51
|
Sai X, Ikawa Y, Nishimura H, Mizuno K, Kajikawa E, Katoh TA, Kimura T, Shiratori H, Takaoka K, Hamada H, Minegishi K. Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development 2022; 149:275058. [PMID: 35420656 DOI: 10.1242/dev.200315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Toshiya Kimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| |
Collapse
|
52
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
53
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
54
|
Cunningham JG, Scripter JD, Nti SA, Tucker ES. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Dev Dyn 2022; 251:459-480. [PMID: 34494344 PMCID: PMC8891049 DOI: 10.1002/dvdy.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thalamocortical connectivity is essential for normal brain function. This important pathway is established during development, when thalamic axons extend a long distance through the forebrain before reaching the cerebral cortex. In this study, we identify a novel role for the c-Jun N-terminal kinase (JNK) signaling pathway in guiding thalamocortical axons through intermediate target territories. RESULTS Complete genetic removal of JNK signaling from the Distal-less 5/6 (Dlx5/6) domain in mice prevents thalamocortical axons from crossing the diencephalon-telencephalon boundary (DTB) and the internal capsule fails to form. Ventral telencephalic cells critical for thalamocortical axon extensions including corridor and guidepost neurons are also disrupted. In addition, corticothalamic, striatonigral, and nigrostriatal axons fail to cross the DTB. Analyses of different JNK mutants demonstrate that thalamocortical axon pathfinding has a non-autonomous requirement for JNK signaling. CONCLUSIONS We conclude that JNK signaling within the Dlx5/6 territory enables the construction of major axonal pathways in the developing forebrain. Further exploration of this intermediate axon guidance territory is needed to uncover mechanisms of axonal pathfinding during normal brain development and to elucidate how this vital process may be compromised in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jessica G. Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - James D. Scripter
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Stephany A. Nti
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Eric S. Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
55
|
Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep 2022; 38:110307. [PMID: 35108541 PMCID: PMC8865054 DOI: 10.1016/j.celrep.2022.110307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The polarized flow of information through neural circuits depends on the orderly arrangement of neurons, their processes, and their synapses. This polarity emerges sequentially in development, starting with the directed migration of neuronal precursors, which subsequently elaborate neurites that form synapses in specific locations. In other organs, Fat cadherins sense the position and then polarize individual cells by inducing localized changes in the cytoskeleton that are coordinated across the tissue. Here, we show that the Fat-related protein Fat3 plays an analogous role during the assembly of polarized circuits in the murine retina. We find that the Fat3 intracellular domain (ICD) binds to cytoskeletal regulators and synaptic proteins, with discrete motifs required for amacrine cell migration and neurite retraction. Moreover, upon ICD deletion, extra neurites form but do not make ectopic synapses, suggesting that Fat3 independently regulates synapse localization. Thus, Fat3 serves as a molecular node to coordinate asymmetric cell behaviors across development.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Burroughs-Garcia
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
57
|
Abstract
Planar cell polarity (PCP) refers to coordinated cell polarization in the plane of the tissue. Genetic studies in Drosophila identified several core PCP genes, whose products function together in a signaling pathway that regulates cell shape, epithelial tissue organization and remodeling during morphogenesis. PCP is detected by the asymmetric distribution of core PCP proteins at different borders of epithelial cells. Believed to be critical for signaling, this segregation is studied by a variety of techniques, such as direct immunostaining and imaging of fluorescent PCP protein fusions or fluorescence recovery after photobleaching (FRAP). All of the above techniques can be applied to the analysis of the Xenopus neural plate to study the dynamics of tissue polarization, making this system one of the best vertebrate PCP models. This chapter describes how to image PCP proteins in Xenopus neuroectoderm for both fixed and live samples. These robust cellular techniques will contribute to mechanistic studies of PCP in vertebrate embryos.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Mancini
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
58
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
59
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
60
|
Yu D, Wang J. BAC Recombineering and Transgenesis to Study Cell Polarity and Polarized Tissue Morphogenesis in Mice. Methods Mol Biol 2022; 2438:197-216. [PMID: 35147944 PMCID: PMC9245493 DOI: 10.1007/978-1-0716-2035-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planar cell polarity (PCP) signaling plays a critical role in coordinating cell polarity during various organogenesis processes in mammals, and its disruption is causal to numerous congenital disorders in humans. To elucidate its actions in mammals, mouse genetics is an indispensable approach. Given that both gain- and loss-of-function of many PCP genes often cause similar defects, the standard mouse transgenic approach may not always be ideal for studying PCP genes in their wild-type and mutant forms. Here we describe using BAC (bacterial artificial chromosomes) transgenes as a versatile and effective alternative. Transgenes made from BACs, which are genomic clones 100-200 kb in size, can more faithful recapitulate endogenous gene expression levels and patterns. Bacterial based recombination system can be used to efficiently introduce mutations, fluorescent protein tags, and LoxP sites for conditional expressions. Cre can also be inserted into BACs to map the contribution of cells expressing any PCP gene of interest, and study PCP mediated tissue morphogenesis.
Collapse
Affiliation(s)
- Deli Yu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
61
|
Chuykin I, Sokol SY. Analysis of Planar Cell Polarity Complexes by Proximity Biotinylation in Xenopus Embryos. Methods Mol Biol 2022; 2438:97-106. [PMID: 35147937 DOI: 10.1007/978-1-0716-2035-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding signaling processes operating in cells during development and disease requires extensive knowledge of protein interactions. Proximity-dependent biotinylation mediated by a promiscuous bacterial biotin ligase is a sensitive approach for evaluating protein interactions under physiological conditions. This technique allows for assessing protein association when conventional pull-down assays are not applicable due to high background or transient nature of the interaction. In contrast to many studies of proximity biotinylation in cultured cells, this protocol has been adapted to detect protein interactions in Xenopus embryos. Here, we apply this technique to evaluate planar cell polarity (PCP) complexes formed by Prickle3 and Vangl2, and show that Prickle3 fused to the N-terminal fragment of the biotin ligase from Aquifex aeolicus efficiently biotinylates Vangl2 in vivo. We present our step-by-step proximity biotinylation protocol that provides a reliable semiquantitative assay for protein interactions and highlights the use of Xenopus embryos as a model for biochemical studies.
Collapse
Affiliation(s)
- Ilya Chuykin
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
62
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
63
|
Gilbert BL, Zhu S, Salameh A, Sun S, Alagramam KN, McDermott BM. Actin Crosslinking Family Protein 7 Deficiency Does Not Impair Hearing in Young Mice. Front Cell Dev Biol 2021; 9:709442. [PMID: 34917607 PMCID: PMC8670236 DOI: 10.3389/fcell.2021.709442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
To enable hearing, the sensory hair cell contains specialized subcellular structures at its apical region, including the actin-rich cuticular plate and circumferential band. ACF7 (actin crosslinking family protein 7), encoded by the gene Macf1 (microtubule and actin crosslinking factor 1), is a large cytoskeletal crosslinking protein that interacts with microtubules and filamentous actin to shape cells. ACF7 localizes to the cuticular plate and the circumferential band in the hair cells of vertebrates. The compelling expression pattern of ACF7 in hair cells, combined with conserved roles of this protein in the cytoskeleton of various cell types in invertebrates and vertebrates, led to the hypothesis that ACF7 performs a key function in the subcellular architecture of hair cells. To test the hypothesis, we conditionally target Macf1 in the inner ears of mice. Surprisingly, our data show that in young, but mature, conditional knockout mice cochlear hair cell survival, planar cell polarity, organization of the hair cells within the organ of Corti, and capacity to hear are not significantly impacted. Overall, these results fail to support the hypothesis that ACF7 is an essential hair cell protein in young mice, and the purpose of ACF7 expression in the hair cell remains to be understood.
Collapse
Affiliation(s)
- Benjamin L Gilbert
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Ahlam Salameh
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Shenyu Sun
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
64
|
Chuykin I, Itoh K, Kim K, Sokol SY. Frizzled3 inhibits Vangl2-Prickle3 association to establish planar cell polarity in the vertebrate neural plate. J Cell Sci 2021; 134:jcs258864. [PMID: 34806749 PMCID: PMC8729781 DOI: 10.1242/jcs.258864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here, we use proximity biotinylation and crosslinking approaches to show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3, also known as Fzd3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. This inhibition required Fz3-dependent Vangl2 phosphorylaton. Consistent with our observations, the complex of Pk3 with nonphosphorylatable Vangl2 did not polarize in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.
Collapse
Affiliation(s)
| | | | | | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
65
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
66
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
67
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
68
|
Agrawal N, Lawler K, Davidson CM, Keogh JM, Legg R, Barroso I, Farooqi IS, Brand AH. Predicting novel candidate human obesity genes and their site of action by systematic functional screening in Drosophila. PLoS Biol 2021; 19:e3001255. [PMID: 34748544 PMCID: PMC8575313 DOI: 10.1371/journal.pbio.3001255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.
Collapse
Affiliation(s)
- Neha Agrawal
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Catherine M. Davidson
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Robert Legg
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | - Inês Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andrea H. Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
69
|
Tarchini B. A Reversal in Hair Cell Orientation Organizes Both the Auditory and Vestibular Organs. Front Neurosci 2021; 15:695914. [PMID: 34646115 PMCID: PMC8502876 DOI: 10.3389/fnins.2021.695914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023] Open
Abstract
Sensory hair cells detect mechanical stimuli with their hair bundle, an asymmetrical brush of actin-based membrane protrusions, or stereocilia. At the single cell level, stereocilia are organized in rows of graded heights that confer the hair bundle with intrinsic directional sensitivity. At the organ level, each hair cell is precisely oriented so that its intrinsic directional sensitivity matches the direction of mechanical stimuli reaching the sensory epithelium. Coordinated orientation among neighboring hair cells usually ensures the delivery of a coherent local group response. Accordingly, hair cell orientation is locally uniform in the auditory and vestibular cristae epithelia in birds and mammals. However, an exception to this rule is found in the vestibular macular organs, and in fish lateral line neuromasts, where two hair cell populations show opposing orientations. This mirror-image hair cell organization confers bidirectional sensitivity at the organ level. Here I review our current understanding of the molecular machinery that produces mirror-image organization through a regional reversal of hair cell orientation. Interestingly, recent evidence suggests that auditory hair cells adopt their normal uniform orientation through a global reversal mechanism similar to the one at work regionally in macular and neuromast organs. Macular and auditory organs thus appear to be patterned more similarly than previously appreciated during inner ear development.
Collapse
Affiliation(s)
- Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, United States.,Department of Medicine, Tufts University, Boston, MA, United States.,Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME, United States
| |
Collapse
|
70
|
Creighton JH, Jessen JR. Core pathway proteins and the molecular basis of planar polarity in the zebrafish gastrula. Semin Cell Dev Biol 2021; 125:17-25. [PMID: 34635444 DOI: 10.1016/j.semcdb.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
The planar polarization of cells and subcellular structures is critical for embryonic development. Coordination of this polarity can provide cells a sense of direction in relation to the anterior-posterior and dorsal-ventral body axes. Fly epithelia use a core pathway comprised of transmembrane (Van Gogh/Strabismus, Frizzled, and Flamingo/Starry night) and cytoplasmic (Prickle or Spiny-legs, Dishevelled, and Diego) proteins to communicate directional information between cells and thereby promote the uniform orientation of structures such as hairs. In the zebrafish gastrula, planar polarity underlies complex cellular processes, including directed migration and intercalation, that are required to shape the embryo body. Like other vertebrates, the zebrafish genome encodes homologs of each core protein, and it is well-established that polarized gastrula cell behaviors are regulated by some of them. However, it is unknown whether a conserved six-member core protein pathway regulates planar polarity during zebrafish gastrulation. Here, we review our current understanding of core protein function as it relates to two specific examples of planar polarity, the dorsal convergence of lateral gastrula cells and the mediolateral intercalation of midline cells. We consider the hallmarks of fly planar polarity and discuss data regarding asymmetric protein localization and function, and the intercellular communication of polarity information.
Collapse
Affiliation(s)
- Joy H Creighton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
71
|
Basta LP, Hill-Oliva M, Paramore SV, Sharan R, Goh A, Biswas A, Cortez M, Little KA, Posfai E, Devenport D. New mouse models for high resolution and live imaging of planar cell polarity proteins in vivo. Development 2021; 148:271988. [PMID: 34463728 DOI: 10.1242/dev.199695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Michael Hill-Oliva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Department of Medicine, Columbia University, New York, NY 10032USA
| | - Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Cortez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| |
Collapse
|
72
|
Airoldi CA, Lugo CA, Wightman R, Glover BJ, Robinson S. Mechanical buckling can pattern the light-diffracting cuticle of Hibiscus trionum. Cell Rep 2021; 36:109715. [PMID: 34525367 PMCID: PMC9697994 DOI: 10.1016/j.celrep.2021.109715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Many species have cuticular striations that play a range of roles, from pollinator attraction to surface wettability. In Hibiscus trionum, the striations span multiple cells at the base of the petal to form a pattern that produces a type of iridescence. It is postulated, using theoretical models, that the pattern of striations could result from mechanical instabilities. By combining the application of mechanical stress with high-resolution imaging, we demonstrate that the cuticle buckles to create a striated pattern. Through mechanical modeling and cryo-SEM fractures, we show that the cuticle behaves like a bilayer system with a stiff film on a compliant substrate. The pattern of buckling aligns with the direction of the stress to create a larger-scale pattern. Our findings contribute to the understanding of the formation of tissue-wide patterns in living organisms.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Carlos A Lugo
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Raymond Wightman
- Sainsbury Laboratory Cambridge University, Bateman Street, Cambridge, CB2 1LR, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | - Sarah Robinson
- Sainsbury Laboratory Cambridge University, Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|
73
|
Mancini P, Ossipova O, Sokol SY. The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate. Biol Open 2021; 10:bio058761. [PMID: 34259326 PMCID: PMC8325942 DOI: 10.1242/bio.058761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Coordinated polarization of cells in the tissue plane, known as planar cell polarity (PCP), is associated with a signaling pathway critical for the control of morphogenetic processes. Although the segregation of PCP components to opposite cell borders is believed to play a critical role in this pathway, whether PCP derives from egg polarity or preexistent long-range gradient, or forms in response to a localized cue, remains a challenging question. Here we investigate the Xenopus neural plate, a tissue that has been previously shown to exhibit PCP. By imaging Vangl2 and Prickle3, we show that PCP is progressively acquired in the neural plate and requires a signal from the posterior region of the embryo. Tissue transplantations indicated that PCP is triggered in the neural plate by a planar cue from the dorsal blastopore lip. The PCP cue did not depend on the orientation of the graft and was distinct from neural inducers. These observations suggest that neuroectodermal PCP is not instructed by a preexisting molecular gradient but induced by a signal from the dorsal blastopore lip.
Collapse
Affiliation(s)
| | | | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
74
|
Álvarez-Hernán G, Garrido-Jiménez S, Román ÁC, Carvajal-González JM, Francisco-Morcillo J. Distribution of planar cell polarity proteins in the developing avian retina. Exp Eye Res 2021; 209:108681. [PMID: 34166683 DOI: 10.1016/j.exer.2021.108681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
Planar cell polarity (PCP) is evolutionary conserved and play a critical role in proper tissue development and function. During central nervous system development, PCP proteins exhibit specific patterns of distribution and are indispensable for axonal growth, dendritogenesis, neuronal migration, and neuronal differentiation. The retina constitutes an excellent model in which to study molecular mechanisms involved in neural development. The analysis of the spatiotemporal expression of PCP proteins in this model constitutes an useful histological approach in order to identify possible roles of these proteins in retinogenesis. Immunohistochemical techniques revealed that Frz6, Celsr1, Vangl1, Pk1, Pk3, and Fat1 were present in emerging axons from recently differentiated ganglion cells in the chicken retina. Except for Vangl1, they were also asymmetrically distributed in differentiated amacrine cells. Pk1 and Pk3 were restricted in the outer nuclear layer to the outer segment of photoreceptors. Vangl1 was also located in the cell somata of Müller glia. Given these findings together, the distribution of PCP proteins in the developing chicken retina suggest essential roles in axonal guidance during early retinogenesis and a possible involvement in the establishment of cell asymmetry and maintenance of retinal cell phenotypes.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ángel Carlos Román
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José María Carvajal-González
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
75
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
76
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
77
|
Erdemci-Tandogan G, Manning ML. Effect of cellular rearrangement time delays on the rheology of vertex models for confluent tissues. PLoS Comput Biol 2021; 17:e1009049. [PMID: 34097706 PMCID: PMC8211246 DOI: 10.1371/journal.pcbi.1009049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Large-scale tissue deformation during biological processes such as morphogenesis requires cellular rearrangements. The simplest rearrangement in confluent cellular monolayers involves neighbor exchanges among four cells, called a T1 transition, in analogy to foams. But unlike foams, cells must execute a sequence of molecular processes, such as endocytosis of adhesion molecules, to complete a T1 transition. Such processes could take a long time compared to other timescales in the tissue. In this work, we incorporate this idea by augmenting vertex models to require a fixed, finite time for T1 transitions, which we call the "T1 delay time". We study how variations in T1 delay time affect tissue mechanics, by quantifying the relaxation time of tissues in the presence of T1 delays and comparing that to the cell-shape based timescale that characterizes fluidity in the absence of any T1 delays. We show that the molecular-scale T1 delay timescale dominates over the cell shape-scale collective response timescale when the T1 delay time is the larger of the two. We extend this analysis to tissues that become anisotropic under convergent extension, finding similar results. Moreover, we find that increasing the T1 delay time increases the percentage of higher-fold coordinated vertices and rosettes, and decreases the overall number of successful T1s, contributing to a more elastic-like-and less fluid-like-tissue response. Our work suggests that molecular mechanisms that act as a brake on T1 transitions could stiffen global tissue mechanics and enhance rosette formation during morphogenesis.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - M. Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
78
|
Nakamura R, Katsuno T, Tsuji T, Oyagi S, Kishimoto Y, Suehiro A, Tateya I, Omori K. Airway ciliated cells regenerated on collagen sponge implants acquire planar polarities towards nearby edges of implanted areas. J Tissue Eng Regen Med 2021; 15:712-721. [PMID: 34010984 DOI: 10.1002/term.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Tissue-engineered tracheae have been developed to replace defective tracheae. However, the direction of ciliated cells in the regenerated epithelium remains unclear. We investigated planar polarity formed in the regenerated airway epithelium after tracheal graft implantation. We partially resected the rat trachea and implanted a collagen scaffold. The direction of the basal foot was assessed by transmission electron microscopy. Immunofluorescence staining was performed to examine the biased distribution of Vangl1 and Frizzled6 proteins. The direction of mucociliary transport was analyzed by video microscopy. Our results showed that the basal feet of cilia in the proximal and distal regions of the implanted areas were respectively oriented toward the proximal and distal directions. The biased distribution of Vangl1 and Frizzled6, and the directions of mucociliary transport showed that planar polarities formed in the regenerated epithelium were oriented toward the proximal, distal, left, and right directions in the proximal, distal, left, and right regions of the implanted area. These polarities persisted until nine months after implantation. Hence, the results suggest that planar polarities formed in epithelia regenerated on tracheal grafts are directed toward the nearby edges of implanted areas and are preserved for a prolonged period. The polarities can, at least partially, contribute to clearing external materials from the implanted areas by transporting them to a normal region.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Oyagi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Suehiro
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
79
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
80
|
Ewen-Campen B, Comyn T, Vogt E, Perrimon N. No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. Cell Rep 2021; 32:108121. [PMID: 32905771 PMCID: PMC7641474 DOI: 10.1016/j.celrep.2020.108121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/05/2022] Open
Abstract
The frizzled (fz) and dishevelled (dsh) genes are highly conserved members of both the planar cell polarity (PCP) pathway and the Wnt signaling pathway. Given these dual functions, several studies have examined whether Wnt ligands provide a tissue-scale orientation cue for PCP establishment during development, and these studies have reached differing conclusions. Here, we re-examine this issue in the Drosophila melanogaster wing and notum using split-Gal4 co-expression analysis, multiplex somatic CRISPR, and double RNAi experiments. Pairwise loss-of-function experiments targeting wg together with other Wnt genes, via somatic CRISPR or RNAi, do not produce PCP defects in the wing or notum. In addition, somatic CRISPR against evi (aka wntless), which is required for the secretion of Wnt ligands, did not produce detectable PCP phenotypes. Altogether, our results do not support the hypothesis that Wnt ligands contribute to PCP signaling in the Drosophila wing or notum. Previous studies have come to differing conclusions on whether Wnt ligands provide a tissue-level orientation cue for the planar cell polarity pathway. Ewen-Campen et al. re-examine this question in Drosophila using multiplex in vivo CRISPR and double RNAi against Wnt ligands and find no evidence that Wnts are required for PCP patterning.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Typhaine Comyn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Vogt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
81
|
Flasse L, Yennek S, Cortijo C, Barandiaran IS, Kraus MRC, Grapin-Botton A. Apical Restriction of the Planar Cell Polarity Component VANGL in Pancreatic Ducts Is Required to Maintain Epithelial Integrity. Cell Rep 2021; 31:107677. [PMID: 32460029 DOI: 10.1016/j.celrep.2020.107677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for the architecture and function of numerous epithelial tissues. Here, we show that apical restriction of planar cell polarity (PCP) components is necessary for the maintenance of epithelial integrity. Using the mammalian pancreas as a model, we find that components of the core PCP pathway, such as the transmembrane protein Van Gogh-like (VANGL), become apically restricted over a period of several days. Expansion of VANGL localization to the basolateral membranes of progenitors leads to their death and disruption of the epithelial integrity. VANGL basolateral expansion does not affect apico-basal polarity but acts in the cells where Vangl is mislocalized by reducing Dishevelled and its downstream target ROCK. This reduction in ROCK activity culminates in progenitor cell egression, death, and eventually pancreatic hypoplasia. Thus, precise spatiotemporal modulation of VANGL-dependent PCP signaling is crucial for proper pancreatic morphogenesis.
Collapse
Affiliation(s)
- Lydie Flasse
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cédric Cortijo
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
| | | | - Marine R-C Kraus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
82
|
Kindt KS, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, Tarchini B. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun 2021; 12:2861. [PMID: 34001891 PMCID: PMC8129141 DOI: 10.1038/s41467-021-22997-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/10/2021] [Indexed: 12/21/2022] Open
Abstract
Hair cells detect sound, head position or water movements when their mechanosensory hair bundle is deflected. Each hair bundle has an asymmetric architecture that restricts stimulus detection to a single axis. Coordinated hair cell orientations within sensory epithelia further tune stimulus detection at the organ level. Here, we identify GPR156, an orphan GPCR of unknown function, as a critical regulator of hair cell orientation. We demonstrate that the transcription factor EMX2 polarizes GPR156 distribution, enabling it to signal through Gαi and trigger a 180° reversal in hair cell orientation. GPR156-Gαi mediated reversal is essential to establish hair cells with mirror-image orientations in mouse otolith organs in the vestibular system and in zebrafish lateral line. Remarkably, GPR156-Gαi also instructs hair cell reversal in the auditory epithelium, despite a lack of mirror-image organization. Overall, our work demonstrates that conserved GPR156-Gαi signaling is integral to the framework that builds directional responses into mechanosensory epithelia.
Collapse
MESH Headings
- Animals
- Cell Polarity/genetics
- Epithelium/metabolism
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal/methods
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zebrafish/metabolism
- Mice
Collapse
Affiliation(s)
- Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Department of Medicine, Tufts University, Boston, MA, USA.
- Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME, USA.
| |
Collapse
|
83
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha F, Wang X, Ma L, Choi NT, Mii Y, Takada S, Huen MSY, Guo Y, Zhang L, Gao B. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. SCIENCE ADVANCES 2021; 7:7/20/eabg2099. [PMID: 33990333 PMCID: PMC8121430 DOI: 10.1126/sciadv.abg2099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
Collapse
Affiliation(s)
- Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fangzi Zha
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Luyao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
84
|
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M, Furuta K, Oiwa K, Tamura A, Tsukita S. Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol 2021; 220:212042. [PMID: 33929515 PMCID: PMC8094116 DOI: 10.1083/jcb.202010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
Collapse
Affiliation(s)
- Shogo Nakayama
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshinori Namba
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Konishi
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Takagishi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Elisa Herawati
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tomoki Nishida
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Shuji Ishihara
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Ken'ya Furuta
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Kazuhiro Oiwa
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
85
|
Brunt L, Greicius G, Rogers S, Evans BD, Virshup DM, Wedgwood KCA, Scholpp S. Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling. Nat Commun 2021; 12:2058. [PMID: 33824332 PMCID: PMC8024337 DOI: 10.1038/s41467-021-22393-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development. However, it is still unclear how the Wnt ligand distribution is precisely controlled to fulfil these functions. Here, we show that the planar cell polarity protein Vangl2 regulates the distribution of Wnt by cytonemes. In zebrafish epiblast cells, mouse intestinal telocytes and human gastric cancer cells, Vangl2 activation generates extremely long cytonemes, which branch and deliver Wnt protein to multiple cells. The Vangl2-activated cytonemes increase Wnt/β-catenin signaling in the surrounding cells. Concordantly, Vangl2 inhibition causes fewer and shorter cytonemes to be formed and reduces paracrine Wnt/β-catenin signaling. A mathematical model simulating these Vangl2 functions on cytonemes in zebrafish gastrulation predicts a shift of the signaling gradient, altered tissue patterning, and a loss of tissue domain sharpness. We confirmed these predictions during anteroposterior patterning in the zebrafish neural plate. In summary, we demonstrate that Vangl2 is fundamental to paracrine Wnt/β-catenin signaling by controlling cytoneme behaviour.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Benjamin D Evans
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle C A Wedgwood
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
86
|
Hernandez A, Marchetti MC. Poisson-bracket formulation of the dynamics of fluids of deformable particles. Phys Rev E 2021; 103:032612. [PMID: 33862788 DOI: 10.1103/physreve.103.032612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023]
Abstract
Using the Poisson-bracket method, we derive continuum equations for a fluid of deformable particles in two dimensions. Particle shape is quantified in terms of two continuum fields: an anisotropy density field that captures the deformations of individual particles from regular shapes and a shape tensor density field that quantifies both particle elongation and nematic alignment of elongated shapes. We explicitly consider the example of a dense biological tissue as described by the Vertex model energy, where cell shape has been proposed as a structural order parameter for a liquid-solid transition. The hydrodynamic model of biological tissue proposed here captures the coupling of cell shape to flow and provides a starting point for modeling the rheology of dense tissue.
Collapse
Affiliation(s)
- Arthur Hernandez
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
87
|
Popkova A, Rauzi M, Wang X. Cellular and Supracellular Planar Polarity: A Multiscale Cue to Elongate the Drosophila Egg Chamber. Front Cell Dev Biol 2021; 9:645235. [PMID: 33738289 PMCID: PMC7961075 DOI: 10.3389/fcell.2021.645235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Tissue elongation is known to be controlled by oriented cell division, elongation, migration and rearrangement. While these cellular processes have been extensively studied, new emerging supracellular mechanisms driving tissue extension have recently been unveiled. Tissue rotation and actomyosin contractions have been shown to be key processes driving Drosophila egg chamber elongation. First, egg chamber rotation facilitates the dorsal-ventral alignment of the extracellular matrix and of the cell basal actin fibers. Both fiber-like structures form supracellular networks constraining the egg growth in a polarized fashion thus working as 'molecular corsets'. Second, the supracellular actin fiber network, powered by myosin periodic oscillation, contracts anisotropically driving tissue extension along the egg anterior-posterior axis. During both processes, cellular and supracellular planar polarity provide a critical cue to control Drosophila egg chamber elongation. Here we review how different planar polarized networks are built, maintained and function at both cellular and supracellular levels in the Drosophila ovarian epithelium.
Collapse
Affiliation(s)
- Anna Popkova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
88
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
89
|
Hao Q, Zheng M, Weng K, Hao Y, Zhou Y, Lin Y, Gao F, Kou Z, Kawamura S, Yao K, Xu P, Chen J, Zou J. Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish. J Genet Genomics 2021; 48:52-62. [PMID: 33771456 DOI: 10.1016/j.jgg.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Although the unique organization of vertebrate cone mosaics was first described long ago, both their underlying molecular basis and physiological significance are largely unknown. Here, we demonstrate that Crumbs proteins, the key regulators of epithelial apical polarity, establish the planar cellular polarity of photoreceptors in zebrafish. Via heterophilic Crb2a-Crb2b interactions, the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors. The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors, thereby stabilizing the geometric organization of cone mosaics. Notably, loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation. These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.
Collapse
Affiliation(s)
- Qinlong Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kechao Weng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yumei Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Lin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Feng Gao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ziqi Kou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinghai Chen
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China.
| |
Collapse
|
90
|
Li X, Zhang D, Xu L, Han Y, Liu W, Li W, Fan Z, Costanzo RM, Strauss Iii JF, Zhang Z, Wang H. Planar cell polarity defects and hearing loss in sperm-associated antigen 6 ( Spag6)-deficient mice. Am J Physiol Cell Physiol 2021; 320:C132-C141. [PMID: 33175573 PMCID: PMC7846974 DOI: 10.1152/ajpcell.00166.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spag6 encodes an axoneme central apparatus protein that is required for normal flagellar and cilia motility. Recent findings suggest that Spag6 also plays a role in ciliogenesis, orientation of cilia basal feet, and planar polarity. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity. They represent a distinctive form of cellular polarity, known as planar cell polarity (PCP). However, a role for Spag6 in the inner ear has not yet been explored. In the present study, the function of Spag6 in the inner ear was examined using Spag6-deficient mice. Our results demonstrate hearing loss in the Spag6 mutants, associated with abnormalities in cellular patterning, cell shape, stereocilia bundles, and basal bodies, as well as abnormally distributed Frizzled class receptor 6 (FZD6), suggesting that Spag6 participates in PCP regulation. Moreover, we found that the subapical microtubule meshwork was disrupted. Our observations suggest new functions for Spag6 in hearing and PCP in the inner ear.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Richard M Costanzo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
91
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
92
|
Ohta S, Ji YR, Martin D, Wu DK. Emx2 regulates hair cell rearrangement but not positional identity within neuromasts. eLife 2020; 9:e60432. [PMID: 33377867 PMCID: PMC7806267 DOI: 10.7554/elife.60432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Each hair cell (HC) precursor of zebrafish neuromasts divides to form two daughter HCs of opposite hair bundle orientations. Previously, we showed that transcription factor Emx2, expressed in only one of the daughter HCs, generates this bidirectional HC pattern (Jiang et al., 2017). Here, we asked whether Emx2 mediates this effect by changing location of hair bundle establishment or positions of HCs since daughter HCs are known to switch positions with each other. We showed this HC rearrangement, redefined as two processes named Rock and Roll, is required for positional acquisition of HCs. Apical protrusion formation of nascent HCs and planar polarity signaling are both important for the Rock and Roll. Emx2 facilitates Rock and Roll by delaying apical protrusion of its nascent HCs but it does not determine HCs' ultimate positions, indicating that Emx2 mediates bidirectional HC pattern by changing the location where hair bundle is established in HCs.
Collapse
Affiliation(s)
- Sho Ohta
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
93
|
Mlodzik M. Planar cell polarity: moving from single cells to tissue-scale biology. Development 2020; 147:147/24/dev186346. [PMID: 33355240 DOI: 10.1242/dev.186346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Planar cell polarity (PCP) reflects cellular orientation within the plane of an epithelium. PCP is crucial during many biological patterning processes and for organ function. It is omnipresent, from convergent-extension mechanisms during early development through to terminal organogenesis, and it regulates many aspects of cell positioning and orientation during tissue morphogenesis, organ development and homeostasis. Suzanne Eaton used the power of Drosophila as a model system to study PCP, but her vision of, and impact on, PCP studies in flies translates to all animal models. As I highlight here, Suzanne's incorporation of quantitative biophysical studies of whole tissues, integrated with the detailed cell biology of PCP phenomena, completely changed how the field studies this intriguing feature. Moreover, Suzanne's impact on ongoing and future PCP studies is fundamental, long-lasting and transformative.
Collapse
Affiliation(s)
- Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
94
|
Pietra S, Ng K, Lawrence PA, Casal J. Planar cell polarity in the larval epidermis of Drosophila and the role of microtubules. Open Biol 2020; 10:200290. [PMID: 33295841 PMCID: PMC7776564 DOI: 10.1098/rsob.200290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.
Collapse
Affiliation(s)
- Stefano Pietra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - KangBo Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
95
|
Mii Y. Heparan Sulfate Clusters Regulate Distribution and Signaling of Wnt Morphogens. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.2006.7j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology, National Institutes of Natural Sciences
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI)
- Japan Science and Technology Agency, PRESTO
| |
Collapse
|
96
|
Mii Y. Heparan Sulfate Clusters Regulate Distribution and Signaling of Wnt Morphogens. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.2006.7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology, National Institutes of Natural Sciences
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI)
- Japan Science and Technology Agency, PRESTO
| |
Collapse
|
97
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
98
|
Cheong SS, Akram KM, Matellan C, Kim SY, Gaboriau DCA, Hind M, del Río Hernández AE, Griffiths M, Dean CH. The Planar Polarity Component VANGL2 Is a Key Regulator of Mechanosignaling. Front Cell Dev Biol 2020; 8:577201. [PMID: 33195213 PMCID: PMC7658195 DOI: 10.3389/fcell.2020.577201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
VANGL2 is a component of the planar cell polarity (PCP) pathway, which regulates tissue polarity and patterning. The Vangl2 Lp mutation causes lung branching defects due to dysfunctional actomyosin-driven morphogenesis. Since the actomyosin network regulates cell mechanics, we speculated that mechanosignaling could be impaired when VANGL2 is disrupted. Here, we used live-imaging of precision-cut lung slices (PCLS) from Vangl2 Lp/+ mice to determine that alveologenesis is attenuated as a result of impaired epithelial cell migration. Vangl2 Lp/+ tracheal epithelial cells (TECs) and alveolar epithelial cells (AECs) exhibited highly disrupted actomyosin networks and focal adhesions (FAs). Functional assessment of cellular forces confirmed impaired traction force generation in Vangl2 Lp/+ TECs. YAP signaling in Vangl2 Lp airway epithelium was reduced, consistent with a role for VANGL2 in mechanotransduction. Furthermore, activation of RhoA signaling restored actomyosin organization in Vangl2 Lp/+ , confirming RhoA as an effector of VANGL2. This study identifies a pivotal role for VANGL2 in mechanosignaling, which underlies the key role of the PCP pathway in tissue morphogenesis.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Khondoker M. Akram
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Armando E. del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Peri-Operative Medicine Department, St Bartholomew’s Hospital, London, United Kingdom
| | - Charlotte H. Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
99
|
Najarro EH, Huang J, Jacobo A, Quiruz LA, Grillet N, Cheng AG. Dual regulation of planar polarization by secreted Wnts and Vangl2 in the developing mouse cochlea. Development 2020; 147:dev.191981. [PMID: 32907846 DOI: 10.1242/dev.191981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins localize asymmetrically to instruct cell polarity within the tissue plane, with defects leading to deformities of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily conserved polarity cues, yet Wnt mutants display variable PCP defects; thus, how Wnts regulate PCP remains unresolved. Here, we have used the developing cochlea as a model system to show that secreted Wnts regulate PCP through polarizing a specific subset of PCP proteins. Conditional deletion of Wntless or porcupine, both of which are essential for secretion of Wnts, caused misrotated sensory cells and shortened cochlea - both hallmarks of PCP defects. Wntless-deficient cochleae lacked the polarized PCP components dishevelled 1/2 and frizzled 3/6, while other PCP proteins (Vangl1/2, Celsr1 and dishevelled 3) remained localized. We identified seven Wnt paralogues, including the major PCP regulator Wnt5a, which was, surprisingly, dispensable for planar polarization in the cochlea. Finally, Vangl2 haploinsufficiency markedly accentuated sensory cell polarization defects in Wntless-deficient cochlea. Together, our study indicates that secreted Wnts and Vangl2 coordinate to ensure proper tissue polarization during development.
Collapse
Affiliation(s)
- Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Huang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrian Jacobo
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lee A Quiruz
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
100
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|