51
|
Warga RM, Kane DA. Probing Cadherin Interactions in Zebrafish with E- and N-Cadherin Missense Mutants. Genetics 2018; 210:1391-1409. [PMID: 30361324 PMCID: PMC6283153 DOI: 10.1534/genetics.118.301692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Cadherins are cell adhesion molecules that regulate numerous adhesive interactions during embryonic development and adult life. Consistent with these functions, when their expression goes astray cells lose their normal adhesive properties resulting in defective morphogenesis, disease, and even metastatic cancer. In general, classical cadherins exert their effect by homophilic interactions via their five characteristic extracellular (EC) repeats. The EC1 repeat provides the mechanism for cadherins to dimerize with each other whereas the EC2 repeat may facilitate dimerization. Less is known about the other EC repeats. Here, we show that a zebrafish missense mutation in the EC5 repeat of N-cadherin is a dominant gain-of-function mutation and demonstrate that this mutation alters cell adhesion almost to the same degree as a zebrafish missense mutation in the EC1 repeat of N-cadherin. We also show that zebrafish E- and N-cadherin dominant gain-of-function missense mutations genetically interact. Perturbation of cell adhesion in embryos that are heterozygous mutant at both loci is similar to that observed in single homozygous mutants. Introducing an E-cadherin EC5 missense allele into the homozygous N-cadherin EC1 missense mutant more radically affects morphogenesis, causing synergistic phenotypes consistent with interdependent functions being disrupted. Our studies indicate that a functional EC5 repeat is critical for cadherin-mediated cell affinity, suggesting that its role may be more important than previously thought. These results also suggest the possibility that E- and N-cadherin have heterophilic interactions during early morphogenesis of the embryo; interactions that might help balance the variety of cell affinities needed during embryonic development.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| | - Donald A Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
52
|
Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 2018; 145:dev167130. [PMID: 30389855 PMCID: PMC6288383 DOI: 10.1242/dev.167130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expressions by binding to the 3' untranslated region of target mRNAs thereby silencing translation. Some miRNAs are key regulators of the Wnt signaling pathways, which impact developmental processes. This study investigates miRNA regulation of different isoforms of Dishevelled (Dvl/Dsh), which encode a key component in the Wnt signaling pathway. The sea urchin Dvl mRNA isoforms have similar spatial distribution in early development, but one isoform is distinctively expressed in the larval ciliary band. We demonstrated that Dvl isoforms are directly suppressed by miRNAs. By blocking miRNA suppression of Dvl isoforms, we observed dose-dependent defects in spicule length, patterning of the primary mesenchyme cells, gut morphology, and cilia. These defects likely result from increased Dvl protein levels, leading to perturbation of Wnt-dependent signaling pathways and additional Dvl-mediated processes. We further demonstrated that overexpression of Dvl isoforms recapitulated some of the Dvl miRNATP-induced phenotypes. Overall, our results indicate that miRNA suppression of Dvl isoforms plays an important role in ensuring proper development and function of primary mesenchyme cells and cilia.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Wei Wu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | | | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
53
|
Li J, Gao F, Zhao Y, He L, Huang Y, Yang X, Zhou Y, Yu L, Zhao Q, Dong X. Zebrafish
znfl1s
regulate left‐right asymmetry patterning through controlling the expression of
fgfr1a. J Cell Physiol 2018; 234:1987-1995. [PMID: 30317609 DOI: 10.1002/jcp.27564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyun Li
- Maternal and Child Health Medical InstituteWomen’s Hospital of Nanjing Medical University
| | - Feng Gao
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Yingmin Zhao
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Luqingqing He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing China
| | - Yun Huang
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Xiaojing Yang
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Yahui Zhou
- Maternal and Child Health Medical InstituteWomen’s Hospital of Nanjing Medical University
| | - Lingling Yu
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| | - Qingshun Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing China
| | - Xiaohua Dong
- Department of PediatricJingjiang People's Hospital Affiliated to Yangzhou UniversityJingjiang, Jiangsu China
| |
Collapse
|
54
|
Sun DI, Tasca A, Haas M, Baltazar G, Harland RM, Finkbeiner WE, Walentek P. Na+/H+ Exchangers Are Required for the Development and Function of Vertebrate Mucociliary Epithelia. Cells Tissues Organs 2018; 205:279-292. [PMID: 30300884 DOI: 10.1159/000492973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.
Collapse
Affiliation(s)
- Dingyuan I Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Department of Pathology, University of California, San Francisco, California, USA
| | - Alexia Tasca
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Grober Baltazar
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard M Harland
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, California, USA
| | - Peter Walentek
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, .,Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg,
| |
Collapse
|
55
|
Ribeiro A, Monteiro JF, Certal AC, Cristovão AM, Saúde L. Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish. Open Biol 2018; 7:rsob.170139. [PMID: 29162726 PMCID: PMC5717339 DOI: 10.1098/rsob.170139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
Zebrafish are able to regenerate the spinal cord and recover motor and sensory functions upon severe injury, through the activation of cells located at the ependymal canal. Here, we show that cells surrounding the ependymal canal in the adult zebrafish spinal cord express Foxj1a. We demonstrate that ependymal cells express Foxj1a from their birth in the embryonic neural tube and that Foxj1a activity is required for the final positioning of the ependymal canal. We also show that in response to spinal cord injury, Foxj1a ependymal cells actively proliferate and contribute to the restoration of the spinal cord structure. Finally, this study reveals that Foxj1a expression in the injured spinal cord is regulated by regulatory elements activated during regeneration. These data establish Foxj1a as a pan-ependymal marker in development, homeostasis and regeneration and may help identify the signals that enable this progenitor population to replace lost cells after spinal cord injury.
Collapse
Affiliation(s)
- Ana Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana F Monteiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ana C Certal
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ana M Cristovão
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
56
|
Costa R, Königshoff M. Linking Wnt Signaling to Mucosal Inflammation. Am J Respir Cell Mol Biol 2018; 56:551-552. [PMID: 28459386 DOI: 10.1165/rcmb.2017-0054ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rita Costa
- 1 Comprehensive Pneumology Center Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians University Munich, Germany and
| | - Melanie Königshoff
- 1 Comprehensive Pneumology Center Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians University Munich, Germany and.,2 Division of Pulmonary Sciences and Critical Care Medicine Department of Medicine University of Colorado Denver, Colorado
| |
Collapse
|
57
|
Marsden AN, Derry SW, Schneider I, Scott CA, Westfall TA, Brastrom LK, Shea MA, Dawson DV, Slusarski DC. The Nkd EF-hand domain modulates divergent wnt signaling outputs in zebrafish. Dev Biol 2018; 434:63-73. [PMID: 29180104 DOI: 10.1016/j.ydbio.2017.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
Wnt proteins regulate diverse biological responses by initiating two general outcomes: β-catenin-dependent transcription and β-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the β-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in β-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/β-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in β-catenin signaling.
Collapse
Affiliation(s)
- Autumn N Marsden
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah W Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Drake University, Des Moines, IA 50311, USA
| | - Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem 66075-110, Brazil
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, UA 52242, USA
| | - Deborah V Dawson
- Departments of Pediatric Dentistry&Biostatistics, University of Iowa, Iowa City 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
58
|
Griffin JN, del Viso F, Duncan AR, Robson A, Hwang W, Kulkarni S, Liu KJ, Khokha MK. RAPGEF5 Regulates Nuclear Translocation of β-Catenin. Dev Cell 2018; 44:248-260.e4. [PMID: 29290587 PMCID: PMC5818985 DOI: 10.1016/j.devcel.2017.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.
Collapse
Affiliation(s)
- John N. Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Florencia del Viso
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Anna R. Duncan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Correspondence to: Lead contact Mustafa Khokha,
| |
Collapse
|
59
|
Bellchambers HM, Ware SM. ZIC3 in Heterotaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:301-327. [PMID: 29442328 DOI: 10.1007/978-981-10-7311-3_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
60
|
Schmid A, Sailland J, Novak L, Baumlin N, Fregien N, Salathe M. Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways. FEBS Lett 2017; 591:3493-3506. [PMID: 28921507 PMCID: PMC5683904 DOI: 10.1002/1873-3468.12851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Wnt signaling is essential for the differentiation of airway epithelial cells during development. Here, we examined the role of Wnt signaling during redifferentiation of ciliated airway epithelial cells in vitro at the air liquid interface as a model of airway epithelial repair. Phases of proliferation and differentiation were defined. Markers of squamous metaplasia and epithelial ciliation were followed while enhancing β‐catenin signaling by blocking glycogen synthase kinase 3β with SB216763 and shRNA as well as inhibiting canonical WNT signaling with apical application of Dickkopf 1 (Dkk1). Our findings indicate that enhanced β‐catenin signaling decreases the number of ciliated cells and causes squamous changes in the epithelium, whereas treatment with DDk1 leads to an increased number of ciliated cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Lisa Novak
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nevis Fregien
- Department of Cell Biology, University of Miami School of Medicine, FL, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| |
Collapse
|
61
|
Tavares B, Jacinto R, Sampaio P, Pestana S, Pinto A, Vaz A, Roxo-Rosa M, Gardner R, Lopes T, Schilling B, Henry I, Saúde L, Lopes SS. Notch/Her12 signalling modulates, motile/immotile cilia ratio downstream of Foxj1a in zebrafish left-right organizer. eLife 2017; 6:25165. [PMID: 28875937 PMCID: PMC5608511 DOI: 10.7554/elife.25165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022] Open
Abstract
Foxj1a is necessary and sufficient to specify motile cilia. Using transcriptional studies and slow-scan two-photon live imaging capable of identifying the number of motile and immotile cilia, we now established that the final number of motile cilia depends on Notch signalling (NS). We found that despite all left-right organizer (LRO) cells express foxj1a and the ciliary axonemes of these cells have dynein arms, some cilia remain immotile. We identified that this decision is taken early in development in the Kupffer's Vesicle (KV) precursors the readout being her12 transcription. We demonstrate that overexpression of either her12 or Notch intracellular domain (NICD) increases the number of immotile cilia at the expense of motile cilia, and leads to an accumulation of immotile cilia at the anterior half of the KV. This disrupts the normal fluid flow intensity and pattern, with consequent impact on dand5 expression pattern and left-right (L-R) axis establishment.
Collapse
Affiliation(s)
- Barbara Tavares
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- Laboratório de Histologia e Patologia Comparada, Instituto de Medicina Molecular, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Andreia Vaz
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Telma Lopes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ian Henry
- MPI of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
62
|
Bryja V, Červenka I, Čajánek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 2017; 52:614-637. [PMID: 28741966 DOI: 10.1080/10409238.2017.1350135] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.
Collapse
Affiliation(s)
- Vítězslav Bryja
- a Department of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Igor Červenka
- b Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Lukáš Čajánek
- c Department of Histology and Embryology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| |
Collapse
|
63
|
Pintado P, Sampaio P, Tavares B, Montenegro-Johnson TD, Smith DJ, Lopes SS. Dynamics of cilia length in left-right development. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161102. [PMID: 28405397 PMCID: PMC5383854 DOI: 10.1098/rsos.161102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 05/28/2023]
Abstract
Reduction in the length of motile cilia in the zebrafish left-right organizer (LRO), also known as Kupffer's vesicle, has a large impact on left-right development. Here we demonstrate through genetic overexpression in zebrafish embryos and mathematical modelling that the impact of increased motile cilia length in embryonic LRO fluid flow is milder than that of short cilia. Through Arl13b overexpression, which increases cilia length without impacting cilia beat frequency, we show that the increase in cilium length is associated with a decrease in beat amplitude, resulting in similar flow strengths for Arl13b overexpression and wild-type (WT) embryos, which were not predicted by current theory. Longer cilia exhibit pronounced helical beat patterns and, consequently, lower beat amplitudes relative to WT, a result of an elastohydrodynamic shape transition. For long helical cilia, fluid dynamics modelling predicts a mild (approx. 12%) reduction in the torque exerted on the fluid relative to the WT, resulting in a proportional reduction in flow generation. This mild reduction is corroborated by experiments, providing a mechanism for the mild impact on organ situs.
Collapse
Affiliation(s)
- P. Pintado
- NOVA Medical School Faculdade de Ciências Médicas, Chronic Diseases Research Centre, CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - P. Sampaio
- NOVA Medical School Faculdade de Ciências Médicas, Chronic Diseases Research Centre, CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - B. Tavares
- NOVA Medical School Faculdade de Ciências Médicas, Chronic Diseases Research Centre, CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | | | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham, UK
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Human Reproductive Science, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - S. S. Lopes
- NOVA Medical School Faculdade de Ciências Médicas, Chronic Diseases Research Centre, CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
64
|
Liu K, Fan J, Wu J. Forkhead Box Protein J1 (FOXJ1) is Overexpressed in Colorectal Cancer and Promotes Nuclear Translocation of β-Catenin in SW620 Cells. Med Sci Monit 2017; 23:856-866. [PMID: 28209947 PMCID: PMC5328203 DOI: 10.12659/msm.902906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background FOXJ1, which is a forkhead transcription factor, has been previously studied mostly as a ciliary transcription factor. The role of FOXJ1 in cancer progression is still elusive and controversial. In the present study, the effect of FOXJ1 in progression of colorectal cancer (CRC) was investigated. Material/Methods The pattern of FOXJ1 expression was investigated using the method of immunohistochemistry (IHC) in a tissue microarray (TMA) incorporating 50 pairs of colon cancer specimens and adjacent normal tissue. In addition, the correlation of FOXJ1 expression with clinicopathological characteristics was evaluated in the other TMA containing 208 cases of colon cancer. Moreover, the influence of regulating FOXJ1 level on the proliferation, migration, and invasion ability of colorectal cancer (CRC) cells was evaluated. Results Increased expression of FOXJ1was significantly associated with clinical stage (p<0.05), metastasis of lymph node (p<0.05), and invasion depth (p<0.001) in colon cancer, suggesting FOXJ1 is a tumor promoter in CRC. Consistently, FOXJ1 overexpression significantly enhanced the proliferation, migration, and invasion of CRC cells, while silencing of FOXJ1 induced the opposite effect. Furthermore, up-regulation of FOXJ1 in SW620 cells markedly inhibited the level of truncated APC and the phosphorylation of β-catenin, while the level of cyclinD1 was decreased. In addition, overexpression of FOXJ1 significantly promoted nuclear translocation of β-catenin in SW620 cells. Conclusions These findings demonstrate that increased FOXJ1 contributes to the progression of CRC, which might be associated with the promotion effect of β-catenin nuclear translocation. FOXJ1 may be a novel therapeutic target in CRC.
Collapse
Affiliation(s)
- Kuiliang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jianghao Fan
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
65
|
Walentek P, Quigley IK. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia. Genesis 2017; 55:10.1002/dvg.23001. [PMID: 28095645 PMCID: PMC5276738 DOI: 10.1002/dvg.23001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases.
Collapse
Affiliation(s)
- Peter Walentek
- Department of Molecular and Cell Biology; Genetics, Genomics and Development Division; Developmental and Regenerative Biology Group; University of California, Berkeley, CA 94720, USA
| | - Ian K. Quigley
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
66
|
Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S. Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program. Curr Biol 2016; 25:3267-73. [PMID: 26778655 DOI: 10.1016/j.cub.2015.10.062] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/26/2022]
Abstract
Multiciliated cells (MCCs) differentiate hundreds of motile cilia that generate mechanical force required to drive fluid movement over epithelia [1, 2]. For example, metachronal beating of MCC cilia in the mammalian airways clears mucus that traps inhaled pathogens and pollutants. Consequently, abnormalities in MCC differentiation or ciliary motility have been linked to an expanding spectrum of human airway diseases [3–6]. The current view posits that MCC precursors are singled out by the inhibition of Notch signaling. MCC precursors then support an explosive production of basal bodies, which migrate to the apical surface, dock with the plasma membrane, and seed the growth of multiple motile cilia. At the center of this elaborate differentiation program resides the coiled-coil-containing protein Multicilin, which transcriptionally activates genes for basal body production and the gene for FoxJ1, the master regulator for basal body docking, cilia formation, and motility [7, 8]. Here, using genetic analysis in the zebrafish embryo, we discovered that Gmnc is a novel determinant of the MCC fate. Like Multicilin, Gmnc is a coiled-coil-containing protein of the Geminin family. We show that Gmnc functions downstream of Notch signaling, but upstream of Multicilin in the developmental pathway controlling MCC specification. Moreover, we find that loss of Gmnc in Xenopus embryos also causes loss of MCC differentiation and that overexpression of the protein is sufficient to induce supernumerary MCCs. Together, our data identify Gmnc as an evolutionarily conserved master regulator functioning at the top of the hierarchy of transcription factors involved in MCC differentiation.
Collapse
|
67
|
Grimes DT, Boswell CW, Morante NFC, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 2016; 352:1341-4. [PMID: 27284198 DOI: 10.1126/science.aaf6419] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis.
Collapse
Affiliation(s)
- D T Grimes
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - C W Boswell
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada. Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - N F C Morante
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - R M Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada. Department of Medical Biophysics, The University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - R D Burdine
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - B Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada. Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
68
|
Zhang P, Bai Y, Lu L, Li Y, Duan C. An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex. eLife 2016; 5. [PMID: 26765566 PMCID: PMC4769163 DOI: 10.7554/elife.08996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs), while best known for their roles in the hypoxic response, have oxygen-independent roles in early development with poorly defined mechanisms. Here, we report a novel Hif-3α variant, Hif-3α2, in zebrafish. Hif-3α2 lacks the bHLH, PAS, PAC, and ODD domains, and is expressed in embryonic and adult tissues independently of oxygen availability. Hif-3α2 is a nuclear protein with significant hypoxia response element (HRE)-dependent transcriptional activity. Hif-3α2 overexpression not only decreases embryonic growth and developmental timing but also causes left-right asymmetry defects. Genetic deletion of Hif-3α2 by CRISPR/Cas9 genome editing increases, while Hif-3α2 overexpression decreases, Wnt/β-catenin signaling. This action is independent of its HRE-dependent transcriptional activity. Mechanistically, Hif-3α2 binds to β-catenin and destabilizes the nuclear β-catenin complex. This mechanism is distinct from GSK3β-mediated β-catenin degradation and is conserved in humans. These findings provide new insights into the oxygen-independent actions of HIFs and uncover a novel mechanism regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Yan Bai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
69
|
Roxo-Rosa M, Lopes SS. Identification of Polycystin-2 and CFTR common targets. Cilia 2015. [PMCID: PMC4518663 DOI: 10.1186/2046-2530-4-s1-p4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
70
|
Gokey JJ, Ji Y, Tay HG, Litts B, Amack JD. Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo. Dev Dyn 2015; 245:22-33. [PMID: 26442502 DOI: 10.1002/dvdy.24355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/21/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motile cilia in the "organ of asymmetry" create directional fluid flows that are vital for left-right (LR) asymmetric patterning of vertebrate embryos. Organ function often depends on tightly regulated organ size control, but the role of organ of asymmetry size in LR patterning has remained unknown. Observations of the organ of asymmetry in the zebrafish, called Kupffer's vesicle (KV), have suggested significant variations in KV size in wild-type embryos, raising questions about the impact of KV organ size on LR patterning. RESULTS To understand the relationship between organ of asymmetry size and its function, we characterized variations in KV at several developmental stages and in several different zebrafish strains. We found that the number of KV cilia and the size of the KV lumen were highly variable, whereas the length of KV cilia showed less variation. These variabilities were similar among different genetic backgrounds. By specifically modulating KV size and analyzing individual embryos, we identified a size threshold that is necessary for KV function. CONCLUSIONS Together these results indicate the KV organ of asymmetry size is not tightly controlled during development, but rather must only exceed a threshold to direct robust LR patterning of the zebrafish embryo.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Yongchang Ji
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Bridget Litts
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|
71
|
Zhu P, Xu X, Lin X. Both ciliary and non-ciliary functions of Foxj1a confer Wnt/β-catenin signaling in zebrafish left-right patterning. Biol Open 2015; 4:1376-86. [PMID: 26432885 PMCID: PMC4728341 DOI: 10.1242/bio.012088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/β-catenin pathway is implicated in left-right (LR) axis determination; however, the underlying mechanism remains elusive. Prompted by our recent discovery that Wnt signaling regulates ciliogenesis in the zebrafish Kupffer's vesicle (KV) via Foxj1a, a ciliogenic transcription factor, we decided to elucidate functions of Foxj1a in Wnt-regulated LR pattern formation. We showed that targeted injection of wnt8a mRNA into a single cell at the 128-cell stage is sufficient to induce ectopic foxj1a expression and ectopic cilia. By interrogating the transcription circuit of foxj1a regulation, we found that both Lef1 and Tcf7 bind to a consensus element in the foxj1a promoter region. Depletion of Lef1 and Tcf7 inhibits foxj1a transcription in the dorsal forerunner cells, downregulates cilia length and number in KV, and randomizes LR asymmetry. Targeted overexpression of a constitutively active form of Lef1 also induced an ectopic protrusion that contains ectopic transcripts for sox17, foxj1a, and charon, and ectopic monocilia. Further genetic studies using this ectopic expression platform revealed two distinct functions of Foxj1a; mediating Wnt-governed monocilia length elongation as well as charon transcription. The novel Foxj1a-charon regulation is conserved in KV, and importantly, it is independent of the canonical role of Foxj1a in the biosynthesis of motile cilia. Together with the known function of motile cilia movement in generating asymmetric expression of charon, our data put forward a hypothesis that Foxj1a confers both ciliary and non-ciliary functions of Wnt signaling, which converge on charon to regulate LR pattern formation. Summary: Using a targeted overexpression platform, we showed that Wnt activation induces ectopic foxj1a expression and ectopic cilia formation, and revealed two distinct roles of Foxj1a in conferring Wnt-governed left-right patterning.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
72
|
Dutta S, Sriskanda S, Boobalan E, Alur RP, Elkahloun A, Brooks BP. nlz1 is required for cilia formation in zebrafish embryogenesis. Dev Biol 2015; 406:203-11. [PMID: 26327644 DOI: 10.1016/j.ydbio.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
The formation of cilia is a fundamental developmental process affecting diverse functions such as cellular signaling, tissue morphogenesis and body patterning. However, the mechanisms of ciliogenesis during vertebrate development are not fully understood. In this report we describe a novel role of the Nlz1 protein in ciliogenesis. We demonstrate morpholino-mediated knockdown of nlz1 in zebrafish causes abnormal specification of the cells of Kupffer's vesicle (KV); a severe reduction of the number of cilia in KV, the pronephros, and the neural floorplate; and a spectrum of later phenotypes reminiscent of human ciliopathies. In vitro and in vivo data indicate that Nlz1 acts downstream of Foxj1a and Wnt8a/presumed canonical Wnt signaling. Furthermore, Nlz1 contributes to motile cilia formation by positively regulating Wnt11/presumed non-canonical Wnt signaling. Together, our data suggest a novel role of nlz1 in ciliogenesis and the morphogenesis of multiple tissues.
Collapse
Affiliation(s)
- Sunit Dutta
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shahila Sriskanda
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elangovan Boobalan
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramakrishna P Alur
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel Elkahloun
- Microarray Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Unit on Pediatric, Developmental & Genetic Ophthalmology, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
73
|
Gokey JJ, Dasgupta A, Amack JD. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. Dev Biol 2015; 407:115-30. [PMID: 26254189 DOI: 10.1016/j.ydbio.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
Abstract
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
74
|
Abstract
During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516-527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus development. Here we analyzed whether foxj1 expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for foxj1 expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4-function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/β-catenin signaling for foxj1 expression and motile ciliogenesis throughout Xenopus development.
Collapse
|
75
|
Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev Biol 2015; 408:292-304. [PMID: 25848696 DOI: 10.1016/j.ydbio.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Proton pump inhibitors (PPIs), which target gastric H(+)/K(+)ATPase (ATP4), are among the most commonly prescribed drugs. PPIs are used to treat ulcers and as a preventative measure against gastroesophageal reflux disease in hospitalized patients. PPI treatment correlates with an increased risk for airway infections, i.e. community- and hospital-acquired pneumonia. The cause for this correlation, however, remains elusive. The Xenopus embryonic epidermis is increasingly being used as a model to study airway-like mucociliary epithelia. Here we use this model to address how ATP4 inhibition may affect epithelial function in human airways. We demonstrate that atp4a knockdown interfered with the generation of cilia-driven extracellular fluid flow. ATP4a and canonical Wnt signaling were required in the epidermis for expression of foxj1, a transcriptional regulator of motile ciliogenesis. The ATP4/Wnt module activated foxj1 downstream of ciliated cell fate specification. In multiciliated cells (MCCs) of the epidermis, ATP4a was also necessary for normal myb expression, apical actin formation, basal body docking and alignment of basal bodies. Furthermore, ATP4-dependent Wnt/β-catenin signaling in the epidermis was a prerequisite for foxa1-mediated specification of small secretory cells (SSCs). SSCs release serotonin and other substances into the medium, and thereby regulate ciliary beating in MCCs and protect the epithelium against infection. Pharmacological inhibition of ATP4 in the mature mucociliary epithelium also caused a loss of MCCs and led to impaired mucociliary clearance. These data strongly suggest that PPI-associated pneumonia in human patients might, at least in part, be linked to dysfunction of mucociliary epithelia of the airways.
Collapse
Affiliation(s)
- Peter Walentek
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany; Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Christina Müller
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Richard M Harland
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| |
Collapse
|
76
|
Miyatake K, Kusakabe M, Takahashi C, Nishida E. ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled. Nat Commun 2015; 6:6666. [PMID: 25823377 DOI: 10.1038/ncomms7666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 02/18/2015] [Indexed: 11/09/2022] Open
Abstract
Cilia are essential for embryogenesis and maintenance of homeostasis, but little is known about the signalling pathways that regulate ciliogenesis. Here, we identify ERK7, an atypical mitogen-activated protein kinase, as a key regulator of ciliogenesis. ERK7 is strongly expressed in ciliated tissues of Xenopus embryos. ERK7 knockdown markedly diminishes both the number and the length of cilia in multiciliated cells, and it inhibits the apical migration of basal bodies. Moreover, ERK7 knockdown results in a loss of the apical actin meshwork, which is required for the proper migration of basal bodies. We find that the actin regulator CapZIP, which has been shown to regulate ciliogenesis in a phosphorylation-dependent manner, is an ERK7 substrate, and that Dishevelled, which has also been shown to regulate ciliogenesis, facilitates ERK7 phosphorylation of CapZIP through binding to both ERK7 and CapZIP. Collectively, these results identify an ERK7/Dishevelled/CapZIP axis that regulates ciliogenesis.
Collapse
Affiliation(s)
- Koichi Miyatake
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Morioh Kusakabe
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chika Takahashi
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
77
|
Sinigaglia C, Busengdal H, Lerner A, Oliveri P, Rentzsch F. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Dev Biol 2015; 398:120-33. [PMID: 25478911 PMCID: PMC4300403 DOI: 10.1016/j.ydbio.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/16/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Henriette Busengdal
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Avi Lerner
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| |
Collapse
|
78
|
Brekman A, Walters MS, Tilley AE, Crystal RG. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro. Am J Respir Cell Mol Biol 2015; 51:688-700. [PMID: 24828273 DOI: 10.1165/rcmb.2013-0363oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke-mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air-liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking.
Collapse
Affiliation(s)
- Angelika Brekman
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | |
Collapse
|
79
|
Verleyen D, Luyten FP, Tylzanowski P. Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the zebrafish Kupffer's vesicle. PLoS One 2014; 9:e110484. [PMID: 25335082 PMCID: PMC4204907 DOI: 10.1371/journal.pone.0110484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
GPR22 is an orphan G protein-coupled receptor (GPCR). Since the ligand of the receptor is currently unknown, its biological function has not been investigated in depth. Many GPCRs and their intracellular effectors are targeted to cilia. Cilia are highly conserved eukaryotic microtubule-based organelles that protrude from the membrane of most mammalian cells. They are involved in a large variety of physiological processes and diseases. However, the details of the downstream pathways and mechanisms that maintain cilia length and structure are poorly understood. We show that morpholino knock down or overexpression of gpr22 led to defective left-right (LR) axis formation in the zebrafish embryo. Specifically, defective LR patterning included randomization of the left-specific lateral plate mesodermal genes (LPM) (lefty1, lefty2, southpaw and pitx2a), resulting in randomized cardiac looping. Furthermore, gpr22 inactivation in the Kupffer’s vesicle (KV) alone was still able to generate the phenotype, indicating that Gpr22 mainly regulates LR asymmetry through the KV. Analysis of the KV cilia by immunofluorescence and transmission electron microscopy (TEM), revealed that gpr22 knock down or overexpression resulted in changes of cilia length and structure. Further, we found that Gpr22 does not act upstream of the two cilia master regulators, Foxj1a and Rfx2. To conclude, our study characterized a novel player in the field of ciliogenesis.
Collapse
Affiliation(s)
- Daphne Verleyen
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
- * E-mail:
| |
Collapse
|
80
|
Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport. Nat Cell Biol 2014; 16:841-51. [PMID: 25173977 PMCID: PMC4154319 DOI: 10.1038/ncb3029] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/16/2014] [Indexed: 12/16/2022]
Abstract
Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signaling cascades that regulate cilia formation remain incompletely understood. Here we report that prostaglandin signaling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants display ciliogenesis defects, and lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme Cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates cAMP-mediated signaling cascade, are required for cilia formation and elongation. Importantly, PGE2 signaling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signaling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.
Collapse
|
81
|
Ohata S, Nakatani J, Herranz-Pérez V, Cheng J, Belinson H, Inubushi T, Snider WD, García-Verdugo JM, Wynshaw-Boris A, Alvarez-Buylla A. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 2014; 83:558-71. [PMID: 25043421 DOI: 10.1016/j.neuron.2014.06.022] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/19/2022]
Abstract
Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling, and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus.
Collapse
Affiliation(s)
- Shinya Ohata
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Jin Nakatani
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, UCSF, San Francisco, CA 94143, USA; Biomedical Magnetic Resonance Science Unit, Molecular Neuroscience Research Center, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan
| | - Vicente Herranz-Pérez
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe, 46013 Valencia, Spain
| | - JrGang Cheng
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haim Belinson
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Toshiro Inubushi
- Biomedical Magnetic Resonance Science Unit, Molecular Neuroscience Research Center, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jose Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Valencia, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe, 46013 Valencia, Spain
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, UCSF, San Francisco, CA 94143, USA; Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.
| |
Collapse
|
82
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
83
|
Osborn DPS, Roccasecca RM, McMurray F, Hernandez-Hernandez V, Mukherjee S, Barroso I, Stemple D, Cox R, Beales PL, Christou-Savina S. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies. PLoS One 2014; 9:e87662. [PMID: 24503721 PMCID: PMC3913654 DOI: 10.1371/journal.pone.0087662] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/27/2013] [Indexed: 11/24/2022] Open
Abstract
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto−/− MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
Collapse
Affiliation(s)
- Daniel P. S. Osborn
- Biomedical Sciences, St George’s University of London, London, United Kingdom
| | - Rosa Maria Roccasecca
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Fiona McMurray
- Harwell Science and Innovation Campus, MRC Harwell, Harwell, United Kingdom
| | | | - Sriparna Mukherjee
- Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Derek Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Roger Cox
- Harwell Science and Innovation Campus, MRC Harwell, Harwell, United Kingdom
| | - Philip L. Beales
- Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| | - Sonia Christou-Savina
- Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
84
|
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, Borg JP, Pineau C, Neerman-Arbez M, Bairoch A, Lane L. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS One 2014; 9:e86476. [PMID: 24475127 PMCID: PMC3903541 DOI: 10.1371/journal.pone.0086476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irene Borlat
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédérique Lembo
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | | | - Jean-Paul Borg
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
85
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
86
|
Analysis of the Ush2a gene in medaka fish (Oryzias latipes). PLoS One 2013; 8:e74995. [PMID: 24086419 PMCID: PMC3781144 DOI: 10.1371/journal.pone.0074995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).
Collapse
|
87
|
Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLoS One 2013; 8:e73646. [PMID: 24058481 PMCID: PMC3772795 DOI: 10.1371/journal.pone.0073646] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Breakage of bilateral symmetry in amphibian embryos depends on the development of a ciliated epithelium at the gastrocoel roof during early neurulation. Motile cilia at the gastrocoel roof plate (GRP) give rise to leftward flow of extracellular fluids. Flow is required for asymmetric gene expression and organ morphogenesis. Wnt signaling has previously been involved in two steps, Wnt/ß-catenin mediated induction of Foxj1, a regulator of motile cilia, and Wnt/planar cell polarity (PCP) dependent cilia polarization to the posterior pole of cells. We have studied Wnt11b in the context of laterality determination, as this ligand was reported to activate canonical and non-canonical Wnt signaling. Wnt11b was found to be expressed in the so-called superficial mesoderm (SM), from which the GRP derives. Surprisingly, Foxj1 was only marginally affected in loss-of-function experiments, indicating that another ligand acts in this early step of laterality specification. Wnt11b was required, however, for polarization of GRP cilia and GRP morphogenesis, in line with the known function of Wnt/PCP in cilia-driven leftward flow. In addition Xnr1 and Coco expression in the lateral-most GRP cells, which sense flow and generate the first asymmetric signal, was attenuated in morphants, involving Wnt signaling in yet another process related to symmetry breakage in Xenopus.
Collapse
|
88
|
Burkhalter MD, Fralish GB, Premont RT, Caron MG, Philipp M. Grk5l controls heart development by limiting mTOR signaling during symmetry breaking. Cell Rep 2013; 4:625-32. [PMID: 23972986 DOI: 10.1016/j.celrep.2013.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
The correct asymmetric placement of inner organs is termed situs solitus and is determined early during development. Failure in symmetry breaking results in conditions ranging from randomized organ arrangement to a complete mirror image, often accompanied by severe congenital heart defects (CHDs). We found that the zebrafish homolog of mammalian G protein-coupled receptor kinase 5 (GRK5) employs noncanonical, receptor-independent functions to secure symmetry breaking. Knockdown of GRK5's closest homolog in zebrafish embryos, Grk5l, is sufficient to randomize cardiac looping and left-right asymmetry. Mechanistically, we found that loss of GRK5 increases mammalian target of rapamycin complex 1 (mTORC1) activity. This causes elongation of motile cilia in the organ of laterality, a consequence that is known to be sufficient to trigger aberrant organ arrangement. By fine-tuning mTORC1, GRK5 thus serves an unanticipated function during early development, besides its well-characterized role in the adult heart. These findings could implicate GRK5 as a susceptibility allele for certain cases of CHD.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Leibniz Institute for Age Research, Fritz Lippmann Institute, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
89
|
Hochgreb-Hägele T, Yin C, Koo DES, Bronner ME, Stainier DYR. Laminin β1a controls distinct steps during the establishment of digestive organ laterality. Development 2013; 140:2734-45. [PMID: 23757411 DOI: 10.1242/dev.097618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visceral organs, including the liver and pancreas, adopt asymmetric positions to ensure proper function. Yet the molecular and cellular mechanisms controlling organ laterality are not well understood. We identified a mutation affecting zebrafish laminin β1a (lamb1a) that disrupts left-right asymmetry of the liver and pancreas. In these mutants, the liver spans the midline and the ventral pancreatic bud remains split into bilateral structures. We show that lamb1a regulates asymmetric left-right gene expression in the lateral plate mesoderm (LPM). In particular, lamb1a functions in Kupffer's vesicle (KV), a ciliated organ analogous to the mouse node, to control the length and function of the KV cilia. Later during gut-looping stages, dynamic expression of Lamb1a is required for the bilayered organization and asymmetric migration of the LPM. Loss of Lamb1a function also results in aberrant protrusion of LPM cells into the gut. Collectively, our results provide cellular and molecular mechanisms by which extracellular matrix proteins regulate left-right organ morphogenesis.
Collapse
Affiliation(s)
- Tatiana Hochgreb-Hägele
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
90
|
Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development 2013; 140:3892-902. [PMID: 23946439 DOI: 10.1242/dev.096388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.
Collapse
Affiliation(s)
- Judith M Neugebauer
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
91
|
Wnt signaling regulates left-right axis formation in the node of mouse embryos. Dev Biol 2013; 380:222-32. [PMID: 23707899 DOI: 10.1016/j.ydbio.2013.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
The node triggers formation of the left-right axis in mouse embryos by establishing local asymmetry of Nodal and Cerl2 expression. We found that Wnt3 is expressed in perinodal crown cells preferentially on the left side. The enhancer responsible for Wnt3 expression was identified and found to be regulated by Foxa2 and Rbpj under the control of Notch signaling. Rbpj binding sites suppress enhancer activity in pit cells of the node, thereby ensuring crown cell-specific expression. In addition, we found that the expression of Gdf1 and Cerl2 is also regulated by Notch signaling, suggesting that such signaling may induce the expression of genes related to left-right asymmetry as a set. Furthermore, Cerl2 expression became symmetric in response to inhibition of Wnt-β-catenin signaling. Our results suggest that Wnt signaling regulates the asymmetry of Cerl2 expression, which likely generates a left-right difference in Nodal activity at the node for further amplification in lateral plate mesoderm.
Collapse
|
92
|
Wang G, Yost HJ, Amack JD. Analysis of gene function and visualization of cilia-generated fluid flow in Kupffer's vesicle. J Vis Exp 2013. [PMID: 23567922 DOI: 10.3791/50038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish. These 'LR cilia' generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow. In the zebrafish embryo, LR cilia are located in Kupffer's vesicle (KV). KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo. The ability to identify and track DFCs-in combination with optical transparency and rapid development of the zebrafish embryo-make zebrafish KV an excellent model system to study LR ciliated cells. Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf(8). Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time. Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, New York, NY, USA
| | | | | |
Collapse
|
93
|
Qian M, Yao S, Jing L, He J, Xiao C, Zhang T, Meng W, Zhu H, Xu H, Mo X. ENC1-like integrates the retinoic acid/FGF signaling pathways to modulate ciliogenesis of Kupffer’s vesicle during zebrafish embryonic development. Dev Biol 2013. [DOI: 10.1016/j.ydbio.2012.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Vandenberg LN, Lemire JM, Levin M. Serotonin has early, cilia-independent roles in Xenopus left-right patterning. Dis Model Mech 2013; 6:261-8. [PMID: 22899856 PMCID: PMC3529356 DOI: 10.1242/dmm.010256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Consistent left-right (LR) patterning of the heart and viscera is a crucial part of normal embryogenesis. Because errors of laterality form a common class of birth defects, it is important to understand the molecular mechanisms and stage at which LR asymmetry is initiated. Frog embryos are a system uniquely suited to analysis of the mechanisms involved in orientation of the LR axis because of the many genetic and pharmacological tools available for use and the fate-map and accessibility of early blastomeres. Two major models exist for the origin of LR asymmetry and both implicate pre-nervous serotonergic signaling. In the first, the charged serotonin molecule is instructive for LR patterning; it is redistributed asymmetrically along the LR axis and signals intracellularly on the right side at cleavage stages. A second model suggests that serotonin is a permissive factor required to specify the dorsal region of the embryo containing chiral cilia that generate asymmetric fluid flow during neurulation, a much later process. We performed theory-neutral experiments designed to distinguish between these models. The results uniformly support a role for serotonin in the cleavage-stage embryo, long before the appearance of cilia, in ventral right blastomeres that do not contribute to the ciliated organ.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
95
|
Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet 2012; 8:e1003121. [PMID: 23271979 PMCID: PMC3521660 DOI: 10.1371/journal.pgen.1003121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/12/2012] [Indexed: 02/01/2023] Open
Abstract
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H(+)/K(+)-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H(+)/K(+)-ATPase and the Notch signaling pathway.
Collapse
Affiliation(s)
- Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - François Lahaye
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| |
Collapse
|
96
|
Oh EC, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 2012; 24:10-8. [PMID: 23123400 DOI: 10.1681/asn.2012050526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The primary cilium is a highly conserved environmental sensor and modulator of fluid movement in tubular structures. The growing recognition of mutations among its many components has led to the discovery of new disorders collectively called ciliopathies. Ciliary dysfunction disturbs a variety of signaling pathways along its basal body and axoneme that are critical for embryonic development and cell and organ homeostasis. Among the many pathways, here we discuss the emerging role of Wnt proteins in morphogenic signaling and ciliary biology during health and disease.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, 466 Nanaline Building, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
97
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
98
|
Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, Humphray S, Saffrey P, Kingsbury Z, Weir JC, Betley J, Grocock RJ, Margulies EH, Farrow EG, Artman M, Safina NP, Petrikin JE, Hall KP, Kingsmore SF. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 2012; 4:154ra135. [PMID: 23035047 PMCID: PMC4283791 DOI: 10.1126/scitranslmed.3004041] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.
Collapse
Affiliation(s)
- Carol Jean Saunders
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Neil Andrew Miller
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sarah Elizabeth Soden
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Darrell Lee Dinwiddie
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aaron Noll
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Noor Abu Alnadi
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nevene Andraws
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Melanie LeAnn Patterson
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Lisa Ann Krivohlavek
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Joel Fellis
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | - Sean Humphray
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | - Peter Saffrey
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | - Zoya Kingsbury
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | | | - Jason Betley
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | | | | | - Emily Gwendolyn Farrow
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Michael Artman
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nicole Pauline Safina
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Joshua Erin Petrikin
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Kevin Peter Hall
- Illumina Inc., Chesterford Research Park, Little Chesterford, CB10 1XL Essex, UK
| | - Stephen Francis Kingsmore
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pathology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
99
|
Hüsken U, Carl M. The Wnt/beta-catenin signaling pathway establishes neuroanatomical asymmetries and their laterality. Mech Dev 2012; 130:330-5. [PMID: 23022991 DOI: 10.1016/j.mod.2012.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 01/06/2023]
Abstract
The vertebrate brain is an immensely complex structure, which exhibits numerous morphological and functional asymmetries. The best described brain asymmetries are found in the diencephalic epithalamus, where the habenulae and the dorso-laterally adjacent pineal complex are lateralized in many species. Research in the past decade has shed light on the establishment of the laterality of these structures as well as their asymmetry per se. In particular work in zebrafish (Danio rerio) has substantially contributed to our understanding, which genetic pathways are involved in these processes. The Wnt/beta-catenin pathway has turned out to play a pivotal role in the regulation of brain laterality and asymmetry and acts reiteratively during embryonic development.
Collapse
Affiliation(s)
- Ulrike Hüsken
- Department of Cell- and Molecular Biology, Medical Faculty, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
100
|
Shimizu N, Kawakami K, Ishitani T. Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev Biol 2012; 370:71-85. [PMID: 22842099 DOI: 10.1016/j.ydbio.2012.07.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Evolutionarily conserved Tcf/Lef transcription factors (Lef1, Tcf7, Tcf7l1, and Tcf7l2) mediate gene expression regulated by Wnt/β-catenin signaling, which has multiple roles in early embryogenesis, organogenesis, adult tissue homeostasis, and tissue regeneration. However, the spatiotemporal dynamics of Tcf/Lef activity during these events remain poorly understood. We generated stable transgenic zebrafish lines carrying a new Wnt/β-catenin signaling reporter, Tcf/Lef-miniP:dGFP. The reporter revealed the transcriptional activities of four Tcf/Lef members controlled by Wnt/β-catenin signaling, which were expressed in known Wnt/β-catenin signaling-active sites during embryogenesis, organ development and growth, and tissue regeneration. We used the transgenic lines to demonstrate the contribution of Tcf/Lef-mediated Wnt/β-catenin signaling to the development of the anterior lateral line, dorsal and secondary posterior lateral lines, and gill filaments. Thus, these reporter lines are highly useful tools for studying Tcf/Lef-mediated Wnt/β-catenin signaling-dependent processes.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Division of Cell Regulation Systems, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|