hinged jaws. One of the key signals that mediate this process is Endothelin-1 (EDN1). Loss of EDN1 binding to the Endothelin-A receptor (EDNRA) results in loss of EDNRA signaling and subsequent facial birth defects in humans, mice and zebrafish. A rate-limiting step in this crucial signaling pathway is the conversion of immature EDN1 into a mature active form by Endothelin converting enzyme-1 (ECE1). However, surprisingly little is known about how Ece1 transcription is induced or regulated. We show here that Nkx2.5 is required for proper craniofacial development in zebrafish and acts in part by upregulating ece1 expression. Disruption of nkx2.5 in zebrafish embryos results in defects in both ventral and dorsal pharyngeal arch-derived elements, with changes in ventral arch gene expression consistent with a disruption in Ednra signaling. ece1 mRNA rescues the nkx2.5 morphant phenotype, indicating that Nkx2.5 functions through modulating Ece1 expression or function. These studies illustrate a new function for Nkx2.5 in embryonic development and provide new avenues with which to pursue potential mechanisms underlying human facial disorders.
Collapse
Affiliation(s)
- Jennifer M Iklé
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Marisol King
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Hailei Ding
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Sophie Colombo
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Beth A Firulli
- Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indianapolis, 46202
| | - Anthony B Firulli
- Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indianapolis, 46202
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, 92093
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| |
Collapse
|
58
|
Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 2017; 6:e20707. [PMID: 28117666 PMCID: PMC5302885 DOI: 10.7554/elife.20707] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | - Giles W Goetz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
59
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
60
|
Nichols JT, Blanco-Sánchez B, Brooks EP, Parthasarathy R, Dowd J, Subramanian A, Nachtrab G, Poss KD, Schilling TF, Kimmel CB. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development 2016; 143:4430-4440. [PMID: 27789622 PMCID: PMC5201047 DOI: 10.1242/dev.141036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Heightened phenotypic variation among mutant animals is a well-known, but poorly understood phenomenon. One hypothetical mechanism accounting for mutant phenotypic variation is progenitor cells variably choosing between two alternative fates during development. Zebrafish mef2cab1086 mutants develop tremendously variable ectopic bone in their hyoid craniofacial skeleton. Here, we report evidence that a key component of this phenotype is variable fate switching from ligament to bone. We discover that a 'track' of tissue prone to become bone cells is a previously undescribed ligament. Fate-switch variability is heritable, and comparing mutant strains selectively bred to high and low penetrance revealed differential mef2ca mutant transcript expression between high and low penetrance strains. Consistent with this, experimental manipulation of mef2ca mutant transcripts modifies the penetrance of the fate switch. Furthermore, we discovered a transposable element that resides immediately upstream of the mef2ca locus and is differentially DNA methylated in the two strains, correlating with differential mef2ca expression. We propose that variable transposon epigenetic silencing underlies the variable mef2ca mutant bone phenotype, and could be a widespread mechanism of phenotypic variability in animals.
Collapse
Affiliation(s)
- James T Nichols
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Elliott P Brooks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - John Dowd
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory Nachtrab
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Charles B Kimmel
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
61
|
Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, Yu Y, Pham A, Bhandari A, Wang B, Nissen RM. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS One 2016; 11:e0166984. [PMID: 27880803 PMCID: PMC5120840 DOI: 10.1371/journal.pone.0166984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
Collapse
Affiliation(s)
- Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Greg Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robin Shang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Taryn Whitman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Andrew Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Annie Pham
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Anish Bhandari
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Bingyan Wang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Tussellino M, Ronca R, Carotenuto R, Pallotta MM, Furia M, Capriglione T. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:630-640. [PMID: 27669663 DOI: 10.1002/em.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margherita Tussellino
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Raffaele Ronca
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Rosa Carotenuto
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria M Pallotta
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria Furia
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Teresa Capriglione
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy.
| |
Collapse
|
63
|
Talbot JC, Nichols JT, Yan YL, Leonard IF, BreMiller RA, Amacher SL, Postlethwait JH, Kimmel CB. Pharyngeal morphogenesis requires fras1-itga8-dependent epithelial-mesenchymal interaction. Dev Biol 2016; 416:136-148. [PMID: 27265864 PMCID: PMC4967372 DOI: 10.1016/j.ydbio.2016.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.
Collapse
Affiliation(s)
- Jared Coffin Talbot
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA; Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| | - James T Nichols
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Yi-Lin Yan
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Isaac F Leonard
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Ruth A BreMiller
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
64
|
Askary A, Smeeton J, Paul S, Schindler S, Braasch I, Ellis NA, Postlethwait J, Miller CT, Crump JG. Ancient origin of lubricated joints in bony vertebrates. eLife 2016; 5. [PMID: 27434666 PMCID: PMC4951194 DOI: 10.7554/elife.16415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/20/2016] [Indexed: 01/30/2023] Open
Abstract
Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease. DOI:http://dx.doi.org/10.7554/eLife.16415.001 We owe our flexibility to the lubricated joints that connect the bones of our body. Unfortunately, these joints tend to deteriorate over time, leading to a condition called osteoarthritis that affects millions of people. Scientists had thought that lubricated joints first evolved when backboned animals started walking on land, with fish lacking these types of joints. However, by studying zebrafish, Askary, Smeeton et al. now show that fish do have lubricated joints; in fact, the joints in the jaw and fins of zebrafish have a similar structure to those in humans. These zebrafish joints make an important protein called Lubricin that is known to lubricate joints in mice and humans. Furthermore, analyzing two other fish species – a stickleback and a primitive fish called a spotted gar – revealed that fish joints in general produce Lubricin. This pushes back the evolutionary origins of lubricated joints millions of years, to at least the common ancestor of all backboned animals. Next, Askary, Smeeton et al. used a new type of molecular scissors to eliminate the ability of zebrafish to produce Lubricin. These mutant fish developed the same early onset arthritis as mice and humans that lack Lubricin. Studying such fish should allow new approaches to be developed that will help us to understand how debilitating joint diseases progress. As zebrafish are highly regenerative, future studies could also explore whether they can regenerate damaged joints, which could spur new strategies for treating and reversing arthritis. DOI:http://dx.doi.org/10.7554/eLife.16415.002
Collapse
Affiliation(s)
- Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Simone Schindler
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, United States.,Department of Integrative Biology and Program in Ecology, Michigan State University, East Lansing, United States.,Department of Evolutionary Biology and Behavior, Michigan State University, East Lansing, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| |
Collapse
|
65
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
66
|
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet 2016; 12:e1005967. [PMID: 27058748 PMCID: PMC4825933 DOI: 10.1371/journal.pgen.1005967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. The exquisite functions of the vertebrate face require the precise formation of its underlying bones. Remarkably, many of the genes required to shape the facial skeleton are the same from fish to man. In this study, we use the powerful zebrafish system to understand how the skeletal components of the face acquire different shapes during development. To do so, we analyze a series of mutants that disrupt patterning of the facial skeleton, and then assess how the genes affected in these mutants control cell fate in skeletal progenitor cells. From these genetic studies, we found that several pathways converge to control when and where progenitor cells commit to a cartilage fate, thus controlling the size and shape of cartilage templates for the later-arising bones. Our work thus reveals how regulating the timing of when progenitor cells make skeleton helps to shape the bones of the zebrafish face. As mutations in many of the genes studied are implicated in human craniofacial defects, differences in the timing of progenitor cell differentiation may also explain the wonderful diversity of human faces.
Collapse
|
67
|
Bendall AJ. Direct evidence of allele equivalency at the Dlx5/6 locus. Genesis 2016; 54:272-6. [PMID: 26953501 DOI: 10.1002/dvg.22934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/02/2023]
Abstract
The retention of paralogous regulatory genes is a vertebrate hallmark and likely underpinned vertebrate origins. Dlx genes belong to a family of paralogous transcription factors whose evolutionary history of gene expansion and divergence is apparent from the gene synteny, shared exon-intron structure, and coding sequence homology found in extant vertebrate genomes. Dlx genes are expressed in a nested combination within the first pharyngeal arch and knockout studies in mice clearly point to a "Dlx code" that operates to define maxillary and mandibular position in the first arch. The nature of that code is not yet clear; an important goal for understanding Dlx gene function in both patterning and differentiation lies in distinguishing functional inputs that are paralog-specific (a qualitative model) versus Dlx family-generic (a quantitative model) and, in the latter case, the relative contribution made by each paralog. Here, multiple developmental deficiencies were identified in derivatives of the first pharyngeal arch in neonatal Dlx5/6(+/-) mice that resembled those seen in either paralog-specific null mutants. These data clearly demonstrate a substantial degree of allele equivalency and support a quantitative model of Dlx function during craniofacial morphogenesis. genesis 54:272-276, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
68
|
Askary A, Mork L, Paul S, He X, Izuhara AK, Gopalakrishnan S, Ichida JK, McMahon AP, Dabizljevic S, Dale R, Mariani FV, Crump JG. Iroquois Proteins Promote Skeletal Joint Formation by Maintaining Chondrocytes in an Immature State. Dev Cell 2016; 35:358-65. [PMID: 26555055 DOI: 10.1016/j.devcel.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022]
Abstract
An early event in skeletal joint development is the specification of articular chondrocytes at the joint surface. Articular chondrocytes are distinct in producing lower levels of cartilage matrix and not being replaced by bone, yet how they acquire these properties remains poorly understood. Here, we show that two members of the Iroquois transcriptional repressor family, Irx7 and Irx5a, function to block chondrocyte maturation at the developing hyoid joint of zebrafish. These Irx factors suppress the production of cartilage matrix at the joint in part by preventing the activation of a col2a1a enhancer by Sox9a. Further, both zebrafish Irx7 and mouse IRX1 are able to repress cartilage matrix production in a murine chondrogenic cell line. Iroquois proteins may therefore have a conserved role in keeping chondrocytes in an immature state, with the lower levels of cartilage matrix produced by these immature cells contributing to joint flexibility.
Collapse
Affiliation(s)
- Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey Mork
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Sandeep Paul
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Xinjun He
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Audrey K Izuhara
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Suhasni Gopalakrishnan
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K Ichida
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P McMahon
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Sonja Dabizljevic
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Rodney Dale
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Francesca V Mariani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
69
|
Abstract
Proper control of the temporal onset of cellular differentiation is critical for regulating cell lineage decisions and morphogenesis during development. Pbx homeodomain transcription factors have emerged as important regulators of cellular differentiation. We previously showed, by using antisense morpholino knockdown, that Pbx factors are needed for the timely activation of myocardial differentiation in zebrafish. In order to gain further insight into the roles of Pbx factors in heart development, we show here that zebrafish pbx4 mutant embryos exhibit delayed onset of myocardial differentiation, such as delayed activation of tnnt2a expression in early cardiomyocytes in the anterior lateral plate mesoderm. We also observe delayed myocardial morphogenesis and dysmorphic patterning of the ventricle and atrium, consistent with our previous Pbx knock-down studies. In addition, we find that pbx4 mutant larvae have aberrant outflow tracts and defective expression of the proepicardial marker tbx18. Finally, we present evidence for Pbx expression in cardiomyocyte precursors as well as heterogeneous Pbx expression among the pan-cytokeratin-expressing proepicardial cells near the developing ventricle. In summary, our data show that Pbx4 is required for the proper temporal activation of myocardial differentiation and establish a basis for studying additional roles of Pbx factors in heart development.
Collapse
|
70
|
Mariotti M, Carnovali M, Banfi G. Danio rerio: the Janus of the bone from embryo to scale. ACTA ACUST UNITED AC 2015; 12:188-94. [PMID: 26604948 DOI: 10.11138/ccmbm/2015.12.2.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Danio rerio (zebrafish), like the Roman god Janus, is an old animal model which is recently emerged and looks to the future with an increasing scientific success. Unlike other traditional animal models, zebrafish represents a versatile way to approach the study of the skeleton. Transparency of the larval stage, genetic manipulability and unique anatomical structures (scales) makes zebrafish a powerful and versatile instrument to investigate the bone tissue in terms of structure and function. Like Janus, zebrafish offers two different faces, or better, two models in one animal: larval and adult stage. The embryo can be used to isolate new genes involved in osteogenesis by large-scale mutagenesis screenings. The behavior of bone cells and genes in osteogenesis can be investigate by using transgenic lines, vital dyes, mutants and traditional molecular biology techniques. The adult zebrafish represents an important resource to study the pathways related to the bone metabolism and turnover. In particular, the properties of the caudal fin allow to study mechanisms of bone regeneration and reparation whereas the elasmoid scale represents an unique tool to investigate the bone metabolism under physiological or pathological conditions.
Collapse
Affiliation(s)
- Massimo Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy ; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
71
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
72
|
Tavares ALP, Artinger KB, Clouthier DE. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis. Curr Top Dev Biol 2015; 115:335-75. [PMID: 26589932 DOI: 10.1016/bs.ctdb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defects in craniofacial development represent a majority of observed human birth defects, occurring at a rate as high as 1:800 live births. These defects often occur due to changes in neural crest cell (NCC) patterning and development and can affect non-NCC-derived structures due to interactions between NCCs and the surrounding cell types. Proper craniofacial development requires an intricate array of gene expression networks that are tightly controlled spatiotemporally by a number of regulatory mechanisms. One of these mechanisms involves the action of microRNAs (miRNAs), a class of noncoding RNAs that repress gene expression by binding to miRNA recognition sequences typically located in the 3' UTR of target mRNAs. Recent evidence illustrates that miRNAs are crucial for vertebrate facial morphogenesis, with changes in miRNA expression leading to facial birth defects, including some in complex human syndromes such as 22q11 (DiGeorge Syndrome). In this review, we highlight the current understanding of miRNA biogenesis, the roles of miRNAs in overall craniofacial development, the impact that loss of miRNAs has on normal development and the requirement for miRNAs in the development of specific craniofacial structures, including teeth. From these studies, it is clear that miRNAs are essential for normal facial development and morphogenesis, and a potential key in establishing new paradigms for repair and regeneration of facial defects.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
73
|
Brunt LH, Norton JL, Bright JA, Rayfield EJ, Hammond CL. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. J Biomech 2015; 48:3112-22. [PMID: 26253758 PMCID: PMC4601018 DOI: 10.1016/j.jbiomech.2015.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development.
Collapse
Affiliation(s)
- Lucy H Brunt
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Joanna L Norton
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Jen A Bright
- School of Earth Sciences, University of Bristol, BS8 1RJ Bristol, United Kingdom
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, BS8 1RJ Bristol, United Kingdom
| | - Chrissy L Hammond
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom.
| |
Collapse
|
74
|
Wu D, Mandal S, Choi A, Anderson A, Prochazkova M, Perry H, Gil-Da-Silva-Lopes VL, Lao R, Wan E, Tang PLF, Kwok PY, Klein O, Zhuan B, Slavotinek AM. DLX4 is associated with orofacial clefting and abnormal jaw development. Hum Mol Genet 2015; 24:4340-52. [PMID: 25954033 DOI: 10.1093/hmg/ddv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.
Collapse
Affiliation(s)
- Di Wu
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex Choi
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - August Anderson
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michaela Prochazkova
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v.i., Prague, Czech Republic, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Hazel Perry
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Pui-yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Bian Zhuan
- Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA,
| |
Collapse
|
75
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
76
|
Yu JC, Fox ZD, Crimp JL, Littleford HE, Jowdry AL, Jackman WR. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis. Dev Dyn 2015; 244:577-90. [PMID: 25645398 DOI: 10.1002/dvdy.24258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. RESULTS We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation, we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. CONCLUSIONS We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size.
Collapse
Affiliation(s)
- Jeffrey C Yu
- Biology Department, Bowdoin College, Brunswick, Maine
| | | | | | | | | | | |
Collapse
|
77
|
Merkes C, Turkalo TK, Wilder N, Park H, Wenger LW, Lewin SJ, Azuma M. Ewing sarcoma ewsa protein regulates chondrogenesis of Meckel's cartilage through modulation of Sox9 in zebrafish. PLoS One 2015; 10:e0116627. [PMID: 25617839 PMCID: PMC4305327 DOI: 10.1371/journal.pone.0116627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is the second most common skeletal (bone and cartilage) cancer in adolescents, and it is characterized by the expression of the aberrant chimeric fusion gene EWS/FLI1. Wild-type EWS has been proposed to play a role in mitosis, splicing and transcription. We have previously shown that EWS/FLI1 interacts with EWS, and it inhibits EWS activity in a dominant manner. Ewing sarcoma is a cancer that specifically develops in skeletal tissues, and although the above data suggests the significance of EWS, its role in chondrogenesis/skeletogenesis is not understood. To elucidate the function of EWS in skeletal development, we generated and analyzed a maternal zygotic (MZ) ewsa/ewsa line because the ewsa/wt and ewsa/ewsa zebrafish appeared to be normal and fertile. Compared with wt/wt, the Meckel's cartilage of MZ ewsa/ewsa mutants had a higher number of craniofacial prehypertrophic chondrocytes that failed to mature into hypertrophic chondrocytes at 4 days post-fertilization (dpf). Ewsa interacted with Sox9, which is the master transcription factor for chondrogenesis. Sox9 target genes were either upregulated (ctgfa, ctgfb, col2a1a, and col2a1b) or downregulated (sox5, nog1, nog2, and bmp4) in MZ ewsa/ewsa embryos compared with the wt/wt zebrafish embryos. Among these Sox9 target genes, the chromatin immunoprecipitation (ChIP) experiment demonstrated that Ewsa directly binds to ctgfa and ctgfb loci. Consistently, immunohistochemistry showed that the Ctgf protein is upregulated in the Meckel's cartilage of MZ ewsa/ewsa mutants. Together, we propose that Ewsa promotes the differentiation from prehypertrophic chondrocytes to hypertrophic chondrocytes of Meckel's cartilage through inhibiting Sox9 binding site of the ctgf gene promoter. Because Ewing sarcoma specifically develops in skeletal tissue that is originating from chondrocytes, this new role of EWS may provide a potential molecular basis of its pathogenesis.
Collapse
Affiliation(s)
- Chris Merkes
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Timothy K. Turkalo
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Nicole Wilder
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Hyewon Park
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Luke W. Wenger
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Seth J. Lewin
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Mizuki Azuma
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
- * E-mail:
| |
Collapse
|
78
|
Jackson HW, Prakash D, Litaker M, Ferreira T, Jezewski PA. Zebrafish Wnt9b Patterns the First Pharyngeal Arch into D-I-V Domains and Promotes Anterior-Medial Outgrowth. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.53006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Klarić T, Lardelli M, Key B, Koblar S, Lewis M. Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Front Neuroanat 2014; 8:148. [PMID: 25538572 PMCID: PMC4255624 DOI: 10.3389/fnana.2014.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
In rodents, the Npas4 gene has recently been identified as being an important regulator of synaptic plasticity and memory. Homologs of Npas4 have been found in invertebrate species though their functions appear to be too divergent for them to be studied as a proxy for the mammalian proteins. The aim of this study, therefore, was to ascertain the suitability of the zebrafish as a model organism for investigating the function of Npas4 genes. We show here that the expression and regulation of the zebrafish Npas4 homolog, npas4a, is remarkably similar to that of the rodent Npas4 genes. As in mammals, expression of the zebrafish npas4a gene is restricted to the brain where it is up-regulated in response to neuronal activity. Furthermore, we also show that knockdown of npas4a during embryonic development results in a number of forebrain-specific defects including increased apoptosis and misexpression of the forebrain marker genes dlx1a and shha. Our work demonstrates that the zebrafish is a suitable model organism for investigating the role of the npas4a gene and one that is likely to provide valuable insights into the function of the mammalian homologs. Furthermore, our findings highlight a potential role for npas4a in forebrain development.
Collapse
Affiliation(s)
- Thomas Klarić
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Brian Key
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Simon Koblar
- School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Martin Lewis
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
80
|
Square T, Jandzik D, Cattell M, Coe A, Doherty J, Medeiros DM. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Dev Biol 2014; 397:293-304. [PMID: 25446275 DOI: 10.1016/j.ydbio.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element differentiation can be clearly linked to the evolution of novel skeletal elements. We posit that changes in the expression of downstream regulators of skeletal differentiation, like barx1 and gdf5, is one mechanism by which head skeletal element number and articulation are altered during evolution.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Alex Coe
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jacob Doherty
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
81
|
Kimmel CB. Skull developmental modularity: a view from a single bone - or two. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2014; 30:600-607. [PMID: 25294950 PMCID: PMC4185205 DOI: 10.1111/jai.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
I review recent studies that connect development and evolution of skull bones in teleosts. Development uses genetic information to build a structured, modular phenotype, and since selection acts on the phenotype, developmental modularity may influence evolvability. Just how is a complex developing morphology spatially partitioned into modules? Here I briefly examine cellular, molecular genetic, and multivariate statistical approaches to the identification of developmental modules. Furthermore I review our evidence that developmental modularity provides evolutionarily labile regions within the skull and hence potentially biases evolutionary change in a positive manner. This view is rather different from early ones in the field of evolutionary developmental biology, in which developmental constraint due to patterns such as heterochronies were supposed to negatively impact evolution.
Collapse
|
82
|
Abstract
Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system.
Collapse
Affiliation(s)
- Jessica W Chen
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
83
|
Heude É, Shaikho S, Ekker M. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures. PLoS One 2014; 9:e98505. [PMID: 24858471 PMCID: PMC4032342 DOI: 10.1371/journal.pone.0098505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.
Collapse
Affiliation(s)
- Églantine Heude
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
84
|
DeLaurier A, Huycke TR, Nichols JT, Swartz ME, Larsen A, Walker C, Dowd J, Pan L, Moens CB, Kimmel CB. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol 2014; 385:189-99. [PMID: 24269905 PMCID: PMC3892954 DOI: 10.1016/j.ydbio.2013.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.
Collapse
Affiliation(s)
- April DeLaurier
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Tyler R Huycke
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - James T Nichols
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Mary E Swartz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Ashlin Larsen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Charline Walker
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Dowd
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Luyuan Pan
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
85
|
Akiyama R, Kawakami H, Taketo MM, Evans SM, Wada N, Petryk A, Kawakami Y. Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the β-catenin pathway. Dev Biol 2014; 387:37-48. [PMID: 24424161 DOI: 10.1016/j.ydbio.2014.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Isl1 expression marks progenitor populations in developing embryos. In this study, we investigated the contribution of Isl1-expressing cells that utilize the β-catenin pathway to skeletal development. Inactivation of β-catenin in Isl1-expressing cells caused agenesis of the hindlimb skeleton and absence of the lower jaw (agnathia). In the hindlimb, Isl1-lineages broadly contributed to the mesenchyme; however, deletion of β-catenin in the Isl1-lineage caused cell death only in a discrete posterior domain of nascent hindlimb bud mesenchyme. We found that the loss of posterior mesenchyme, which gives rise to Shh-expressing posterior organizer tissue, caused loss of posterior gene expression and failure to expand chondrogenic precursor cells, leading to severe truncation of the hindlimb. In facial tissues, Isl1-expressing cells broadly contributed to facial epithelium. We found reduced nuclear β-catenin accumulation and loss of Fgf8 expression in mandibular epithelium of Isl1(-/-) embryos. Inactivating β-catenin in Isl1-expressing epithelium caused both loss of epithelial Fgf8 expression and death of mesenchymal cells in the mandibular arch without affecting epithelial proliferation and survival. These results suggest a Isl1→β-catenin→Fgf8 pathway that regulates mesenchymal survival and development of the lower jaw in the mandibular epithelium. By contrast, activating β-catenin signaling in Isl1-lineages caused activation of Fgf8 broadly in facial epithelium. Our results provide evidence that, despite its broad contribution to hindlimb mesenchyme and facial epithelium, the Isl1-β-catenin pathway regulates skeletal development of the hindlimb and lower jaw through discrete populations of cells that give rise to Shh-expressing posterior hindlimb mesenchyme and Fgf8-expressing mandibular epithelium.
Collapse
Affiliation(s)
- Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8051, Japan
| | - Sylvia M Evans
- Skaggs School of Pharmacy, and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Naoyuki Wada
- Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55455, USA; Developmental Biology Center, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA; Developmental Biology Center, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
86
|
Senga Y, Yoshioka K, Kameshita I, Sueyoshi N. Expression and gene knockdown of zebrafish Ca2+/calmodulin-dependent protein kinase Iδ-LL. Arch Biochem Biophys 2013; 540:41-52. [DOI: 10.1016/j.abb.2013.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 02/03/2023]
|
87
|
Ton QV, Iovine MK. Identification of an evx1-dependent joint-formation pathway during FIN regeneration. PLoS One 2013; 8:e81240. [PMID: 24278401 PMCID: PMC3835681 DOI: 10.1371/journal.pone.0081240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/10/2013] [Indexed: 12/05/2022] Open
Abstract
Joints are essential for skeletal flexibly and form, yet the process underlying joint morphogenesis is poorly understood. Zebrafish caudal fins are comprised of numerous segmented bony fin rays, where growth occurs by the sequential addition of new segments and new joints. Here, we evaluate joint gene expression during fin regeneration. First, we identify three genes that influence joint formation, evx1, dlx5a, and mmp9. We place these genes in a common molecular pathway by evaluating both their expression patterns along the distal-proximal axis (i.e. where the youngest tissue is always the most distal), and by evaluating changes in gene expression following gene knockdown. Prior studies from our lab indicate that the gap junction protein Cx43 suppresses joint formation. Remarkably, changes in Cx43 activity alter the expression of joint markers. For example, the reduced levels of Cx43 in the sof b123 mutant causes short fin ray segments/premature joints. We also find that the expression of evx1-dlx5a-mmp9 is shifted distally in sof b123, consistent with premature expression of these genes. In contrast, increased Cx43 in the alf dty86 mutant leads to stochastic joint failure and stochastic loss of evx1 expression. Indeed, reducing the level of Cx43 in alf dty86 rescues both the evx1 expression and joint formation. These results suggest that Cx43 influences the pattern of joint formation by influencing the timing of evx1 expression.
Collapse
Affiliation(s)
- Quynh V Ton
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | | |
Collapse
|
88
|
Higashiyama H, Kuratani S. On the maxillary nerve. J Morphol 2013; 275:17-38. [DOI: 10.1002/jmor.20193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| |
Collapse
|
89
|
Clouthier DE, Passos-Bueno MR, Tavares ALP, Lyonnet S, Amiel J, Gordon CT. Understanding the basis of auriculocondylar syndrome: Insights from human, mouse and zebrafish genetic studies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:306-17. [PMID: 24123988 DOI: 10.1002/ajmg.c.31376] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth defect syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis.
Collapse
|
90
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
91
|
Yang B, Peng G, Gao J. Expression of unc5 family genes in zebrafish brain during embryonic development. Gene Expr Patterns 2013; 13:311-8. [PMID: 23806443 DOI: 10.1016/j.gep.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/17/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
Abstract
UNC5 family proteins are trans-membrane receptors which mediate both repulsion and attraction signals for the axonal growth cones. The UNC5 family proteins may also play critical roles in angiogenesis and carcinogenesis. Here we have determined the temporal and spatial expression patterns of unc5 gene family members (unc5a, unc5b, unc5c, unc5da and unc5db) by RT-PCR and in situ hybridization. RT-PCR results showed that all transcripts except unc5b were expressed maternally. While unc5b and unc5c transcript was detected at all time points between shield stage and 48h post fertilization (hpf), unc5a, unc5da and unc5db showed expression at 24hpf and later time points. In situ hybridization analysis revealed that unc5a, unc5da and unc5db transcripts were expressed in the telencephalon, parts of thalamus and hindbrain between 24 and 48hpf. The expression patterns of unc5a-unc5da and unc5a-unc5db in the telencephalon showed substantial overlap by fluorescent in situ hybridization. Unc5b showed expression in the eye region, epiphysis and thalamus. Unc5c showed expression in the roof plate, the hindbrain and the mouth region. Our results provide a starting point to uncovering roles of unc5 gene family in zebrafish forebrain development and axonal outgrowth or guidance.
Collapse
Affiliation(s)
- Bin Yang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
92
|
edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One 2013; 8:e67522. [PMID: 23826316 PMCID: PMC3691169 DOI: 10.1371/journal.pone.0067522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 12/02/2022] Open
Abstract
Endothelin-1 (Edn1) signaling provides a critical input to development of the embryonic pharygneal arches and their skeletal derivatives, particularly the articulating joints and the ventral skeleton including the lower jaw. Previous work in zebrafish has mostly focused on the role of Edn1 in dorsal-ventral (DV) patterning, but Edn1 signaling must also regulate tissue size, for with severe loss of the pathway the ventral skeleton is not only mispatterned, but is also prominently hypoplastic – reduced in size. Here we use mutational analyses to show that in the early pharyngeal arches, ventral-specific edn1-mediated proliferation of neural crest derived cells is required for DV expansion and outgrowth, and that this positive regulation is counterbalanced by a negative one exerted through a pivotal, ventrally expressed Edn1-target gene, hand2. We also describe a new morphogenetic cell movement in the ventral first arch, sweeping cells anterior in the arch to the region where the lower jaw forms. This movement is negatively regulated by hand2 in an apparently edn1-independent fashion. These findings point to complexity of regulation by edn1 and hand2 at the earliest stages of pharyngeal arch development, in which control of growth and morphogenesis can be genetically separated.
Collapse
|
93
|
Gillis JA, Modrell MS, Baker CVH. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton. Nat Commun 2013; 4:1436. [PMID: 23385581 PMCID: PMC3600657 DOI: 10.1038/ncomms2429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/02/2013] [Indexed: 12/02/2022] Open
Abstract
Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK.
| | | | | |
Collapse
|
94
|
Hisano Y, Ota S, Takada S, Kawahara A. Functional cooperation of spns2 and fibronectin in cardiac and lower jaw development. Biol Open 2013; 2:789-94. [PMID: 23951404 PMCID: PMC3744070 DOI: 10.1242/bio.20134994] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 11/20/2022] Open
Abstract
The lipid mediator sphingosine-1-phosphate (S1P) is a regulator of cardiac development in zebrafish, as disruption of its receptor s1pr2 or transporter spns2 causes migration defects in cardiac progenitors. To examine the genetic interaction of S1P signaling and the cell adhesion molecule fibronectin, we have established a fn;spns2 double mutant. Cardiac migration defects in fn;spns2 mutants were more severe than those in fn or spns2 mutants. We further found that the lower jaw morphology was disorganized in the fn;spns2 mutant, while it had a slightly shortened anterior–posterior distance in the ventral pharyngeal arch in fn and spns2 mutants relative to wild type. Knockdown of fn in the s1pr2 mutant, but not in the s1pr1 mutant, resulted in severe defects in cardiac migration and ventral pharyngeal arch arrangement. Further, in the background of the fn mutant, knockdown of endothelin receptor A (ednra), which was downregulated in the spns2 mutant, caused pharyngeal defects resembling those in the fn;spns2 mutant. These results strongly suggest that Spns2-S1PR2 signaling and fibronectin cooperatively regulate both cardiac and lower jaw development in zebrafish.
Collapse
Affiliation(s)
- Yu Hisano
- Laboratory for Cardiovascular Molecular Dynamics, Riken Quantitative Biology Center , Furuedai 6-2-3, Suita, Osaka 565-0874 , Japan
| | | | | | | |
Collapse
|
95
|
MacDonald RB, Pollack JN, Debiais-Thibaud M, Heude E, Talbot JC, Ekker M. The ascl1a and dlx genes have a regulatory role in the development of GABAergic interneurons in the zebrafish diencephalon. Dev Biol 2013; 381:276-85. [PMID: 23747543 DOI: 10.1016/j.ydbio.2013.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 11/28/2022]
Abstract
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | | | | | | | | | | |
Collapse
|
96
|
Nichols JT, Pan L, Moens CB, Kimmel CB. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 2013; 140:2765-75. [PMID: 23698351 DOI: 10.1242/dev.090639] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.
Collapse
Affiliation(s)
- James T Nichols
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | | | |
Collapse
|
97
|
Yao Z, Farr GH, Tapscott SJ, Maves L. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish. Biol Open 2013; 2:546-55. [PMID: 23789105 PMCID: PMC3683157 DOI: 10.1242/bio.20133921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.
Collapse
Affiliation(s)
- Zizhen Yao
- Division of Human Biology, Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, WA 98109 , USA
| | | | | | | |
Collapse
|
98
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
100
|
Robo2--slit and Dcc--netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci 2012; 32:12589-602. [PMID: 22956848 DOI: 10.1523/jneurosci.6518-11.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the embryonic vertebrate brain, early born neurons establish highly stereotyped embryonic axonal tracts along which the neuronal interconnections form. To understand the mechanism underlying neuron axonal pathfinding within the embryonic scaffold of axon tracts, we studied zebrafish anterior dorsal telencephalic (ADt) neuron development. While previous studies suggest the ADt neuronal axons extend along a commissural tract [anterior commissure (AC)] and a descending ipsilateral tract [supraoptic tract (SOT)], it is unclear whether individual ADt neuronal axons choose specific projection paths at the intersection between the AC and the SOT. We labeled individual ADt neurons using a forebrain-specific promoter to drive expression of fluorescent proteins. We found the ADt axonal projection patterns were heterogeneous and correlated with their soma positions. Our results suggest that cell intrinsic differences along the dorsal ventral axis of the telencephalon regulate the axonal projection choices. Next, we determined that the guidance receptors roundabout2 (Robo2) and deleted in colorectal cancer (Dcc) were differentially expressed in the ADt neurons. We showed that knocking down Robo2 function by injecting antisense morpholino oligonucleotides abolished the ipsilateral SOT originating from the ADt neurons. Knocking down Dcc function did not prevent formation of the AC and the SOT. In contrast, the AC was specifically reduced when Netrin1 function was knocked down. Further mechanistic studies suggested that Robo2 responded to the repellent Slit signals and suppressed the attractive Netrin signals. These findings demonstrate how Robo2-Slit and Dcc-Netrin coordinate the axonal projection choices of the developing neurons in the vertebrate forebrain.
Collapse
|