51
|
Wei Y, Sun H, Gui T, Yao L, Zhong L, Yu W, Heo SJ, Han L, Dyment NA, Liu XS, Zhang Y, Koyama E, Long F, Zgonis MH, Mauck RL, Ahn J, Qin L. The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. eLife 2021; 10:e62917. [PMID: 34085927 PMCID: PMC8177886 DOI: 10.7554/elife.62917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Meniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using a Gli1 reporter line, we found that Gli1+ cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1+ cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers. In culture, meniscal Gli1+ cells possessed high progenitor activities under the control of Hh signal. Meniscus injury at the anterior horn induced a quick expansion of Gli1-lineage cells. Normally, meniscal tissue healed slowly, leading to cartilage degeneration. Ablation of Gli1+ cells further hindered this repair process. Strikingly, intra-articular injection of Gli1+ meniscal cells or an Hh agonist right after injury accelerated the bridging of the interrupted ends and attenuated signs of osteoarthritis. Taken together, our work identified a novel progenitor population in meniscus and proposes a new treatment for repairing injured meniscus and preventing osteoarthritis.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Cell Proliferation
- Disease Models, Animal
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Male
- Menisci, Tibial/metabolism
- Menisci, Tibial/pathology
- Menisci, Tibial/surgery
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/metabolism
- Mice, Knockout
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/prevention & control
- Signal Transduction
- Swine
- Swine, Miniature
- Tibial Meniscus Injuries/genetics
- Tibial Meniscus Injuries/metabolism
- Tibial Meniscus Injuries/pathology
- Tibial Meniscus Injuries/surgery
- Time Factors
- Wound Healing
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Mice
Collapse
Affiliation(s)
- Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hao Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan UniversityGuangzhouChina
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Su-Jin Heo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaUnited States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel UniversityPhiladelphiaUnited States
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowei Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaUnited States
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Miltiadis H Zgonis
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Robert L Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedic Surgery, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
52
|
Tits A, Ruffoni D. Joining soft tissues to bone: Insights from modeling and simulations. Bone Rep 2021; 14:100742. [PMID: 34150954 PMCID: PMC8190669 DOI: 10.1016/j.bonr.2020.100742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Entheses are complex multi-tissue regions of the musculoskeletal system serving the challenging task of connecting highly dissimilar materials such as the compliant tendon to the much stiffer bone, over a very small region. The first aim of this review is to highlight mathematical and computational models that have been developed to investigate the many attachment strategies present at entheses at different length scales. Entheses are also relevant in the medical context due to the high prevalence of orthopedic injuries requiring the reattachment of tendons or ligaments to bone, which are associated with a rather poor long-term clinical outcome. The second aim of the review is to report on the computational works analyzing the whole tendon to bone complex as well as targeting orthopedic relevant issues. Modeling approaches have provided important insights on anchoring mechanisms and surgical repair strategies, that would not have been revealed with experiments alone. We intend to demonstrate the necessity of including, in future models, an enriched description of enthesis biomechanical behavior in order to unravel additional mechanical cues underlying the development, the functioning and the maintaining of such a complex biological interface as well as to enhance the development of novel biomimetic adhesive, attachment procedures or tissue engineered implants.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
53
|
Theodossiou SK, Pancheri NM, Martes AC, Bozeman AL, Brumley MR, Raveling AR, Courtright JM, Schiele NR. Neonatal Spinal Cord Transection Decreases Hindlimb Weight-Bearing and Affects Formation of Achilles and Tail Tendons. J Biomech Eng 2021; 143:061012. [PMID: 33537729 PMCID: PMC8114905 DOI: 10.1115/1.4050031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Mechanical loading may be required for proper tendon formation. However, it is not well understood how tendon formation is impacted by the development of weight-bearing locomotor activity in the neonate. This study assessed tendon mechanical properties, and concomitant changes in weight-bearing locomotion, in neonatal rats subjected to a low thoracic spinal cord transection or a sham surgery at postnatal day (P)1. On P10, spontaneous locomotion was evaluated in spinal cord transected and sham controls to determine impacts on weight-bearing hindlimb movement. The mechanical properties of P10 Achilles tendons (ATs), as representative energy-storing, weight-bearing tendons, and tail tendons (TTs), as representative positional, non-weight-bearing tendons were evaluated. Non- and partial weight-bearing hindlimb activity decreased in spinal cord transected rats compared to sham controls. No spinal cord transected rats showed full weight-bearing locomotion. ATs from spinal cord transected rats had increased elastic modulus, while cross-sectional area trended lower compared to sham rats. TTs from spinal cord transected rats had higher stiffness and cross-sectional area. Collagen structure of ATs and TTs did not appear impacted by surgery condition, and no significant differences were detected in the collagen crimp pattern. Our findings suggest that mechanical loading from weight-bearing locomotor activity during development regulates neonatal AT lateral expansion and maintains tendon compliance, and that TTs may be differentially regulated. The onset and gradual increase of weight-bearing movement in the neonate may provide the mechanical loading needed to direct functional postnatal tendon formation.
Collapse
Affiliation(s)
- Sophia K. Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Nicholas M. Pancheri
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8112, Pocatello, ID 83209
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8112, Pocatello, ID 83209
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 South 8th Avenue Stop 8087, Pocatello, ID 83209
| | - Abigail R. Raveling
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Jeffrey M. Courtright
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| | - Nathan R. Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID 83844
| |
Collapse
|
54
|
Roffino S, Camy C, Foucault-Bertaud A, Lamy E, Pithioux M, Chopard A. Negative impact of disuse and unloading on tendon enthesis structure and function. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:46-52. [PMID: 33888287 DOI: 10.1016/j.lssr.2021.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle deconditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting or preventing the deleterious effects of chronic reduction in mechanical load. Numerous reviews have reported the effects of this reduction on both muscle and bone, and to a lesser extent on the tendon. However, none focused on the tendon enthesis, the tendon-to-bone attachment site. While the enthesis structure appears to be determined by mechanical stress, little is known about enthesis plasticity. Our review first looks at the relationship between entheses and mechanical stress, exploring how tensile and compressive loads determine and influence enthesis structure and composition. The second part of this review addresses the deleterious effects of skeletal muscle disuse and unloading on enthesis structure, composition, and function. We discuss the possibility that spaceflight-induced enthesis remodeling could impact both the capacity of the enthesis to withstand compressive stress and its potential weakness. Finally, we point out how altered compressive strength at entheses could expose astronauts to the risk of developing enthesopathies.
Collapse
Affiliation(s)
- S Roffino
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France.
| | - C Camy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Foucault-Bertaud
- INSERM 1263, INRA 1260, C2VN, Aix-Marseille University, Marseille, France
| | - E Lamy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - M Pithioux
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| |
Collapse
|
55
|
Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. Development and maintenance of tendons and ligaments. Development 2021; 148:239823. [PMID: 33913478 DOI: 10.1242/dev.186916] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan R Roberts
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hung-Jhen Chen
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
56
|
Tsai SL, Noedl MT, Galloway JL. Bringing tendon biology to heel: Leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev Dyn 2021; 250:393-413. [PMID: 33169466 PMCID: PMC8486356 DOI: 10.1002/dvdy.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tendons are specialized matrix-rich connective tissues that transmit forces from muscle to bone and are essential for movement. As tissues that frequently transfer large mechanical loads, tendons are commonly injured in patients of all ages. Following injury, mammalian tendons heal poorly through a slow process that forms disorganized fibrotic scar tissue with inferior biomechanical function. Current treatments are limited and patients can be left with a weaker tendon that is likely to rerupture and an increased chance of developing degenerative conditions. More effective, alternative treatments are needed. However, our current understanding of tendon biology remains limited. Here, we emphasize why expanding our knowledge of tendon development, healing, and regeneration is imperative for advancing tendon regenerative medicine. We provide a comprehensive review of the current mechanisms governing tendon development and healing and further highlight recent work in regenerative tendon models including the neonatal mouse and zebrafish. Importantly, we discuss how present and future discoveries can be applied to both augment current treatments and design novel strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Stephanie L. Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
57
|
Araujo EG, Schett G. Enthesitis in psoriatic arthritis (Part 1): pathophysiology. Rheumatology (Oxford) 2021; 59:i10-i14. [PMID: 32159793 PMCID: PMC7065460 DOI: 10.1093/rheumatology/keaa039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/03/2019] [Indexed: 12/23/2022] Open
Abstract
Enthesitis is a key manifestation of PsA and current knowledge supports the concept that it may be among the primary events in the development of this disease, as well as other forms of SpA. Patients with PsA seem to have a different threshold to mechanical stress, which may be genetically determined. Hence patients with psoriatic disease respond pathologically with inflammation after being exposed to physiological mechanical stress. Activation of pro-inflammatory mediators such as IL-17 and TNF-α as well as the influx of innate immune cells are key events in the development of enthesitis in PsA. Chronic entheseal inflammation is accompanied by new bone formation, leading to bony spurs in peripheral (entheseophytes) and axial (syndesmophytes) structures. This article reviews the current knowledge on the mechanisms involved in the development of enthesitis in patients with PsA.
Collapse
Affiliation(s)
- Elizabeth G Araujo
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
58
|
Kult S, Olender T, Osterwalder M, Markman S, Leshkowitz D, Krief S, Blecher-Gonen R, Ben-Moshe S, Farack L, Keren-Shaul H, Salame TM, Capellini TD, Itzkovitz S, Amit I, Visel A, Zelzer E. Bi-fated tendon-to-bone attachment cells are regulated by shared enhancers and KLF transcription factors. eLife 2021; 10:55361. [PMID: 33448926 PMCID: PMC7810463 DOI: 10.7554/elife.55361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanical challenge of attaching elastic tendons to stiff bones is solved by the formation of a unique transitional tissue. Here, we show that murine tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, under regulation of shared regulatory elements and Krüppel-like factors (KLFs) transcription factors. High-throughput bulk and single-cell RNA sequencing of humeral attachment cells revealed expression of hundreds of chondrogenic and tenogenic genes, which was validated by in situ hybridization and single-molecule ISH. ATAC sequencing showed that attachment cells share accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis revealed enhancer signatures for most of these regions. Transgenic mouse enhancer reporter assays verified the shared activity of some of these enhancers. Finally, integrative chromatin and motif analyses and transcriptomic data implicated KLFs as regulators of attachment cells. Indeed, blocking expression of both Klf2 and Klf4 in developing limb mesenchyme impaired their differentiation.
Collapse
Affiliation(s)
- Shiri Kult
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National, Berkeley, United States.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Svetalana Markman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Farack
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer-Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Department of Human Evolutionary Biology, United States; Broad Institute of Harvard and MIT, Cambridge, United States
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National, Berkeley, United States.,U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States.,School of Natural Sciences, University of California, Merced, Merced, United States
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
59
|
Ideo K, Tokunaga T, Shukunami C, Takimoto A, Yoshimoto Y, Yonemitsu R, Karasugi T, Mizuta H, Hiraki Y, Miyamoto T. Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice. PLoS One 2020; 15:e0242286. [PMID: 33259516 PMCID: PMC7707462 DOI: 10.1371/journal.pone.0242286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 01/24/2023] Open
Abstract
A multipotent cell population co-expressing a basic-helix-loop-helix transcription factor scleraxis (Scx) and SRY-box 9 (Sox9) has been shown to contribute to the establishment of entheses (tendon attachment sites) during mouse embryonic development. The present study aimed to investigate the involvement of Scx+/Sox9+ cells in the postnatal formation of fibrocartilaginous entheses and in the healing process after injury, using ScxGFP transgenic mice. We demonstrate that Scx+/Sox9+ cells are localized in layers at the insertion site during the postnatal formation of fibrocartilaginous entheses of supraspinatus tendon until postnatal 3 weeks. Further, these cells were rarely seen at postnatal 6 weeks, when mature fibrocartilaginous entheses were formed. Furthermore, we investigated the involvement of Scx+/Sox9+ cells in the healing process after supraspinatus tendon enthesis injury, comparing the responses of 20- and 3-week-old mice. In the healing process of 20-week-old mice with disorganized fibrovascular tissue in response to injury, a small number of Scx+/Sox9+ cells transiently appeared from 1 week after injury, but they were rarely seen at 4 weeks after injury. Meanwhile, in 3-week-old mice, a thin layer of fibrocartilaginous tissue with calcification was formed at healing enthesis at 4 weeks after injury. From 1 to 2 weeks after injury, more Scx+/Sox9+ cells, widely distributed at the injured site, were seen compared with the 20-week-old mice. At 4 weeks after injury, these cells were located near the surface of the recreated fibrocartilaginous layer. This spatiotemporal localization pattern of Scx+/Sox9+ cells at the injured enthesis in our 3-week-old mouse model was similar to that in postnatal fibrocartilaginous enthesis formation. These findings indicate that Scx+/Sox9+ cells may have a role as entheseal progenitor-like cells during postnatal maturation of fibrocartilaginous entheses and healing after injury in a manner similar to that seen in embryonic development.
Collapse
Affiliation(s)
- Katsumasa Ideo
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aki Takimoto
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuji Yonemitsu
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Hiraki
- Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
60
|
Fang F, Schwartz AG, Moore ER, Sup ME, Thomopoulos S. Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis. SCIENCE ADVANCES 2020; 6:6/44/eabc1799. [PMID: 33127677 PMCID: PMC7608799 DOI: 10.1126/sciadv.abc1799] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 05/10/2023]
Abstract
The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Andrea G Schwartz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Emily R Moore
- School of Dental Medicine, Harvard University, Cambridge, MA, 02138, USA
| | - McKenzie E Sup
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
61
|
Sun Han Chang RA, Shanley JF, Kersh ME, Harley BAC. Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces. SCIENCE ADVANCES 2020; 6:eabb6763. [PMID: 32875114 PMCID: PMC7438087 DOI: 10.1126/sciadv.abb6763] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.
Collapse
Affiliation(s)
- Raul A Sun Han Chang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John F Shanley
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
62
|
Shen H, Schwartz AG, Civitelli R, Thomopoulos S. Connexin 43 Is Necessary for Murine Tendon Enthesis Formation and Response to Loading. J Bone Miner Res 2020; 35:1494-1503. [PMID: 32227614 PMCID: PMC7725385 DOI: 10.1002/jbmr.4018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022]
Abstract
The enthesis is a mineralized fibrocartilage transition that attaches tendon to bone and is vital for musculoskeletal function. Despite recent studies demonstrating the necessity of muscle loading for enthesis formation, the mechanisms that regulate enthesis formation and mechanoresponsiveness remain unclear. Therefore, the current study investigated the role of the gap junction protein connexin 43 in these processes by deleting Gja1 (the Cx43 gene) in the tendon and enthesis. Compared with their wild-type (WT) counterparts, mice lacking Cx43 showed disrupted entheseal cell alignment, reduced mineralized fibrocartilage, and impaired biomechanical properties of the supraspinatus tendon entheses during postnatal development. Cx43-deficient mice also exhibited reduced ability to complete a treadmill running protocol but no apparent deficits in daily activity, metabolic indexes, shoulder muscle size, grip strength, and major trabecular bone properties of the adjacent humeral head. To examine enthesis mechanoresponsiveness, young adult mice were subjected to modest treadmill exercise. Gja1 deficiency in the tendon and enthesis reduced entheseal anabolic responses to treadmill exercise: WT mice had increased expression of Sox9, Ihh, and Gli1 and increased Brdu incorporation, whereas Cx43-deficient mice showed no changes or decreased levels with exercise. Collectively, the results demonstrated an essential role for Cx43 in postnatal tendon enthesis formation, function, and response to loading; results further provided evidence implicating a link between Cx43 function and the hedgehog signaling pathway. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Roberto Civitelli
- Department of Internal Medicine, Division of Bone and Mineral Disease, Washington University, St. Louis, MO, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA.,Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
63
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
64
|
Gumucio JP, Schonk MM, Kharaz YA, Comerford E, Mendias CL. Scleraxis is required for the growth of adult tendons in response to mechanical loading. JCI Insight 2020; 5:138295. [PMID: 32463804 DOI: 10.1172/jci.insight.138295] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting tenocyte proliferation and matrix synthesis during embryonic tendon development. However, the role of scleraxis in the growth and adaptation of adult tendons is not known. We hypothesized that scleraxis is required for tendon growth in response to mechanical loading and that scleraxis promotes the specification of progenitor cells into tenocytes. We conditionally deleted scleraxis in adult mice using a tamoxifen-inducible Cre-recombinase expressed from the Rosa26 locus (ScxΔ) and then induced tendon growth in Scx+ and ScxΔ adult mice via plantaris tendon mechanical overload. Compared with the WT Scx+ group, ScxΔ mice demonstrated blunted tendon growth. Transcriptional and proteomic analyses revealed significant reductions in cell proliferation, protein synthesis, and extracellular matrix genes and proteins. Our results indicate that scleraxis is required for mechanically stimulated adult tendon growth by causing the commitment of CD146+ pericytes into the tenogenic lineage and by promoting the initial expansion of newly committed tenocytes and the production of extracellular matrix proteins.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Molecular & Integrative Physiology and.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, and Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, Liverpool, United Kingdom
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, and Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, Liverpool, United Kingdom
| | - Christopher L Mendias
- Department of Molecular & Integrative Physiology and.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Hospital for Special Surgery, New York, New York, USA.,Department of Physiology & Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
65
|
Biomechanical, histologic, and molecular characteristics of graft-tunnel healing in a murine modified ACL reconstruction model. J Orthop Translat 2020; 24:103-111. [PMID: 32775202 PMCID: PMC7390781 DOI: 10.1016/j.jot.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose The purpose of our study was to introduce and validate a metal-free, reproducible and reliable mouse model of anterior cruciate ligament (ACL) reconstruction (ACLR) surgery as an effective tool for a better understanding of molecular mechanisms of graft-tunnel healing after ACLR. Methods A total of 150 C57BL/6 mice were randomly allocated into five Groups: Group 1 (mice with intact ACL), Group 2–4 (mice underwent modified ACLR surgery and sacrificed 1-, 2-, and 4-weeks after surgery), and Group 5 (mice underwent unmodified ACLR surgery and sacrificed 4 weeks after surgery). Micro-computed tomography (CT), biomechanical histological as well as immunohistochemical (IHC) analyses were performed to characterize the modified ACLR. Results Micro-CT analysis demonstrated there is a non-significant increase in BV/TV and BMD of the bone tunnel during the tendon-to-bone healing following ACLR. Biomechanical tests showed that the mean load-to-failure forces of Group 3 and 4 are equal to 31.7% and 46.0% of that in Group 1, while the stiffness was 33.1% and 57.2% of that of Group 1, respectively. And no obvious difference in biomechanical parameters was found between Group 4 and 5. Histological analysis demonstrated that formation of fibrovascular tissue in the tibial tunnel and aperture in Groups 4 and 5 and direct junction appeared between tendon graft and tunnel both in Groups 4 and 5. IHC results showed that there are gradually enhanced expression of Patched1, Smoothened and Gli2 concomitant with decreased Gli3 protein in the tendon-bone interface during the tendon-bone healing process. Conclusion We introduced a metal-free, reproducible and reliable mouse model of ACLR compared to the unmodified ACLR procedure, and characterized the expression pattern of key molecules in Ihh signaling during the graft healing process. The translational potential of this article In the present study we introduced and validated, for the first time, a metal-free, reproducible and reliable ACLR mouse model, which could be used to investigate the detailed molecular mechanisms of graft-tunnel healing after ACLR. We also explored new strategies to promote the healing of tendon-to-bone integration.
Collapse
Key Words
- ACL, Anterior cruciate ligament
- ACLR, ACL reconstruction
- Anterior cruciate ligament
- BMD, Bone mineral density
- BV/TV, Bone volume/total volume
- CI, Confidence interval
- CT, Computed tomography
- Gli1, Glioma-associated oncogene homologue 1
- Gli2, Glioma-associated oncogene homologue 2
- Gli3, Glioma-associated oncogene homologue 3
- H&E, Haematoxylin-eosin
- Hedgehog signaling
- Ihh, Indian hedgehog
- Mouse model
- NS, Non-significant
- Ptch1, Patched1
- Smo, Smoothened
- Tendon-bone healing
Collapse
|
66
|
Anthwal N, Tucker AS. The TMJ Disc Is a Common Ancestral Feature in All Mammals, as Evidenced by the Presence of a Rudimentary Disc During Monotreme Development. Front Cell Dev Biol 2020; 8:356. [PMID: 32509783 PMCID: PMC7248220 DOI: 10.3389/fcell.2020.00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
The novel mammalian jaw joint, known in humans as the temporomandibular joint or TMJ, is cushioned by a fibrocartilage disc. This disc is secondarily absent in therian mammals that have lost their dentition, such as giant anteaters and some baleen whales. The disc is also absent in all monotremes. However, it is not known if the absence in monotremes is secondary to the loss of dentition, or if it is an ancestral absence. We use museum held platypus and echidna histological sections to demonstrate that the developing monotreme jaw joint forms a disc primordium that fails to mature and become separated from the mandibular condyle. We then show that monotreme developmental anatomy is similar to that observed in transgenic mouse mutants with reduced cranial musculature. We therefore suggest that the absence of the disc on monotremes is a consequence of the changes in jaw musculature associated with the loss of adult teeth. Taken together, these data indicate that the ancestors of extant monotremes likely had a jaw joint disc, and that the disc evolved in the last common ancestor of all mammals.
Collapse
Affiliation(s)
- Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | |
Collapse
|
67
|
Abraham AC, Shah SA, Golman M, Song L, Li X, Kurtaliaj I, Akbar M, Millar NL, Abu-Amer Y, Galatz LM, Thomopoulos S. Targeting the NF-κB signaling pathway in chronic tendon disease. Sci Transl Med 2020; 11:11/481/eaav4319. [PMID: 30814338 DOI: 10.1126/scitranslmed.aav4319] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/31/2019] [Indexed: 01/20/2023]
Abstract
Tendon disorders represent the most common musculoskeletal complaint for which patients seek medical attention; inflammation drives tendon degeneration before tearing and impairs healing after repair. Clinical evidence has implicated the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway as a correlate of pain-free return to function after surgical repair. However, it is currently unknown whether this response is a reaction to or a driver of pathology. Therefore, we aimed to understand the clinically relevant involvement of the NF-κB pathway in tendinopathy, to determine its potential causative roles in tendon degeneration, and to test its potential as a therapeutic candidate. Transcriptional profiling of early rotator cuff tendinopathy identified increases in NF-κB signaling, including increased expression of the regulatory serine kinase subunit IKKβ, which plays an essential role in inflammation. Using cre-mediated overexpression of IKKβ in tendon fibroblasts, we observed degeneration of mouse rotator cuff tendons and the adjacent humeral head. These changes were associated with increases in proinflammatory cytokines and innate immune cells within the joint. Conversely, genetic deletion of IKKβ in tendon fibroblasts partially protected mice from chronic overuse-induced tendinopathy. Furthermore, conditional knockout of IKKβ improved outcomes after surgical repair, whereas overexpression impaired tendon healing. Accordingly, targeting of the IKKβ/NF-κB pathway in tendon stromal cells may offer previously unidentified therapeutic approaches in the management of human tendon disorders.
Collapse
Affiliation(s)
- Adam C Abraham
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Shivam A Shah
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Mikhail Golman
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Xiaoning Li
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA
| | - Iden Kurtaliaj
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Ave., Glasgow, Scotland G12 8TA, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Ave., Glasgow, Scotland G12 8TA, UK
| | - Yousef Abu-Amer
- Departments of Orthopedic Surgery and Cell Biology and Physiology, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA.,Shriners Hospital for Children, 4400 Clayton Ave, St. Louis, MO 63110, USA
| | - Leesa M Galatz
- Department of Orthopedic Surgery, Mount Sinai, 5 E 98th St., New York, NY 10029, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, 650 W 168th St, New York, NY 10032, USA. .,Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| |
Collapse
|
68
|
Kamalitdinov TB, Fujino K, Shetye SS, Jiang X, Ye Y, Rodriguez AB, Kuntz AF, Zgonis MH, Dyment NA. Amplifying Bone Marrow Progenitors Expressing α-Smooth Muscle Actin Produce Zonal Insertion Sites During Tendon-to-Bone Repair. J Orthop Res 2020; 38:105-116. [PMID: 31228280 PMCID: PMC6917878 DOI: 10.1002/jor.24395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Traditional tendon-to-bone repair where the tendon is reattached to bone via suture anchors often results in disorganized scar production rather than the formation of a zonal insertion. In contrast, ligament reconstructions where tendon grafts are passed through bone tunnels can yield zonal tendon-to-bone attachments between the graft and adjacent bone. Therefore, ligament reconstructions can be used to study mechanisms that regulate zonal tendon-to-bone repair in the adult. Anterior cruciate ligament (ACL) reconstructions are one of the most common reconstruction procedures and while we know that cells from outside the graft produce the attachments, we have not yet established specific cell populations that give rise to this tissue. To address this knowledge gap, we performed ACL reconstructions in lineage tracing mice where α-smooth muscle actin (αSMACreERT2) was used to label αSMA-expressing progenitors within the bone marrow that produced zonal attachments. Expression of αSMA was increased during early stages of the repair process such that the contribution of SMA-labeled cells to the tunnel integration was highest when tamoxifen was delivered in the first week post-surgery. The zonal attachments shared features with normal entheses, including tidemarks oriented perpendicularly to collagen fibers, Col1a1-expressing cells, alkaline phosphatase activity, and proteoglycan-rich staining. Finally, the integration strength increased with time, requiring 112% greater force to remove the graft from the tunnel at 28 days compared with 14 days post-surgery. Future studies will target these progenitor cells to define the pathways that regulate zonal tendon-to-bone repair in the adult. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:105-116, 2020.
Collapse
Affiliation(s)
- Timur B. Kamalitdinov
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Keitaro Fujino
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA,Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaping Ye
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley B. Rodriguez
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew F. Kuntz
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Miltiadis H. Zgonis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
69
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
70
|
Abstract
Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.
Collapse
Affiliation(s)
- Sophia K Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Nathan R Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
71
|
Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication 2019; 12:015008. [PMID: 31561236 PMCID: PMC6904927 DOI: 10.1088/1758-5090/ab48ca] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The long-term success of surgical repair of rotator cuff tears is largely dependent on restoration of a functional tendon-to-bone interface. We implemented micro-precise spatiotemporal delivery of growth factors in three-dimensional printed scaffolds for integrative regeneration of a fibrocartilaginous tendon-to-bone interface. Sustained and spatially controlled release of tenogenic, chondrogenic and osteogenic growth factors was achieved using microsphere-based delivery carriers embedded in thin membrane-like scaffolds. In vitro, the scaffolds embedded with spatiotemporal delivery of growth factors successfully guided regional differentiation of mesenchymal progenitor cells, forming multiphase tissues with tendon-like, cartilage-like and bone-like regions. In vivo, when implanted at the interface between the supraspinatus tendon and the humeral head in a rat rotator cuff repair model, these scaffolds promoted recruitment of endogenous tendon progenitor cells followed by integrative healing of tendon and bone via re-formation of strong fibrocartilaginous interfaces. Our findings demonstrate the potential of in situ tissue engineering of tendon-to-bone interfaces by endogenous progenitor cells. The in situ tissue engineering approach shows translational potential for improving outcomes after rotator cuff repair.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - John A Brito
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Sumeet Minhas
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| | - Linda Effiong
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University Medical Center, 650 W. 168th Street, BB14-1408, NY 10032, New York
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, NY 10027, New York
| | - Chang H Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168th Street, VC12-230, NY 10032, New York
| |
Collapse
|
72
|
Kurtaliaj I, Golman M, Abraham AC, Thomopoulos S. Biomechanical Testing of Murine Tendons. J Vis Exp 2019:10.3791/60280. [PMID: 31680671 PMCID: PMC7217614 DOI: 10.3791/60280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders are common, affect people of all ages, and are often debilitating. Standard treatments, such as anti-inflammatory drugs, rehabilitation, and surgical repair, often fail. In order to define tendon function and demonstrate efficacy of new treatments, the mechanical properties of tendons from animal models must be accurately determined. Murine animal models are now widely used to study tendon disorders and evaluate novel treatments for tendinopathies; however, determining the mechanical properties of mouse tendons has been challenging. In this study, a new system was developed for tendon mechanical testing that includes 3D-printed fixtures that exactly match the anatomies of the humerus and calcaneus to mechanically test supraspinatus tendons and Achilles tendons, respectively. These fixtures were developed using 3D reconstructions of native bone anatomy, solid modeling, and additive manufacturing. The new approach eliminated artifactual gripping failures (e.g., failure at the growth plate failure rather than in the tendon), decreased overall testing time, and increased reproducibility. Furthermore, this new method is readily adaptable for testing other murine tendons and tendons from other animals.
Collapse
Affiliation(s)
- Iden Kurtaliaj
- Department of Orthopedic Surgery, Columbia University; Department of Biomedical Engineering, Columbia University
| | - Mikhail Golman
- Department of Orthopedic Surgery, Columbia University; Department of Biomedical Engineering, Columbia University
| | | | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University; Department of Biomedical Engineering, Columbia University;
| |
Collapse
|
73
|
Roberts RR, Bobzin L, Teng CS, Pal D, Tuzon CT, Schweitzer R, Merrill AE. FGF signaling patterns cell fate at the interface between tendon and bone. Development 2019; 146:dev.170241. [PMID: 31320326 DOI: 10.1242/dev.170241] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
Tendon and bone are attached by a transitional connective tissue that is morphologically graded from tendinous to osseous and develops from bipotent progenitors that co-express scleraxis (Scx) and Sox9 (Scx+/Sox9+). Scx+/Sox9+ progenitors have the potential to differentiate into either tenocytes or chondrocytes, yet the developmental mechanism that spatially resolves their bipotency at the tendon-bone interface during embryogenesis remains unknown. Here, we demonstrate that development of Scx+/Sox9+ progenitors within the mammalian lower jaw requires FGF signaling. We find that loss of Fgfr2 in the mouse tendon-bone interface reduces Scx expression in Scx+/Sox9+ progenitors and induces their biased differentiation into Sox9+ chondrocytes. This expansion of Sox9+ chondrocytes, which is concomitant with decreased Notch2-Dll1 signaling, prevents formation of a mixed population of chondrocytes and tenocytes, and instead results in ectopic endochondral bone at tendon-bone attachment units. Our work shows that FGF signaling directs zonal patterning at the boundary between tendon and bone by regulating cell fate decisions through a mechanism that employs Notch signaling.
Collapse
Affiliation(s)
- Ryan R Roberts
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lauren Bobzin
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Camilla S Teng
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, CA 90033, USA
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Oregon Health & Science University, Portland, OR 97239, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA .,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
74
|
Boys AJ, Kunitake JA, Henak CR, Cohen I, Estroff LA, Bonassar LJ. Understanding the Stiff-to-Compliant Transition of the Meniscal Attachments by Spatial Correlation of Composition, Structure, and Mechanics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26559-26570. [PMID: 31267742 PMCID: PMC6680087 DOI: 10.1021/acsami.9b03595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recently, the scientific community has shown considerable interest in engineering tissues with organized compositional and structural gradients to mimic hard-to-soft tissue interfaces. This effort is hindered by an incomplete understanding of the construction of native tissue interfaces. In this work, we combined Raman microscopy and confocal elastography to map compositional, structural, and mechanical features across the stiff-to-compliant interface of the attachments of the meniscus in the knee. This study provides new insight into the methods by which biology mediates multiple orders of magnitude changes in stiffness over tens of microns. We identified how the nano- to mesoscale architecture mediates complex microscale transitional regions across the interface: two regions defined by chemical composition, five distinguished by structural features, and three mechanically distinct regions. We identified three major components that lead to a robust interface between a soft tissue and bone: mobile collagen fiber units, a continuous interfacial region, and a local stiffness gradient. This tissue architecture allows for large displacements of collagen fibers in the attachments, enabling meniscal movement without localizing strains to the soft tissue-to-bone interface. The interplay of these regions reveals a method relying on hierarchical structuring across multiple length scales to minimize stress concentrators between highly dissimilar materials. These insights inspire new design strategies for synthetic soft tissue-to-bone attachments and biomimetic material interfaces.
Collapse
Affiliation(s)
- Alexander J. Boys
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853
| | | | - Corinne R. Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Lara A. Estroff
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY 14853
- Corresponding Author:
| |
Collapse
|
75
|
Walters M, Crew M, Fyfe G. Bone Surface Micro‐Topography at Craniofacial Entheses: Insights on Osteogenic Adaptation at Muscle Insertions. Anat Rec (Hoboken) 2019; 302:2140-2155. [DOI: 10.1002/ar.24215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mark Walters
- School of Human SciencesThe University of Western Australia Crawley Perth Western Australia
- Department of Plastic and Reconstructive SurgeryPerth Children's Hospital Nedlands Perth Western Australia
| | - Michael Crew
- Health Department of Western Australia and Faculty of Health SciencesCurtin University Western Australia
| | - Georgina Fyfe
- Faculty of Health SciencesCurtin University Perth Western Australia
| |
Collapse
|
76
|
Wada S, Lebaschi AH, Nakagawa Y, Carballo CB, Uppstrom TJ, Cong GT, Album ZM, Hall AJ, Ying L, Deng XH, Rodeo SA. Postoperative Tendon Loading With Treadmill Running Delays Tendon-to-Bone Healing: Immunohistochemical Evaluation in a Murine Rotator Cuff Repair Model. J Orthop Res 2019; 37:1628-1637. [PMID: 30977544 DOI: 10.1002/jor.24300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Mechanical stress has an important effect on tendon-to-bone healing. The purpose of the present study was to compare tendon-to-bone healing in animals exposed to either tendon unloading (botulinum toxin injection) or excessive loading (treadmill running) in a murine rotator cuff repair model. Forty-eight C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair. Mice in the unloaded group were injected with botulinum toxin to the supraspinatus muscle. The contralateral shoulder of the unloaded group was used as a control. Mice were euthanized at 1, 2, and 4 weeks after surgery and evaluated with hematoxylin-eosin and immunohistochemical (IHC) staining for Ihh, Gli1, Wnt3a, and β-catenin. The positive staining area on IHC and the Modified Tendon Maturing Score were measured. The score of the unloaded group was significantly higher (better healing) than that of the treadmill group at 4 weeks. Ihh and the glioma-associated oncogene homolog 1 (Gli1) positive area in the unloaded group were significantly higher than those of the control group at 1 week. The peak time-points of the Ihh and Gli1 positive area was 1 week for the unloaded group and 2 weeks for the treadmill group. The Wnt3a positive area in the unloaded group was significantly higher than that of the control group at 2 weeks. The β-catenin positive area in the unloaded group was significantly higher than that of the treadmill group and the control group at 1 week. Our data indicated that the unloaded group has superior tendon maturation compared to the treadmill running group. Excessive tendon loading may delay the tendon healing process by affecting the activity of Ihh and Wnt/β-Catenin pathways. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1628-1637, 2019.
Collapse
Affiliation(s)
- Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Amir H Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Tyler J Uppstrom
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Zoe M Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Arielle J Hall
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Liang Ying
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| |
Collapse
|
77
|
McBeath R, Edwards RW, O’Hara BJ, Maltenfort MG, Parks SM, Steplewski A, Osterman AL, Shapiro IM. Tendinosis develops from age- and oxygen tension-dependent modulation of Rac1 activity. Aging Cell 2019; 18:e12934. [PMID: 30938056 PMCID: PMC6516173 DOI: 10.1111/acel.12934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age‐related tendon degeneration (tendinosis) is characterized by a phenotypic change in which tenocytes display characteristics of fibrochondrocytes and mineralized fibrochondrocytes. As tendon degeneration has been noted in vivo in areas of decreased tendon vascularity, we hypothesized that hypoxia is responsible for the development of the tendinosis phenotype, and that these effects are more pronounced in aged tenocytes. Hypoxic (1% O2) culture of aged, tendinotic, and young human tenocytes resulted in a mineralized fibrochondrocyte phenotype in aged tenocytes, and a fibrochondrocyte phenotype in young and tendinotic tenocytes. Investigation of the molecular mechanism responsible for this phenotype change revealed that the fibrochondrocyte phenotype in aged tenocytes occurs with decreased Rac1 activity in response to hypoxia. In young hypoxic tenocytes, however, the fibrochondrocyte phenotype occurs with concomitant decreased Rac1 activity coupled with increased RhoA activity. Using pharmacologic and adenoviral manipulation, we confirmed that these hypoxic effects on the tenocyte phenotype are linked directly to the activity of RhoA/Rac1 GTPase in in vitro human cell culture and tendon explants. These results demonstrate that hypoxia drives tenocyte phenotypic changes, and provide a molecular insight into the development of human tendinosis that occurs with aging.
Collapse
Affiliation(s)
- Rowena McBeath
- Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
- Division of Orthopaedic Research, Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
- Philadelphia Hand to Shoulder CenterPhiladelphiaPennsylvania
| | - Richard W. Edwards
- Division of Orthopaedic Research, Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Brian J. O’Hara
- Department of Pathology, Anatomy and Cell BiologyThomas Jefferson University HospitalPhiladelphiaPennsylvania
| | - Mitchell G. Maltenfort
- The Applied Clinical Research Center, Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Susan M. Parks
- Division of Geriatric Medicine & Palliative Care, Department of Family & Community MedicineThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Andrzej Steplewski
- Division of Orthopaedic Research, Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - A. Lee Osterman
- Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
- Philadelphia Hand to Shoulder CenterPhiladelphiaPennsylvania
| | - Irving M. Shapiro
- Division of Orthopaedic Research, Department of Orthopaedic SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvania
| |
Collapse
|
78
|
Rothrauff BB, Smith CA, Ferrer GA, Novaretti JV, Pauyo T, Chao T, Hirsch D, Beaudry MF, Herbst E, Tuan RS, Debski RE, Musahl V. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats. J Shoulder Elbow Surg 2019; 28:654-664. [PMID: 30527883 DOI: 10.1016/j.jse.2018.08.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic massive rotator cuff tears heal poorly and often retear. This study investigated the effect of adipose-derived stem cells (ADSCs) and transforming growth factor-β3 (TGF-β3) delivered in 1 of 2 hydrogels (fibrin or gelatin methacrylate [GelMA]) on enthesis healing after repair of acute or chronic massive rotator cuff tears in rats. METHODS Adult male Lewis rats underwent bilateral transection of the supraspinatus and infraspinatus tendons with intramuscular injection of botulinum toxin A (n = 48 rats). After 8 weeks, animals received 1 of 8 interventions (n = 12 shoulders/group): (1) no repair, (2) repair only, or repair augmented with (3) fibrin, (4) GelMA, (5) fibrin + ADSCs, (6) GelMA + ADSCs, (7) fibrin + ADSCs + TGF-β3, or (8) GelMA + ADSCs + TGF-β3. An equal number of animals underwent acute tendon transection and immediate application of 1 of 8 interventions. Enthesis healing was evaluated 4 weeks after the repair by microcomputed tomography, histology, and mechanical testing. RESULTS Increased bone loss and reduced structural properties were seen in chronic compared with acute tears. Bone mineral density of the proximal humerus was higher in repairs of chronic tears augmented with fibrin + ADSCs and GelMA + ADSCs than in unrepaired chronic tears. Similar improvement was not seen in acute tears. No intervention enhanced histologic appearance or structural properties in acute or chronic tears. CONCLUSIONS Surgical repair augmented with ADSCs may provide more benefit in chronic tears compared with acute tears, although there was no added benefit to supplementing ADSCs with TGF-β3.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine A Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald A Ferrer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - João V Novaretti
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Pauyo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tom Chao
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Hirsch
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mason F Beaudry
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elmar Herbst
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard E Debski
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Volker Musahl
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
79
|
Liu H, Xu J, Jiang R. Mkx-Deficient Mice Exhibit Hedgehog Signaling-Dependent Ectopic Ossification in the Achilles Tendons. J Bone Miner Res 2019; 34:557-569. [PMID: 30458056 PMCID: PMC6535142 DOI: 10.1002/jbmr.3630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023]
Abstract
Heterotopic ossification is the abnormal formation of mineralized bone in skin, muscle, tendon, or other soft tissues. Tendon ossification often occurs from acute tendon injury or chronic tendon degeneration, for which current treatment relies heavily on surgical removal of the ectopic bony tissues. Unfortunately, surgery creates additional trauma, which often causes recurrence of heterotopic ossification. The molecular mechanisms of heterotopic ossification are not well understood. Previous studies demonstrate that Mkx is a transcription factor crucial for postnatal tendon fibril growth. Here we report that Mkx-/- mutant mice exhibit ectopic ossification in the Achilles tendon within 1 month after birth and the tendon ossification deteriorates with age. Genetic lineage labeling revealed that the tendon ossification in Mkx-/- mice resulted from aberrant differentiation of tendon progenitor cells. Furthermore, tissue-specific inactivation of Mkx in tendon cells postnatally resulted in a similar ossification phenotype, indicating that Mkx plays a key role in tendon tissue homeostasis. Moreover, we show that Hedgehog signaling is ectopically activated at early stages of tendon ossification and that tissue-specific inactivation of Smoothened, which encodes the obligatory transducer of Hedgehog signaling, in the tendon cell lineage prevented or dramatically reduced tendon ossification in Mkx-/- mice. Together, these studies establish a new genetic mouse model of tendon ossification and provide new insight into its pathogenic mechanisms. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
80
|
Calejo I, Costa-Almeida R, Gomes ME. Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:71-90. [PMID: 30632116 DOI: 10.1007/5584_2018_307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complex heterogeneous cellular environment found in tendon-to-bone interface makes this structure a challenge for interface tissue engineering. Orthopedic surgeons still face some problems associated with the formation of fibrotic tissue or re-tear occurring after surgical re-attachment of tendons to the bony insertion or the application of grafts. Unfortunately, an understanding of the cellular component of enthesis lags far behind of other well-known musculoskeletal interfaces, which blocks the development of new treatment options for the healing and regeneration of this multifaceted junction. In this chapter, the main characteristics of tendon and bone cell populations are introduced, followed by a brief description of the interfacial cellular niche, highlighting molecular mechanisms governing tendon-to-bone attachment and mineralization. Finally, we describe and critically assess some challenges faced concerning the use of cell-based strategies in tendon-to-bone healing and regeneration.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
81
|
Felsenthal N, Rubin S, Stern T, Krief S, Pal D, Pryce BA, Schweitzer R, Zelzer E. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 2018; 145:dev.165381. [PMID: 30504126 DOI: 10.1242/dev.165381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9 + cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
82
|
Moser HL, Doe AP, Meier K, Garnier S, Laudier D, Akiyama H, Zumstein MA, Galatz LM, Huang AH. Genetic lineage tracing of targeted cell populations during enthesis healing. J Orthop Res 2018; 36:3275-3284. [PMID: 30084210 PMCID: PMC6320286 DOI: 10.1002/jor.24122] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
Rotator cuff supraspinatus tendon injuries are clinically challenging due to the high rates of failure after surgical repair. One key limitation to functional healing is the failure to regenerate the enthesis transition between tendon and bone, which heals by disorganized scar formation. Using two models of supraspinatus tendon injury in mouse (partial tear and full detachment/repair), the purpose of the study was to determine functional gait outcomes and identify the origin of the cells that mediate healing. Consistent with previous reports, enthesis injuries did not regenerate; partial tear resulted in a localized scar defect adjacent to intact enthesis, while full detachment with repair resulted in full disruption of enthesis alignment and massive scar formation between tendon and enthesis fibrocartilage. Although gait after partial tear injury was largely normal, gait was permanently impaired after full detachment/repair. Genetic lineage tracing of intrinsic tendon and cartilage/fibrocartilage cells (ScxCreERT2 and Sox9CreERT2 , respectively), myofibroblasts (αSMACreERT2 ), and Wnt-responsive stem cells (Axin2CreERT2 ) failed to identify scar-forming cells in partial tear injury. Unmineralized enthesis fibrocartilage was strongly labeled by Sox9CreERT2 while Axin2CrERT2 labeled a subset of tendon cells away from the skeletal insertion site. In contrast to the partial tear model, Axin2CreERT2 labeling showed considerable contribution of Axin2lin cells to the scar after full detachment/repair. Clinical Significance: Clinically relevant models of rotator cuff tendon injuries in mouse enable the use of genetic tools; lineage tracing suggests that distinct mechanisms of healing are activated with full detachment/repair injuries versus partial tear. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3275-3284, 2018.
Collapse
Affiliation(s)
- Helen L. Moser
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Anton Ph. Doe
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen Meier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Damien Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University School of Medicine Gifu, Gifu Prefecture, Japan
| | - Matthias A. Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leesa M. Galatz
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alice H. Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
83
|
Zhou Y, Hu J, Zhou J, Zeng Z, Cao Y, Wang Z, Chen C, Zheng C, Chen H, Lu H. Three-dimensional characterization of the microstructure in rabbit patella-patellar tendon interface using propagation phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1833-1840. [PMID: 30407196 DOI: 10.1107/s160057751801353x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Understanding the three-dimensional ultrastructure morphology of tendon-to-bone interface may allow the development of effective therapeutic interventions for enhanced interface healing. This study aims to assess the feasibility of propagation phase-contrast synchrotron radiation microtomography (PPC-SRµCT) for three-dimensional characterization of the microstructure in rabbit patella-patellar tendon interface (PPTI). Based on phase retrieval for PPC-SRµCT imaging, this technique is capable of visualizing the three-dimensional internal architecture of PPTI at a cellular high spatial resolution including bone and tendon, especially the chondrocytes lacuna at the fibrocartilage layer. The features on the PPC-SRµCT image of the PPTI are similar to those of a histological section using Safranin-O staining/fast green staining. The three-dimensional microstructure in the rabbit patella-patellar tendon interface and the spatial distributions of the chondrocytes lacuna and their quantification volumetric data are displayed. Furthermore, a color-coding map differentiating cell lacuna in terms of connecting beads is presented after the chondrocytes cell lacuna was extracted. This provides a more in-depth insight into the microstructure of the PPTI on a new scale, particularly the cell lacuna arrangement at the fibrocartilage layer. PPC-SRµCT techniques provide important complementary information to the conventional histological method for characterizing the microstructure of the PPTI, and may facilitate in investigations of the repair mechanism of the PPTI after injury and in evaluating the efficacy of a different therapy.
Collapse
Affiliation(s)
- Yongchun Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jingyong Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ziteng Zeng
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Cheng Zheng
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
84
|
Derwin KA, Galatz LM, Ratcliffe A, Thomopoulos S. Enthesis Repair: Challenges and Opportunities for Effective Tendon-to-Bone Healing. J Bone Joint Surg Am 2018; 100:e109. [PMID: 30106830 PMCID: PMC6133216 DOI: 10.2106/jbjs.18.00200] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
On May 22, 2017, the National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) hosted a roundtable on "Innovative Treatments for Enthesis Repair." A summary of the roundtable discussion, as well as a list of the extramural participants, can be found at https://www.niams.nih.gov/about/meetings-events/roundtables/roundtable-innovative-treatments-enthesis-repair. This paper reviews the challenges and opportunities for developing effective treatment strategies for enthesis repair that were identified at the roundtable discussion.
Collapse
Affiliation(s)
- Kathleen A. Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,E-mail address for K.A. Derwin:
| | - Leesa M. Galatz
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, NY
| |
Collapse
|
85
|
Liu ES, Martins JS, Zhang W, Demay MB. Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development 2018; 145:dev.163519. [PMID: 30002128 DOI: 10.1242/dev.163519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.
Collapse
Affiliation(s)
- Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
86
|
Shimada A, Ideno H, Arai Y, Komatsu K, Wada S, Yamashita T, Amizuka N, Pöschl E, Brachvogel B, Nakamura Y, Nakashima K, Mizukami H, Ezura Y, Nifuji A. Annexin A5 Involvement in Bone Overgrowth at the Enthesis. J Bone Miner Res 2018; 33:1532-1543. [PMID: 29694681 DOI: 10.1002/jbmr.3453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/08/2018] [Accepted: 08/12/2018] [Indexed: 01/12/2023]
Abstract
Little is known about the molecular mechanisms of enthesis formation in mature animals. Here, we report that annexin A5 (Anxa5) plays a critical role in the regulation of bone ridge outgrowth at the entheses. We found that Anxa5 is highly expressed in the entheses of postnatal and adult mice. In Anxa5-deficient (Anxa5-/- ) mice, the sizes of bone ridge outgrowths at the entheses of the tibias and femur were increased after age 7 weeks. Bone overgrowth was not observed at the fibrous enthesis where the fibrocartilage layer does not exist. More ALP-expressing cells were observed in the fibrocartilage layer in Anxa5-/- mice than in wild-type (WT) mice. Calcein and Alizarin Red double labeling revealed more mineralized areas in Anxa5-/- mice than WT mice. To examine the effects of mechanical forces, we performed tenotomy in which transmission of contractile forces by the tibial muscle was impaired by surgical muscle release. In tenotomized mice, bone overgrowth at the enthesis in Anxa5-/- mice was decreased to a level comparable to that in WT mice at 8 weeks after the operation. The tail-suspended mice also showed a decrease in bone overgrowth to similar levels in Anxa5-/- and WT mice at 8 weeks after hindlimb unloading. These results suggest that bone overgrowth at the enthesis requires mechanical forces. We further examined effects of Anxa5 gene knockdown (KD) in primary cultures of osteoblasts, chondrocytes, and tenocytes in vitro. Anxa5 KD increased ALP expression in tenocytes and chondrocytes but not in osteoblasts, suggesting that increased ALP activity in the fibrocartilaginous tissue in Anxa5-/- mice is directly caused by Anxa5 deletion in tenocytes or fibrocartilage cells. These data indicate that Anxa5 prevents bone overgrowth at the enthesis, whose formation is mediated through mechanical forces and modulating expression of mineralization regulators. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Akemi Shimada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hisashi Ideno
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshinori Arai
- Nihon University, School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Wada
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ernst Pöschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bent Brachvogel
- Experimental Neonatology, Department of Pediatrics and Adolescent Medicine, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroaki Mizukami
- Division of Genetics Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
87
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
88
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
89
|
Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg 2018; 27:739-750. [PMID: 29329904 DOI: 10.1016/j.jse.2017.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023]
Abstract
The development of the rotator cuff enthesis is still poorly understood. The processes in the early and late developmental steps are gradually elucidated, but it is still unclear how cell activities are coordinated during development and maturation of the structured enthesis. This review summarizes current knowledge about development and age-related degradation of the supraspinatus enthesis. Healing and repair of an injured and degenerated supraspinatus enthesis also remain a challenge, as the original graded transitional tissue of the fibrocartilaginous insertion is not re-created after the tendon is surgically reattached to bone. Instead, mechanically inferior and disorganized tissue forms at the healing site because of scar tissue formation. Consequently, the enthesis never reaches mechanical properties comparable to those of the native enthesis. So far, no novel biologic healing approach has been successful in enhancing healing of the injured enthesis. The results revealed in this review imply the need for further research to pave the way for better treatment of patients with rotator cuff disorder.
Collapse
Affiliation(s)
- Peter T Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars H Frich
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
90
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|
91
|
Kuntz LA, Rossetti L, Kunold E, Schmitt A, von Eisenhart-Rothe R, Bausch AR, Burgkart RH. Biomarkers for tissue engineering of the tendon-bone interface. PLoS One 2018; 13:e0189668. [PMID: 29298298 PMCID: PMC5751986 DOI: 10.1371/journal.pone.0189668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
The tendon-bone interface (enthesis) is a highly sophisticated biomaterial junction that allows stress transfer between mechanically dissimilar materials. The enthesis encounters very high mechanical demands and the regenerative capacity is very low resulting in high rupture recurrence rates after surgery. Tissue engineering offers the potential to recover the functional integrity of entheses. However, recent enthesis tissue engineering approaches have been limited by the lack of knowledge about the cells present at this interface. Here we investigated the cellular differentiation of enthesis cells and compared the cellular pattern of enthesis cells to tendon and cartilage cells in a next generation sequencing transcriptome study. We integrated the transcriptome data with proteome data of a previous study to identify biomarkers of enthesis cell differentiation. Transcriptomics detected 34468 transcripts in total in enthesis, tendon, and cartilage. Transcriptome comparisons revealed 3980 differentially regulated candidates for enthesis and tendon, 395 for enthesis and cartilage, and 946 for cartilage and tendon. An asymmetric distribution of enriched genes was observed in enthesis and cartilage transcriptome comparison suggesting that enthesis cells are more chondrocyte-like than tenocyte-like. Integrative analysis of transcriptome and proteome data identified ten enthesis biomarkers and six tendon biomarkers. The observed gene expression characteristics and differentiation markers shed light into the nature of the cells present at the enthesis. The presented markers will foster enthesis tissue engineering approaches by setting a bench-mark for differentiation of seeded cells towards a physiologically relevant phenotype.
Collapse
Affiliation(s)
- Lara A. Kuntz
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, München, Germany
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | - Leone Rossetti
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | - Elena Kunold
- Center for Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching, Germany
| | - Andreas Schmitt
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Ruediger von Eisenhart-Rothe
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany
| | - Rainer H. Burgkart
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
92
|
Wang Y, Zhang X, Huang H, Xia Y, Yao Y, Mak AFT, Yung PSH, Chan KM, Wang L, Zhang C, Huang Y, Mak KKL. Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. eLife 2017; 6. [PMID: 29244023 PMCID: PMC5731821 DOI: 10.7554/elife.30474] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
Both extrinsic and intrinsic tissues contribute to tendon repair, but the origin and molecular functions of extrinsic tissues in tendon repair are not fully understood. Here we show that tendon sheath cells harbor stem/progenitor cell properties and contribute to tendon repair by activating Hedgehog signaling. We found that Osteocalcin (Bglap) can be used as an adult tendon-sheath-specific marker in mice. Lineage tracing experiments show that Bglap-expressing cells in adult sheath tissues possess clonogenic and multipotent properties comparable to those of stem/progenitor cells isolated from tendon fibers. Transplantation of sheath tissues improves tendon repair. Mechanistically, Hh signaling in sheath tissues is necessary and sufficient to promote the proliferation of Mkx-expressing cells in sheath tissues, and its action is mediated through TGFβ/Smad3 signaling. Furthermore, co-localization of GLI1+ and MKX+ cells is also found in human tendinopathy specimens. Our work reveals the molecular function of Hh signaling in extrinsic sheath tissues for tendon repair.
Collapse
Affiliation(s)
- Yi Wang
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xu Zhang
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huihui Huang
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yin Xia
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - YiFei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Arthur Fuk-Tat Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Kai-Ming Chan
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Li Wang
- Neural, Vascular and Metabolic Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chenglin Zhang
- Neural, Vascular and Metabolic Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yu Huang
- Neural, Vascular and Metabolic Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kingston King-Lun Mak
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
93
|
Lim J, Munivez E, Jiang MM, Song IW, Gannon F, Keene DR, Schweitzer R, Lee BH, Joeng KS. mTORC1 Signaling is a Critical Regulator of Postnatal Tendon Development. Sci Rep 2017; 7:17175. [PMID: 29215029 PMCID: PMC5719403 DOI: 10.1038/s41598-017-17384-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tendons transmit contractile forces between musculoskeletal tissues. Whereas the biomechanical properties of tendons have been studied extensively, the molecular mechanisms regulating postnatal tendon development are not well understood. Here we examine the role of mTORC1 signaling in postnatal tendon development using mouse genetic approaches. Loss of mTORC1 signaling by removal of Raptor in tendons caused severe tendon defects postnatally, including decreased tendon thickness, indicating that mTORC1 is necessary for postnatal tendon development. By contrast, activation of mTORC1 signaling in tendons increased tendon cell numbers and proliferation. In addition, Tsc1 conditional knockout mice presented severely disorganized collagen fibers and neovascularization in the tendon midsubstance. Interestingly, collagen fibril diameter was significantly reduced in both Raptor and Tsc1 conditional knockout mice, albeit with variations in severity. We performed RNA-seq analysis using Achilles tendons to investigate the molecular changes underlying these tendon phenotypes. Raptor conditional knockout mice showed decreased extracellular matrix (ECM) structure-related gene expression, whereas Tsc1 conditional knockout mice exhibited changes in genes regulating TGF-β/BMP/FGF signaling, as well as in genes controlling ECM structure and disassembly. Collectively, our studies suggest that maintaining physiological levels of mTORC1 signaling is essential for postnatal tendon development and maturation.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francis Gannon
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Douglas R Keene
- Research Center, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Ronen Schweitzer
- Research Center, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
94
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
95
|
Schett G, Lories RJ, D'Agostino MA, Elewaut D, Kirkham B, Soriano ER, McGonagle D. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol 2017; 13:731-741. [DOI: 10.1038/nrrheum.2017.188] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Asahara H, Inui M, Lotz MK. Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. J Bone Miner Res 2017; 32:1773-1782. [PMID: 28621492 PMCID: PMC5585011 DOI: 10.1002/jbmr.3199] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments provide connections between muscle and bone or bone and bone to enable locomotion. Damage to tendons and ligaments caused by acute or chronic injury or associated with aging and arthritis is a prevalent cause of disability. Improvements in approaches for the treatment of these conditions depend on a better understanding of tendon and ligament development, cell biology, and pathophysiology. This review focuses on recent advances in the discovery of transcription factors that control ligament and tendon cell differentiation, how cell and extracellular matrix homeostasis are altered in disease, and how this new insight can lead to novel therapeutic approaches. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Science, School of Agriculture, Meiji University, Kanagawa, 214-8571
| | - Martin K. Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
97
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
98
|
Deymier AC, An Y, Boyle JJ, Schwartz AG, Birman V, Genin GM, Thomopoulos S, Barber AH. Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater 2017; 56:25-35. [PMID: 28088669 DOI: 10.1016/j.actbio.2017.01.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. STATEMENT OF SIGNIFICANCE The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue.
Collapse
|
99
|
Zong JC, Mosca MJ, Degen RM, Lebaschi A, Carballo C, Carbone A, Cong GT, Ying L, Deng XH, Rodeo SA. Involvement of Indian hedgehog signaling in mesenchymal stem cell-augmented rotator cuff tendon repair in an athymic rat model. J Shoulder Elbow Surg 2017; 26:580-588. [PMID: 27887870 DOI: 10.1016/j.jse.2016.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bone marrow aspirate has been used in recent years to augment tendon-to-bone healing, including in rotator cuff repair. However, the healing mechanism in cell-based therapy has not been elucidated in detail. METHODS Sixteen athymic nude rats were randomly allocated to 2 groups: experimental (human mesenchymal stem cells in fibrin glue carrier) and control (fibrin glue only). Animals were sacrificed at 2 and 4 weeks. Immunohistochemical staining was performed to evaluate Indian hedgehog (Ihh) signaling and SOX9 signaling in the healing enthesis. Macrophages were identified using CD68 and CD163 staining, and proliferating cells were identified using proliferating cell nuclear antigen staining. RESULTS More organized and stronger staining for collagen II and a higher abundance of SOX9+ cells were observed at the enthesis in the experimental group at 2 weeks. There was significantly higher Gli1 and Patched1 expression in the experimental group at the enthesis at 2 weeks and higher numbers of Ihh+ cells in the enthesis of the experimental group vs control at both 2 weeks and 4 weeks postoperatively. There were more CD68+ cells localized to the tendon midsubstance at 2 weeks compared with 4 weeks, and there was a higher level of CD163 staining in the tendon midsubstance in the experimental group than in the control group at 4 weeks. CONCLUSION Stem cell application had a positive effect on fibrocartilage formation at the healing rotator cuff repair site. Both SOX9 and Ihh signaling appear to play an important role in the healing process.
Collapse
Affiliation(s)
- Jian-Chun Zong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | - Ryan M Degen
- The Hospital for Special Surgery, New York, NY, USA
| | | | | | | | | | - Liang Ying
- The Hospital for Special Surgery, New York, NY, USA
| | | | - Scott A Rodeo
- The Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
100
|
Huang AH. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 2017; 429:420-428. [PMID: 28363737 DOI: 10.1016/j.ydbio.2017.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments.
Collapse
Affiliation(s)
- Alice H Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, United States.
| |
Collapse
|