51
|
Azadeh J, Song Z, Laureano AS, Toro-Ramos A, Kwan K. Initiating Differentiation in Immortalized Multipotent Otic Progenitor Cells. J Vis Exp 2016. [PMID: 26780605 DOI: 10.3791/53692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Use of human induced pluripotent stem cells (iPSC) or embryonic stem cells (ESC) for cell replacement therapies holds great promise. Several limitations including low yields and heterogeneous populations of differentiated cells hinder the progress of stem cell therapies. A fate restricted immortalized multipotent otic progenitor (iMOP) cell line was generated to facilitate efficient differentiation of large numbers of functional hair cells and spiral ganglion neurons (SGN) for inner ear cell replacement therapies. Starting from dissociated cultures of single iMOP cells, protocols that promote cell cycle exit and differentiation by basic fibroblast growth factor (bFGF) withdrawal were described. A significant decrease in proliferating cells after bFGF withdrawal was confirmed using an EdU cell proliferation assay. Concomitant with a decrease in proliferation, successful differentiation resulted in expression of molecular markers and morphological changes. Immunostaining of Cdkn1b (p27(KIP)) and Cdh1 (E-cadherin) in iMOP-derived otospheres was used as an indicator for differentiation into inner ear sensory epithelia while immunostaining of Cdkn1b and Tubb3 (neuronal β-tubulin) was used to identify iMOP-derived neurons. Use of iMOP cells provides an important tool for understanding cell fate decisions made by inner ear neurosensory progenitors and will help develop protocols for generating large numbers of iPSC or ESC-derived hair cells and SGNs. These methods will accelerate efforts for generating otic cells for replacement therapies.
Collapse
Affiliation(s)
| | | | | | | | - Kelvin Kwan
- Cell Biology & Neuroscience, Rutgers University;
| |
Collapse
|
52
|
Abstract
The avian embryo has a well-documented history as a model system for the study of neurogenesis, morphogenesis, and cell fate specification. This includes studies of the chicken inner ear that employ in ovo electroporation, in conjunction with the Tol2 system, to yield robust long-term transgene expression. Capitalizing on the success of this delivery method, we describe a modified version of the Tol2 expression vector that readily accepts the insertion of a microRNA-encoding artificial intron. This offers a strategy to investigate the possible roles of different candidate microRNAs in ear development by overexpression. Here, we describe the general design of this modified vector and the electroporation procedure. This approach is expected to facilitate phenotypic screening of candidate miRNAs to explore their bioactivity in vivo.
Collapse
|
53
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Zhou Y, Qing J, Dong Y, Nie J, Li J, Wang C, Liu Y, Peng T, Duan M, Liu X, Xie D. The role of transcription factors of neurosensory cells in non-syndromic sensorineural hearing loss with or without inner ear malformation. Acta Otolaryngol 2015; 136:277-82. [PMID: 26634621 DOI: 10.3109/00016489.2015.1109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Previous studies have stated the roles and correlation of the four TFs (Sox2, Atoh1, Neurog1, and Neurod1) in the development of neurosensory cells. but whether they are inherited pathogenic factors to cause non-syndromic sensorineural hearing loss is unknown so far. This is the first time for screening the Sox2, Atoh1, Neurog1, and Neurod1 genes in children with NSHL. The c.133A > G in Neurod1 gene is a polymorphism, which is not associated with NSHL. Although these genes are the recognized TFs for modulating the development and transformation of NSCs, they may not be the inherited pathogenic factors to cause congenital severe or profound NSHL directly. OBJECTIVE To investigate the effect of the transcription factors (TFs) for the development of neurosensory cells (NSCs) and to explore the genetic etiology of congenital profound non-syndromic sensorineural hearing loss (NSHL). METHODS Children with NSHL, from multi-national and regional group, and control group were recruited to screen for the most common mutations for non-syndromic deafness among East Asian (mtDNA 12S rRNA: 1555A > G, 1494C > T; SLC26A4: IVS7-2 A > G, 2168 C > T). And mutational analysis of the coding regions in Sox2, Atoh1 and Neurog1, Neurod1 genes were performed. RESULTS Only the c.133A > G (p. Ala45Thr) in the Neurod1 gene was detected in this study. The allele frequencies of this variant were 88.00% and 84.88% in the inner ear malformation group and the normal inner ear group, respectively, while 90.85% of children in the control group carried c.133A > G. This variant existed in every group commonly and had no significant difference among them. No variant in the other two TFs was detected in this cohort.
Collapse
Affiliation(s)
- Yuan Zhou
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Jie Qing
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Yunpeng Dong
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Jin Nie
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Jingkun Li
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Chunmei Wang
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Yuyuan Liu
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Tao Peng
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| | - Maoli Duan
- b Department of Clinical Science, Intervention and Technology, Department of Otolaryngology Head and Neck Surgery, Department of Neurotology and Audiology , Karolinska Institutet , Stockholm , Sweden
| | - Xuezhong Liu
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
- c Department of Otolaryngology, Miller School of Medicine , University of Miami , Miami , FL , USA
| | - Dinghua Xie
- a Department of Otolaryngology Head and Neck Surgery , Institute of Otology, the Second Xiangya Hospital, Central South University , Changsha , PR China
| |
Collapse
|
55
|
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47:247-58. [PMID: 26471908 DOI: 10.1016/j.ijdevneu.2015.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch-mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
56
|
Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N. Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 2015; 9:74. [PMID: 25814931 PMCID: PMC4357303 DOI: 10.3389/fncel.2015.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/19/2015] [Indexed: 11/27/2022] Open
Abstract
The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Sara J Weber
- Ear Institute, University College London London, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem cell Laboratory, Cancer Research UK, London Research Institute London, UK
| | - Julian Lewis
- Formerly of Vertebrate Development Laboratory, Cancer Research UK London, UK
| | | |
Collapse
|
57
|
Maass JC, Gu R, Basch ML, Waldhaus J, Lopez EM, Xia A, Oghalai JS, Heller S, Groves AK. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 2015; 9:110. [PMID: 25873862 PMCID: PMC4379755 DOI: 10.3389/fncel.2015.00110] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is most commonly caused by the death of hair cells in the organ of Corti, and once lost, mammalian hair cells do not regenerate. In contrast, other vertebrates such as birds can regenerate hair cells by stimulating division and differentiation of neighboring supporting cells. We currently know little of the genetic networks which become active in supporting cells when hair cells die and that are activated in experimental models of hair cell regeneration. Several studies have shown that neonatal mammalian cochlear supporting cells are able to trans-differentiate into hair cells when cultured in conditions in which the Notch signaling pathway is blocked. We now show that the ability of cochlear supporting cells to trans-differentiate declines precipitously after birth, such that supporting cells from six-day-old mouse cochlea are entirely unresponsive to a blockade of the Notch pathway. We show that this trend is seen regardless of whether the Notch pathway is blocked with gamma secretase inhibitors, or by antibodies against the Notch1 receptor, suggesting that the action of gamma secretase inhibitors on neonatal supporting cells is likely to be by inhibiting Notch receptor cleavage. The loss of responsiveness to inhibition of the Notch pathway in the first postnatal week is due in part to a down-regulation of Notch receptors and ligands, and we show that this down-regulation persists in the adult animal, even under conditions of noise damage. Our data suggest that the Notch pathway is used to establish the repeating pattern of hair cells and supporting cells in the organ of Corti, but is not required to maintain this cellular mosaic once the production of hair cells and supporting cells is completed. Our results have implications for the proposed used of Notch pathway inhibitors in hearing restoration therapies.
Collapse
Affiliation(s)
- Juan C Maass
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Otolaryngology, Hospital Clínico Universidad de Chile Santiago, Chile ; Interdisciplinary Program of Physiology and Biophysics, ICBM Universidad de Chile Santiago, Chile ; Department of Otolaryngology, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo Santiago, Chile
| | - Rende Gu
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Martin L Basch
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| | - Joerg Waldhaus
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | | | - Anping Xia
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - John S Oghalai
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine Palo Alto, CA, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
58
|
Sarlak G, Vincent B. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer's Disease? Mol Neurobiol 2015; 53:1679-1698. [PMID: 25691455 DOI: 10.1007/s12035-015-9123-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 12/23/2022]
Abstract
Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer's disease.
Collapse
Affiliation(s)
- Golmaryam Sarlak
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
59
|
Nakajima Y. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects. Congenit Anom (Kyoto) 2015; 55:17-25. [PMID: 25040109 DOI: 10.1111/cga.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/07/2014] [Indexed: 12/28/2022]
Abstract
The membranous labyrinth of the inner ear is a highly complex organ that detects sound and balance. Developmental defects in the inner ear cause congenital hearing loss and balance disorders. The membranous labyrinth consists of three semicircular ducts, the utricle, saccule, and endolymphatic ducts, and the cochlear duct. These complex structures develop from the simple otic placode, which is established in the cranial ectoderm adjacent to the neural crest at the level of the hindbrain at the early neurula stage. During development, the otic placode invaginates to form the otic vesicle, which subsequently gives rise to neurons for the vestibulocochlear ganglion, the non-sensory and sensory epithelia of the membranous labyrinth that includes three ampullary crests, two maculae, and the organ of Corti. Combined paracrine and autocrine signals including fibroblast growth factor, Wnt, retinoic acid, hedgehog, and bone morphogenetic protein regulate fate determination, axis formation, and morphogenesis in the developing inner ear. Juxtacrine signals mediated by Notch pathways play a role in establishing the sensory epithelium, which consists of mechanosensory hair cells and supporting cells. The highly differentiated organ of Corti, which consists of uniformly oriented inner/outer hair cells and specific supporting cells, develops during fetal development. Developmental alterations/arrest causes congenital malformations in the inner ear in a spatiotemporal-restricted manner. A clearer understanding of the mechanisms underlying inner ear development is important not only for the management of patients with congenital inner ear malformations, but also for the development of regenerative therapy for impaired function.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
60
|
Ma WR, Zhang J. Jag1b is essential for patterning inner ear sensory cristae by regulating anterior morphogenetic tissue separation and preventing posterior cell death. Development 2015; 142:763-73. [DOI: 10.1242/dev.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory patches of the vertebrate inner ear, which contain hair cells and supporting cells, are essential for hearing and balance functions. How the stereotypically organized sensory patches are formed remains to be determined. In this study, we isolated a zebrafish mutant in which the jag1b gene is disrupted by an EGFP insertion. Loss of Jag1b causes cell death in the developing posterior crista and results in downregulation of fgf10a in the posterior prosensory cells. Inhibition of FGFR activity in wild-type embryos also causes loss of the posterior crista, suggesting that Fgf10a mediates Jag1b activity. By contrast, in the anterior prosensory domain, Jag1b regulates separation of a single morphogenetic field into anterior and lateral cristae by flattening cells destined to form a nonsensory epithelium between the two cristae. MAPK activation in the nonsensory epithelium precursors is required for the separation. In the jag1b mutant, MAPK activation and cell flattening are extended to anterior crista primordia, causing loss of anterior crista. More importantly, inhibition of MAPK activity, which blocks the differentiation of nonsensory epithelial cells, generated a fused large crista and extra hair cells. Thus, Jag1b uses two distinct mechanisms to form three sensory cristae in zebrafish.
Collapse
Affiliation(s)
- Wei-Rui Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
61
|
Marcos S, González-Lázaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, Martín DMS, Torroja C, Bogdanović O, Doohan R, Puk O, de Angelis MH, Graw J, Gomez-Skarmeta JL, Casares F, Torres M, Bovolenta P. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 2015; 142:3009-20. [DOI: 10.1242/dev.122176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to Meis1 preferential association with Hox-Pbx binding sites in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components the Notch signalling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1−/− embryos boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations.
Collapse
Affiliation(s)
- Séverine Marcos
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Monica González-Lázaro
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Leonardo Beccari
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Laura Carramolino
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Maria Jesus Martin-Bermejo
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Oana Amarie
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Daniel Mateos-San Martín
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
- ARC Center of Excellence in Plant Energy Biology, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Roisin Doohan
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Oliver Puk
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | | | - Jochen Graw
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| |
Collapse
|
62
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
63
|
Petrovic J, Gálvez H, Neves J, Abelló G, Giraldez F. Differential regulation of Hes/Hey genes during inner ear development. Dev Neurobiol 2014; 75:703-20. [PMID: 25363712 DOI: 10.1002/dneu.22243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory regions, although with salient differences. Hey1 expression follows Jag1 expression except at early prosensory stages while Hes5 expression corresponds well to Dl1 expression throughout otic development. Although Hey1 and Hes5 are direct Notch downstream targets, they differ in the level of Notch required for activation. Moreover, they also differ in mRNA stability, showing different temporal decays after Notch blockade. In addition, Bmp, Wnt and Fgf pathways also modify Hey1 and Hes5 expression in the inner ear. Particularly, the Wnt pathway modulates Hey1 and Jag1 expression. Finally, gain of function experiments show that Hey1 and Hes5 cross-regulate each other in a complex manner. Both Hey1 and Hes5 repress Dl1 and Hes5 expression, suggesting that they prevent the transition to differentiation stages, probably by preventing Atoh1 expression. In spite of its association with Jag1, Hey1 does not seem to be instrumental for lateral induction as it does not promote Jag1 expression. We suggest that, besides being both targets of Notch, Hey1 and Hes5 are subject to a rather complex regulation that includes the stability of their transcripts, cross regulation and other signaling pathways.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Hector Gálvez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
64
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
65
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
66
|
Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 2014; 30:410-22. [PMID: 25127056 DOI: 10.1016/j.devcel.2014.06.019] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.
Collapse
Affiliation(s)
- Teresa Rayon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sergio Menchero
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andres Nieto
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | - Miguel Crespo
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Susana Cañon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Hiroshi Sasaki
- Institute of Molecular Embryology and Genetics, Department of Cell Fate Control, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Miguel Manzanares
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
67
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
68
|
Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abelló G, Ibañes M, Neves J, Giraldez F. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 2014; 141:2313-24. [PMID: 24821984 DOI: 10.1242/dev.108100] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated after Notch activation. In the chicken otocyst, expression of Jag1 and the Notch target Hey1 correlates well with lateral induction, whereas both Jag1 and Dl1 are expressed during lateral inhibition, as are Notch targets Hey1 and Hes5. Here, we show that Jag1 drives lower levels of Notch activity than Dl1, which results in the differential expression of Hey1 and Hes5. In addition, Jag1 interferes with the ability of Dl1 to elicit high levels of Notch activity. Modeling the sensory epithelium when the two ligands are expressed together shows that ligand regulation, differential signaling strength and ligand competition are crucial to allow the two modes of operation and for establishing the alternate pattern of hair cells and supporting cells. Jag1, while driving lateral induction on its own, facilitates patterning by lateral inhibition in the presence of Dl1. This novel behavior emerges from Jag1 acting as a competitive inhibitor of Dl1 for Notch signaling. Both modeling and experiments show that hair cell patterning is very robust. The model suggests that autoactivation of proneural factor Atoh1, upstream of Dl1, is a fundamental component for robustness. The results stress the importance of the levels of Notch signaling and ligand competition for Notch function.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Pau Formosa-Jordan
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan C Luna-Escalante
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Marta Ibañes
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| |
Collapse
|
69
|
Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD, Altman R, Heller S. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 2014; 157:964-78. [PMID: 24768691 PMCID: PMC4051200 DOI: 10.1016/j.cell.2014.03.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/03/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023]
Abstract
The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analyses and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR measurements on 382 individual cells from the developing otocyst and neuroblast lineages to assay 96 genes representing established otic markers, signaling-pathway-associated transcripts, and novel otic-specific genes. By applying multivariate cluster, principal component, and network analyses to the data matrix, we were able to readily distinguish the delaminating neuroblasts and to describe progressive states of gene expression in this population at single-cell resolution. It further established a three-dimensional model of the otocyst in which each individual cell can be precisely mapped into spatial expression domains. Our bioinformatic modeling revealed spatial dynamics of different signaling pathways active during early neuroblast development and prosensory domain specification.
Collapse
Affiliation(s)
- Robert Durruthy-Durruthy
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Assaf Gottlieb
- Departments of Bioengineering and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byron H Hartman
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg Waldhaus
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roman D Laske
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russ Altman
- Departments of Bioengineering and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
70
|
Koehler KR, Hashino E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 2014; 9:1229-44. [PMID: 24784820 DOI: 10.1038/nprot.2014.100] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol describes a culture system in which inner-ear sensory tissue is produced from mouse embryonic stem (ES) cells under chemically defined conditions. This model is amenable to basic and translational investigations into inner ear biology and regeneration. In this protocol, mouse ES cells are aggregated in 96-well plates in medium containing extracellular matrix proteins to promote epithelialization. During the first 14 d, a series of precisely timed protein and small-molecule treatments sequentially induce epithelia that represent the mouse embryonic non-neural ectoderm, preplacodal ectoderm and otic vesicle epithelia. Ultimately, these tissues develop into cysts with a pseudostratified epithelium containing inner ear hair cells and supporting cells after 16-20 d. Concurrently, sensory-like neurons generate synapse-like structures with the derived hair cells. We have designated the stem cell-derived epithelia harboring hair cells, supporting cells and sensory-like neurons as inner ear organoids. This method provides a reproducible and scalable means to generate inner ear sensory tissue in vitro.
Collapse
Affiliation(s)
- Karl R Koehler
- 1] Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana, USA. [2] Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA. [3] Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eri Hashino
- 1] Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana, USA. [2] Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA. [3] Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
71
|
Alteration of Notch signaling and functionality of adipose tissue derived mesenchymal stem cells in heart failure. Int J Cardiol 2014; 174:119-26. [PMID: 24767126 DOI: 10.1016/j.ijcard.2014.03.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/30/2014] [Accepted: 03/29/2014] [Indexed: 02/07/2023]
Abstract
AIM Circulating mesenchymal cells increase in heart failure (HF) patients and could be used therapeutically. Our aim was to investigate whether HF affects adipose tissue derived mesenchymal cell (adMSC) isolation, functional characteristics and Notch pathway. METHODS AND RESULTS We compared 25 patients with different degrees of HF (11 NYHA classes I and II and 14 NYHA III and IV) with 10 age and gender matched controls. 100% adMSC cultures were obtained from controls, while only 72.7% and 35.7% from patients with mild or severe HF (p<0.0001). adMSC from HF patients showed higher markers of senescence (p16 positive cells: 14±2.3% in controls and 35.6±5.6% (p<0.05) and 69±14.7% (p<0.01) in mild or severe HF; γ-H2AX positive cells: 3.7±1.2%, 19.4±4.1% (p<0.05) and 23.7±3.4% (p<0.05) respectively), lower proliferation index (Ki67 positive cells: 21.5±4.9%, 13.2±2.8% and 13.7±3.2%, respectively), reduced pluripotency-associated genes (Oct4 positive cells: 86.7±4.9%, 55±12% (p<0.05) and 43.3±8.7% (p<0.05), respectively; NANOG positive cells: 89.8±3.7%, 39.6±14.4% (p<0.01) and 47±8.1%, respectively), and decreased differentiation markers (α-sarcomeric actin positive cells: 79.8±4.6%, 49±18.1% and 47±12.1% (p<0.05) and CD31-positive endothelial cells: 24.5±2.9%, 0.5±0.5% (p<0.001) and 2.3±2.3% (p<0.001), respectively). AdMSC from HF patients also showed reduced Notch transcriptional activity (lowered expression of Hey 1 and Hey 2 mRNAs). Stimulation with TNF-α of adMSC isolated from controls affected the transcription of several components of the Notch pathway (reduction of Notch 4 and Hes 1 mRNAs and increase of Notch 2 and Hey 1 mRNAs). CONCLUSIONS In HF yield and functionality of adMSC are impaired and their Notch signaling is downregulated.
Collapse
|
72
|
Petazzi P, Akizu N, García A, Estarás C, Martínez de Paz A, Rodríguez-Paredes M, Martínez-Balbás MA, Huertas D, Esteller M. An increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis 2014; 67:49-56. [PMID: 24657916 DOI: 10.1016/j.nbd.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 01/23/2023] Open
Abstract
Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.
Collapse
Affiliation(s)
- Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Naiara Akizu
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alejandra García
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Conchi Estarás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alexia Martínez de Paz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manuel Rodríguez-Paredes
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
73
|
Ono K, Kita T, Sato S, O'Neill P, Mak SS, Paschaki M, Ito M, Gotoh N, Kawakami K, Sasai Y, Ladher RK. FGFR1-Frs2/3 signalling maintains sensory progenitors during inner ear hair cell formation. PLoS Genet 2014; 10:e1004118. [PMID: 24465223 PMCID: PMC3900395 DOI: 10.1371/journal.pgen.1004118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022] Open
Abstract
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea. The ability of our brain to perceive sound depends on its conversion into electrical impulses within the cochlea of the inner ear. The cochlea has dedicated specialized cells, called inner ear hair cells, which register sound energy. Environmental effects, genetic disorders or just the passage of time can damage these cells, and the damage impairs our ability to hear. If we could understand how these cells develop, we might be able to exploit this knowledge to generate new hair cells. In this study we address an old problem: how do signals from the fibroblast growth factor (FGF) family control hair cell number? We used mice in which one of the receptors for FGF (Fgfr1) is mutated and found that the expression of a stem cell protein, Sox2 is not maintained. Sox2 generally acts to keep precursors in the cochlea in a pre-hair cell state. However, in mutant mice Sox2 expression is transient, diminishing the ability of precursors to commit to a hair cell fate. These findings suggest that it may be possible to amplify the number of hair cell progenitors in culture by tuning FGF activity, providing a route to replace damaged inner ear hair cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Cycle
- Cell Differentiation/genetics
- Cochlea/growth & development
- Cochlea/metabolism
- Ear, Inner/cytology
- Ear, Inner/growth & development
- Epithelium/growth & development
- Epithelium/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/cytology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- SOXB1 Transcription Factors/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Kazuya Ono
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Tomoko Kita
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Paul O'Neill
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Siu-Shan Mak
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Marie Paschaki
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Masataka Ito
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Noriko Gotoh
- Division of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Raj K. Ladher
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- * E-mail:
| |
Collapse
|
74
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
75
|
Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 2013; 33:16146-57. [PMID: 24107947 DOI: 10.1523/jneurosci.3150-12.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hearing impairment or vestibular dysfunction in humans often results from a permanent loss of critical cell types in the sensory regions of the inner ear, including hair cells, supporting cells, or cochleovestibular neurons. These important cell types arise from a common sensory or neurosensory progenitor, although little is known about how these progenitors are specified. Studies have shown that Notch signaling and the transcription factor Sox2 are required for the development of these lineages. Previously we and others demonstrated that ectopic activation of Notch can direct nonsensory cells to adopt a sensory fate, indicating a role for Notch in early specification events. Here, we explore the relationship between Notch and SOX2 by ectopically activating these factors in nonsensory regions of the mouse cochlea, and demonstrate that, similar to Notch, SOX2 can specify sensory progenitors, consistent with a role downstream of Notch signaling. However, we also show that Notch has a unique role in promoting the proliferation of the sensory progenitors. We further demonstrate that Notch can only induce ectopic sensory regions within a certain time window of development, and that the ectopic hair cells display specialized stereocilia bundles similar to endogenous hair cells. These results demonstrate that Notch and SOX2 can both drive the sensory program in nonsensory cells, indicating these factors may be useful in cell replacement strategies in the inner ear.
Collapse
|
76
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 2013; 521:1136-64. [PMID: 22987750 DOI: 10.1002/cne.23224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. It originates from the otic placode, which invaginates, forming the otic vesicle; the latter gives rise to neurosensory and nonsensory elements of the adult membranous labyrinth. A hypothesis based on descriptive and experimental evidence suggests that the acquisition of discrete sensory patches during evolution of this primordium may be related to subdivision of an early pansensory domain. In order to gain insight into this developmental mechanism, we carried out a detailed analysis of the spatial and temporal expression pattern of the gene Fgf10, by comparing different markers of otic patterning and hair cell differentiation. Fgf10 expression labels a sensory-competent domain included in a Serrate-positive territory from which most of the sensory epithelia arise. Our data show that Fgf10 transcripts are present initially in a narrow ventromedial band of the rudimentary otocyst, extending between its rostral and caudal poles. During development, this Fgf10-expressing area splits repetitively into several separate subareas, creating six of the eight sensory organs present in birds. Only the lateral crista and the macula neglecta were initially Fgf10 negative, although they activated Fgf10 expression after their specification as sensory elements. These results allowed us to determine a timetable of sensory specification in the developing chick inner ear. The comparison of the expression pattern of Fgf10 with those of other markers of sensory differentiation contributes to our understanding of the mechanism by which vertebrate inner ear prosensory domains have arisen during evolution.
Collapse
|
77
|
Hu Z, Luo X, Zhang L, Lu F, Dong F, Monsell E, Jiang H. Generation of human inner ear prosensory-like cells via epithelial-to-mesenchymal transition. Regen Med 2013; 7:663-73. [PMID: 22954437 DOI: 10.2217/rme.12.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To identify human hair cell progenitors from adult inner ear sensory epithelium. MATERIALS & METHODS We collected discarded utricles from translabyrinthine surgery and isolated human utricular sensory epithelial cells (HUCs) to explore whether they can proliferate and obtain features of stem/progenitor cells in vitro using reverse transcription PCR and immunofluorescence. RESULTS When cultured in vitro, HUCs expressed genes and proteins that are usually present in prosensory cells and stem cells. Additionally, dissociated HUCs expanded on the substrates and presented properties of mesenchymal cells via epithelial-to-mesenchymal transition. CONCLUSION The results reveal that sensory epithelial cells from the adult human inner ear can re-enter the cell cycle and adopt a stem/progenitor cell fate. The outcomes of this study may open avenues for human hair cell progenitor generation, which could potentially provide a novel stem cell-based replacement for hearing loss and other inner ear disorders.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 2013; 8:e62046. [PMID: 23614009 PMCID: PMC3628701 DOI: 10.1371/journal.pone.0062046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/18/2013] [Indexed: 01/19/2023] Open
Abstract
Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development. We previously showed in null mutants that the loss of the transcription factor, Gata3, results specifically in the loss of all cochlear neurosensory development. Temporal expression of Gata3 is broad from the otic placode stage through the postnatal ear. It therefore remains unclear at which stage in development Gata3 exerts its effect. To better understand the stage specific effects of Gata3, we investigated the role of Gata3 in cochlear neurosensory specification and differentiation utilizing a LoxP targeted Gata3 line and two Cre lines. Foxg1Cre∶Gata3f/f mice show recombination of Gata3 around E8.5 but continue to develop a cochlear duct without differentiated hair cells and spiral ganglion neurons. qRT-PCR data show that Atoh1 was down-regulated but not absent in the duct whereas other hair cell specific genes such as Pou4f3 were completely absent. In addition, while Sox2 levels were lower in the Foxg1Cre:Gata3f/f cochlea, Eya1 levels remained normal. We conclude that Eya1 is unable to fully upregulate Atoh1 or Pou4f3, and drive differentiation of hair cells without Gata3. Pax2-Cre∶Gata3f/f mice show a delayed recombination of Gata3 in the ear relative to Foxg1Cre:Gata3f/f. These mice exhibited a cochlear duct containing patches of partially differentiated hair cells and developed only few and incorrectly projecting spiral ganglion neurons. Our conditional deletion studies reveal a major role of Gata3 in the signaling of prosensory genes and in the differentiation of cochlear neurosenory cells. We suggest that Gata3 may act in combination with Eya1, Six1, and Sox2 in cochlear prosensory gene signaling.
Collapse
|
79
|
Kiernan AE. Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 2013; 24:470-9. [PMID: 23578865 DOI: 10.1016/j.semcdb.2013.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 01/05/2023]
Abstract
In the inner ear, Notch signaling has been proposed to specify the sensory regions, as well as regulate the differentiation of hair cells and supporting cell within those regions. In addition, Notch plays an important role in otic neurogenesis, by determining which cells differentiate as neurons, sensory cells and non-sensory cells. Here, I review the evidence for the complex and myriad roles Notch participates in during inner ear development. A particular challenge for those studying ear development and Notch is to decipher how activation of a single pathway can lead to different outcomes within the ear, which may include changes in the intrinsic properties of the cell, Notch modulation, and potential non-canonical pathways.
Collapse
Affiliation(s)
- Amy E Kiernan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
80
|
Lin J, Yan X, Wang C, Talabattula VAN, Guo Z, Rolfs A, Luo J. Expression patterns of the ADAMs in early developing chicken cochlea. Dev Growth Differ 2013; 55:368-76. [PMID: 23496030 DOI: 10.1111/dgd.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/30/2022]
Abstract
Members of the ADAM (a disintegrin and metalloprotease) family are type I transmembrane proteins involved in biological processes of proteolysis, cell adhesion, cell-matrix interaction, as well as in the intracellular signaling transduction. In the present study, expression patterns of seven members of the ADAM family were investigated at the early stages of the developing cochlea by in situ hybridization. The results show that each individual ADAM is expressed and regulated in the early developing cochlea. ADAM9, ADAM10, ADAM17, and ADAM23 are initially and widely expressed in the otic vesicle at embryonic day 2.5 (E2.5) and in the differential elements of the cochlear duct at E9, while ADAM12 is expressed in acoustic ganglion cells at E7. ADAM22 is detectable in cochlear ganglion cells as early as from E4 and in the basilar papilla from E7. Therefore, the present study extends our previous results and suggests that ADAMs also play a role in the early cochlear development.
Collapse
Affiliation(s)
- Juntang Lin
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang City, 453003, Henan, China
| | | | | | | | | | | | | |
Collapse
|
81
|
Neves J, Vachkov I, Giraldez F. Sox2 regulation of hair cell development: incoherence makes sense. Hear Res 2013; 297:20-9. [DOI: 10.1016/j.heares.2012.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/17/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023]
|
82
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
83
|
Neves J, Abelló G, Petrovic J, Giraldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 2012; 55:96-112. [PMID: 23252974 DOI: 10.1111/dgd.12016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
The development of the inner ear provides a beautiful example of one basic problem in development, that is, to understand how different cell types are generated at specific times and domains throughout embryonic life. The functional unit of the inner ear consists of hair cells, supporting cells and neurons, all deriving from progenitor cells located in the neurosensory competent domain of the otic placode. Throughout development, the otic placode resolves into the complex inner ear labyrinth, which holds the auditory and vestibular sensory organs that are innervated in a highly specific manner. How does the early competent domain of the otic placode give rise to the diverse specialized cell types of the different sensory organs of the inner ear? We review here our current understanding on the role of Notch signaling in coupling patterning and cell fate determination during inner ear development, with a particular emphasis on contributions from the chicken embryo as a model organism. We discuss further the question of how these two processes rely on two modes of operation of the Notch signaling pathway named lateral induction and lateral inhibition.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
84
|
Abstract
Hearing loss is becoming an increasingly prevalent problem affecting more than 250 million people worldwide. During development, fibroblast growth factors (FGFs) are required for inner ear development as well as hair cell formation in the mammalian cochlea and thus make attractive therapeutic candidates for the regeneration of sensory cells. Previous findings showed that Fgfr1 conditional knock out mice exhibited hair cell and support cell formation defects. Immunoblocking with Fgf20 antibody in vitro produced a similar phenotype. While hair cell differentiation in mice starts at embryonic day (E)14.5, beginning with the inner hair cells, Fgf20 expression precedes hair cell differentiation at E13.5 in the cochlea. This suggests a potential role for Fgf20 in priming the sensory epithelium for hair cell formation. Treatment of explants with a gamma-secretase inhibitor, DAPT, decreased Fgf20 mRNA, suggesting that Notch is upstream of Fgf20. Notch signaling also plays an early role in prosensory formation during cochlear development. In this report we show that during development, Notch-mediated regulation of prosensory formation in the cochlea occurs via Fgf20. Addition of exogenous FGF20 compensated for the block in Notch signaling and rescued Sox2, a prosensory marker, and Gfi1, an early hair cell marker in explant cultures. We hypothesized that Fgf20 plays a role in specification, amplification, or maintenance of Sox2 expression in prosensory progenitors of the developing mammalian cochlea.
Collapse
|
85
|
Roeseler DA, Sachdev S, Buckley DM, Joshi T, Wu DK, Xu D, Hannink M, Waters ST. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2. PLoS One 2012; 7:e47366. [PMID: 23144817 PMCID: PMC3493575 DOI: 10.1371/journal.pone.0047366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.
Collapse
Affiliation(s)
- David A. Roeseler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Desire M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Doris K. Wu
- Laboratory of Molecular Biology, NIDCD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
86
|
Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear. PLoS One 2012; 7:e46387. [PMID: 23071561 PMCID: PMC3468625 DOI: 10.1371/journal.pone.0046387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/29/2012] [Indexed: 12/26/2022] Open
Abstract
During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.
Collapse
|
87
|
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7:e34123. [PMID: 22448289 PMCID: PMC3309011 DOI: 10.1371/journal.pone.0034123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Background During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative). Conclusions/Significance Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Cell Communication
- Cochlea/metabolism
- Cochlea/pathology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Female
- Fluorescent Antibody Technique
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proteins/physiology
- RNA, Untranslated
- Receptors, Notch/physiology
- Regeneration/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
88
|
Abstract
The posterior lateral line (pLL) in zebrafish has emerged as an excellent system to study how a sensory organ system develops. Here we review recent studies that illustrate how interactions between multiple signaling pathways coordinate cell fate,morphogenesis, and collective migration of cells in the posterior lateral line primordium. These studies also illustrate how the pLL system is contributing much more broadly to our understanding of mechanisms operating during the growth, regeneration, and self-organization of other organ systems during development and disease.
Collapse
Affiliation(s)
- Ajay B Chitnis
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| | - Damian Dalle Nogare
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| | - Miho Matsuda
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
89
|
Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 2012; 13:281-93. [PMID: 22370966 DOI: 10.1007/s10162-012-0317-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/06/2012] [Indexed: 01/07/2023] Open
Abstract
Atoh1 (also known as Math1, Hath1, and Cath1 in mouse, human, and chicken, respectively) is a proneural basic helix-loop-helix (bHLH) transcription factor that is required in a variety of developmental contexts. Atoh1 is involved in differentiation of neurons, secretory cells in the gut, and mechanoreceptors including auditory hair cells. Together with the two closely related bHLH genes, Neurog1 and NeuroD1, Atoh1 regulates neurosensory development in the ear as well as neurogenesis in the cerebellum. Atoh1 activity in the cochlea is both necessary and sufficient to drive auditory hair cell differentiation, in keeping with its known role as a regulator of various genes that are markers of terminal differentiation. Atoh1 is known in other fields as an oncogene and a tumor suppressor involved in regulation of cell cycle control and apoptosis. Aberrant Atoh1 activity in adult tissue is implicated in cancer progression, specifically in medullablastoma and adenomatous polyposis carcinoma. We demonstrate through protein sequence comparison that Atoh1 contains conserved phosphorylation sites outside the bHLH domain, which may allow regulation through post-translational modification. With such diverse roles, tight regulation of Atoh1 at both the transcriptional and protein level is essential.
Collapse
|
90
|
Neves J, Uchikawa M, Bigas A, Giraldez F. The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One 2012; 7:e30871. [PMID: 22292066 PMCID: PMC3264626 DOI: 10.1371/journal.pone.0030871] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3′ enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Anna Bigas
- Program in Cancer Research, IMIM-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Fernando Giraldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
91
|
A feast for the senses: development and function of sensory systems. EMBO Rep 2011; 12:874-6. [PMID: 21852792 DOI: 10.1038/embor.2011.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The EMBO Workshop 'Frontiers in Sensory Development' took place in May 2011 in Barcelona. The meeting brought together a diverse group of scientists to tackle the formation and function of the sensory nervous system in all its complexity. The discussions ranged from how signalling and transcriptional networks control cell identity, architecture and behaviour, to how connectivity is established and how such networks have evolved to generate functional diversity.
Collapse
|
92
|
Vilas-Boas F, Fior R, Swedlow JR, Storey KG, Henrique D. A novel reporter of notch signalling indicates regulated and random Notch activation during vertebrate neurogenesis. BMC Biol 2011; 9:58. [PMID: 21880129 PMCID: PMC3201213 DOI: 10.1186/1741-7007-9-58] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Building the complex vertebrate nervous system involves the regulated production of neurons and glia while maintaining a progenitor cell population. Neurogenesis starts asynchronously in different regions of the embryo and occurs over a long period of time, allowing progenitor cells to be exposed to multiple extrinsic signals that regulate the production of different cell types. Notch-mediated cell-cell signalling is one of the mechanisms that maintain the progenitor pool, however, little is known about how the timing of Notch activation is related to the cell cycle and the distinct modes of cell division that generate neurons. An essential tool with which to investigate the role of Notch signalling on cell by cell basis is the development a faithful reporter of Notch activity. RESULTS Here we present a novel reporter for Notch activity based on the promoter of the well characterised Notch target chick Hes5-1, coupled with multiple elements that confer instability, including a destabilized nuclear Venus fluorescent protein and the 3' untranslated region (UTR) of Hes5-1. We demonstrate that this reporter faithfully recapitulates the endogenous expression of Hes5-1 and that it robustly responds to Notch activation in the chick neural tube. Analysis of the patterns of Notch activity revealed by this reporter indicates that although Notch is most frequently activated prior to mitosis it can be activated at any time within the cell cycle. Notch active progenitors undergoing mitosis generate two daughters that both continue to experience Notch signalling. However, cells lacking Notch activity before and during mitosis generate daughters with dissimilar Notch activity profiles. CONCLUSIONS A novel Notch reporter with multiple destabilisation elements provides a faithful read-out of endogenous Notch activity on a cell-by-cell basis, as neural progenitors progress through the cell cycle in the chick neural tube. Notch activity patterns in this cell population provide evidence for distinct Notch signalling dynamics underlying different cell division modes and for the involvement of random initiation of Notch signalling within the neuroepithelium. These findings highlight the importance of single-cell analysis in the study of the complexity of Notch activity and provide new insights into the mechanisms underlying cell fate decisions in neural progenitors.
Collapse
Affiliation(s)
- Filipe Vilas-Boas
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Av Prof, Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
93
|
Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPjkappa. J Neurosci 2011; 31:8046-58. [PMID: 21632926 DOI: 10.1523/jneurosci.6671-10.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mammalian organ of Corti consists of a highly organized array of hair cells and supporting cells that originate from a common population of prosensory progenitors. Proper differentiation of this complex cellular mosaic requires lateral inhibition mediated by Notch signaling. Several studies have implicated Notch signaling in the earlier induction of the prosensory domain that lies along the length of the cochlear duct, and which forms before the onset of hair cell and supporting cell differentiation. To investigate the role of Notch signaling in prosensory domain formation, we conditionally inactivated the transcriptional mediator of canonical Notch signaling, RBPjκ, throughout the inner ear. Although RBPjκ mutants have severe vestibular defects and a shortened cochlear duct, markers of the prosensory domain appear at the normal time and location in the cochlea of RBPjκ mutants. Despite the lack of RBPjκ, hair cell and supporting cell markers also appear at appropriate times in the cochlea, suggesting that RBPjκ is dispensable for differentiation of the cochlear sensory epithelium. However, we also observed that differentiating hair cells and supporting cells rapidly die in RBPjκ mutants, suggesting a requirement of RBPjκ for cell survival in this tissue. Finally, in contrast to the chick basilar papilla, ectopic activation of Notch signaling did not induce ectopic sensory patches in nonsensory regions of the cochlea. Our results indicate that canonical Notch signaling is not necessary for prosensory specification in the mouse cochlea, suggesting that other signaling pathways may specify this highly derived sensory organ.
Collapse
|
94
|
Abstract
Myc family members play crucial roles in regulating cell proliferation, size, and differentiation during organogenesis. Both N-myc and c-myc are expressed throughout inner ear development. To address their function in the mouse inner ear, we generated mice with conditional deletions in either N-myc or c-myc. Loss of c-myc in the inner ear causes no apparent defects, whereas inactivation of N-myc results in reduced growth caused by a lack of proliferation. Reciprocally, the misexpression of N-myc in the inner ear increases proliferation. Morphogenesis of the inner ear in N-myc mouse mutants is severely disturbed, including loss of the lateral canal, fusion of the cochlea with the sacculus and utriculus, and stunted outgrowth of the cochlea. Mutant cochleas are characterized by an increased number of cells exiting the cell cycle that express the cyclin-dependent kinase inhibitor p27(Kip1) and lack cyclin D1, both of which control the postmitotic state of hair cells. Analysis of different molecular markers in N-myc mutant ears reveals the development of a rudimentary organ of Corti containing hair cells and the underlying supporting cells. Differentiated cells, however, fail to form the highly ordered structure characteristic for the organ of Corti but appear as rows or clusters with an excess number of hair cells. The Kölliker's organ, a transient structure neighboring the organ of Corti and a potential source of ectopic hair cells, is absent in the mutant ears. Collectively, our data suggest that N-myc regulates growth, morphogenesis, and pattern formation during the development of the inner ear.
Collapse
|
95
|
Sweet EM, Vemaraju S, Riley BB. Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear. Dev Biol 2011; 358:113-21. [PMID: 21801718 DOI: 10.1016/j.ydbio.2011.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/09/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Atoh1 is required for differentiation of sensory hair cells in the vertebrate inner ear. Moreover, misexpression of Atoh1 is sufficient to establish ectopic sensory epithelia, making Atoh1 a good candidate for gene therapy to restore hearing. However, competence to form sensory epithelia appears to be limited to discrete regions of the inner ear. To better understand the developmental factors influencing sensory-competence, we examined the effects of misexpressing atoh1a in zebrafish embryos under various developmental conditions. Activation of a heat shock-inducible transgene, hs:atoh1a, resulted in ectopic expression of early markers of sensory development within 2h, and mature hair cells marked by brn3c:GFP began to accumulate 9h after heat shock. The ability of atoh1a to induce ectopic sensory epithelia was maximal when activated during placodal or early otic vesicle stages but declined rapidly thereafter. At no stage was atoh1a sufficient to induce sensory development in dorsal or lateral non-sensory regions of the otic vesicle. However, co-misexpression of atoh1a with fgf3, fgf8 or sox2, genes normally acting in the same gene network with atoh1a, stimulated sensory development in all regions of the otic vesicle. Thus, expression of fgf3, fgf8 or sox2 strongly enhances competence to respond to Atoh1.
Collapse
Affiliation(s)
- Elly M Sweet
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|