51
|
Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D, Beneš V, Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 2015; 16:720. [PMID: 26391666 PMCID: PMC4578651 DOI: 10.1186/s12864-015-1907-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
Background Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. Results Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata. Conclusions Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1907-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Konrad Schöttner
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Jaroslava Korbelová
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Jan Provazník
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - David Doležel
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Koštál
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
52
|
Dong DJ, Jing YP, Liu W, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Up-regulates Ste-20 Family Serine/Threonine Kinase Hippo to Induce Programmed Cell Death. J Biol Chem 2015; 290:24738-46. [PMID: 26272745 DOI: 10.1074/jbc.m115.643783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/15/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis.
Collapse
Affiliation(s)
- Du-Juan Dong
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
53
|
Ligand-independent requirements of steroid receptors EcR and USP for cell survival. Cell Death Differ 2015; 23:405-16. [PMID: 26250909 DOI: 10.1038/cdd.2015.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
The active form of the Drosophila steroid hormone ecdysone, 20-hydroxyecdysone (20E), binds the heterodimer EcR/USP nuclear receptor to regulate target genes that elicit proliferation, cell death and differentiation during insect development. Although the 20E effects are relatively well known, the physiological relevance of its receptors remains poorly understood. We show here that the prothoracic gland (PG), the major steroid-producing organ of insect larvae, requires EcR and USP to survive in a critical period previous to metamorphosis, and that this requirement is 20E-independent. The cell death induced by the downregulation of these receptors involves the activation of the JNK-encoding basket gene and it can be rescued by upregulating EcR isoforms which are unable to respond to 20E. Also, while PG cell death prevents ecdysone production, blocking hormone synthesis or secretion in normal PG does not lead to cell death, demonstrating further the ecdysone-independent nature of the receptor-deprivation cell death. In contrast to PG cells, wing disc or salivary glands cells do not require these receptors for survival, revealing their cell and developmental time specificity. Exploring the potential use of this feature of steroid receptors in cancer, we assayed tumor overgrowth induced by altered yorkie signaling. This overgrowth is suppressed by EcR downregulation in PG, but not in wing disc, cells. The mechanism of all these cell death features is based on the transcriptional regulation of reaper. These novel and context-dependent functional properties for EcR and USP receptors may help to understand the heterogeneous responses to steroid-based therapies in human pathologies.
Collapse
|
54
|
Cheong SPS, Huang J, Bendena WG, Tobe SS, Hui JHL. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone. Integr Comp Biol 2015; 55:878-90. [DOI: 10.1093/icb/icv066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
55
|
Lengil T, Gancz D, Gilboa L. Activin signaling balances proliferation and differentiation of ovarian niche precursors and enables adjustment of niche numbers. Development 2015; 142:883-92. [PMID: 25633355 DOI: 10.1242/dev.113902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How the numbers of niches and resident stem cells within a particular organ are determined during development and how they may be modulated or corrected is a question with significant medical implications. In the larval ovary of Drosophila melanogaster, somatic precursors for niches, and germ cells that will become germline stem cells, co-develop. Somatic precursors proliferate during the first 3 days of larval development. By mid-third instar, adult terminal filament (TF) (part of the germline stem cell niche) cells first appear, and differentiation terminates 24 h later when 16-20 TFs fully form. The developmental sequence responsible for TF cell determination and final TF numbers is only partially understood. We show that TF formation proceeds through several, hitherto uncharacterized stages, which include an early exit from the cell cycle to form TF precursors and two steps of cell shape change to form the mature TF cells. The Activin receptor Baboon (Babo) is required for somatic precursor cell proliferation and therefore determines the pool of TF precursors available for TF differentiation. During the final differentiation stage, Babo facilitates TF and germ cell differentiation, and promotes the accumulation of Broad-Z1, which is also a target of the steroid hormone ecdysone. Epistasis analysis shows that Activin controls cell proliferation in an ecdysone-independent manner and TF differentiation by affecting ecdysone targets. We propose that this mode of function allows Activin to balance proliferation and differentiation, and to equilibrate niche numbers. These results suggest a novel model for how niche numbers are corrected during development.
Collapse
Affiliation(s)
- Tamar Lengil
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dana Gancz
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lilach Gilboa
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
56
|
Chen X, Yao P, Chu X, Hao L, Guo X, Xu B. Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress. Cell Stress Chaperones 2015; 20:169-83. [PMID: 25135575 PMCID: PMC4255252 DOI: 10.1007/s12192-014-0535-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023] Open
Abstract
Arginine kinases (AK) in invertebrates play the same role as creatine kinases in vertebrates. Both proteins are important for energy metabolism, and previous studies on AK focused on this attribute. In this study, the arginine kinase gene was isolated from Apis cerana cerana and was named AccAK. A 5'-flanking region was also cloned and shown to contain abundant putative binding sites for transcription factors related to development and response to adverse stress. We imitated several abiotic and biotic stresses suffered by A. cerana cerana during their life, including heavy metals, pesticides, herbicides, heat, cold, oxidants, antioxidants, ecdysone, and Ascosphaera apis and then studied the expression patterns of AccAK after these treatments. AccAK was upregulated under all conditions, and, in some conditions, this response was very pronounced. Western blot and AccAK enzyme activity assays confirmed the results. In addition, a disc diffusion assay showed that overexpression of AccAK reduced the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, our results indicated that AccAK may be involved of great significance in response to adverse abiotic and biotic stresses.
Collapse
Affiliation(s)
- Xiaobo Chen
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Pengbo Yao
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Xiaoqian Chu
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Lili Hao
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Xingqi Guo
- />State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Baohua Xu
- />College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| |
Collapse
|
57
|
Cai MJ, Li XR, Pei XY, Liu W, Wang JX, Zhao XF. Heat shock protein 90 maintains the stability and function of transcription factor Broad Z7 by interacting with its Broad-Complex-Tramtrack-Bric-a-brac domain. INSECT MOLECULAR BIOLOGY 2014; 23:720-732. [PMID: 25060629 DOI: 10.1111/imb.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that interacts with various client proteins to mediate their folding and stability. The Broad-Complex-Tramtrack-Bric-a-brac (BTB) domain, also known as poxvirus and zinc finger (POZ) domain, exists widely in different proteins and is highly conserved. However, the stability mechanism of BTB domain-containing proteins has not been fully understood. Co-immunoprecipitation and a protein pull-down assay were performed to investigate the interaction between Hsp90 and the transcription factor Broad isoform Z7 (BrZ7) in vivo and in vitro. The middle domain of Hsp90 directly associated with the BTB domain of BrZ7. The Hsp90 inhibitor 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) interrupted the interaction between Hsp90 and BrZ7 and decreased the protein level of BrZ7 but did not affect the mRNA level of BrZ7. The addition of the proteasome inhibitor peptide aldehyde Cbz-leu-leu leucinal suppressed the 17-AAG-induced degradation of BrZ7. BTB domain deletion and 17-AAG treatment resulted in inhibition of BrZ7 function in gene expression in the 20-hydroxyecdysone and juvenile hormone pathways. These results reveal that the middle domain of Hsp90 associates with the BTB domain of BrZ7 to prevent BrZ7 degradation and maintain BrZ7 function in gene expression in the lepidopteran insect Helicoverpa armigera.
Collapse
Affiliation(s)
- M-J Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
58
|
Huang YC, Lu YN, Wu JT, Chien CT, Pi H. The COP9 signalosome converts temporal hormone signaling to spatial restriction on neural competence. PLoS Genet 2014; 10:e1004760. [PMID: 25393278 PMCID: PMC4230841 DOI: 10.1371/journal.pgen.1004760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM. A critical step in building a functional nervous system is to generate neurons at the appropriate locations. Neural competence is acquired at the precursor stage with the expression of specific transcription factors. One such critical factor is Senseless (Sens), as precursors lacking Sens fail to develop to neurons. Here we describe the critical role of protein complex COP9 signalosome (CSN) that regulates Sens expression by integrating temporal and spatial information. This was studied in developing Drosophila wing tissues, in which the anterior wing margin develops neuron-innervated bristles, while the posterior wing margin develops non-innervated bristles. The CSN complex is required for the anterior-posterior difference in spatial patterning of neuron formation, and posterior cells lacking CSN develop innervated bristles like anterior cells. CSN accomplishes this by transforming the temporal hormonal ecdysone signaling from activation to repression of downstream target BR-Z1. As BR-Z1 itself is a transcription activator, repression of BR-Z1 in turn leads to repression of Sens in posterior wing margin, eventually terminating the neural competence. Repression of BR-Z1 expression requires the interaction between the CSN complex and the ecdysone receptors. Our results suggest a novel CSN-mediated regulation that converts temporal hormone signaling to the patterning of neurons at the right place.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Nung Lu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - June-Tai Wu
- Institute of Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ting Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CTC); (HP)
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail: (CTC); (HP)
| |
Collapse
|
59
|
Djabrayan NV, Cruz J, de Miguel C, Franch-Marro X, Casanova J. Specification of Differentiated Adult Progenitors via Inhibition of Endocycle Entry in the Drosophila Trachea. Cell Rep 2014; 9:859-65. [DOI: 10.1016/j.celrep.2014.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
|
60
|
Yang C, Lin Y, Liu H, Shen G, Luo J, Zhang H, Peng Z, Chen E, Xing R, Han C, Xia Q. The Broad Complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori. Biochim Biophys Acta Gen Subj 2014; 1840:2674-84. [DOI: 10.1016/j.bbagen.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022]
|
61
|
Cai MJ, Liu W, Pei XY, Li XR, He HJ, Wang JX, Zhao XF. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein. J Biol Chem 2014; 289:26630-26641. [PMID: 25096576 DOI: 10.1074/jbc.m114.581876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hong-Juan He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
62
|
Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, Bombyx mori. Int J Genomics 2014; 2014:865065. [PMID: 24895545 PMCID: PMC4033408 DOI: 10.1155/2014/865065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022] Open
Abstract
The BTB domain is a conserved protein-protein interaction motif. In this study, we identified 56 BTB domain-containing protein genes in the silkworm, in addition to 46 in the honey bee, 55 in the red flour beetle, and 53 in the monarch butterfly. Silkworm BTB protein genes were classified into nine subfamilies according to their domain architecture, and most of them could be mapped on the different chromosomes. Phylogenetic analysis suggests that silkworm BTB protein genes may have undergone a duplication event in three subfamilies: BTB-BACK-Kelch, BTB-BACK-PHR, and BTB-FLYWCH. Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution. Furthermore, several silkworm BTB protein genes exhibited sex-specific expression in larval tissues or at different stages during metamorphosis. These findings not only contribute to a better understanding of the evolution of insect BTB protein gene families but also provide a basis for further investigation of the functions of BTB protein genes in the silkworm.
Collapse
|
63
|
Jones D, Jones G, Teal PEA. Sesquiterpene action, and morphogenetic signaling through the ortholog of retinoid X receptor, in higher Diptera. Gen Comp Endocrinol 2013; 194:326-35. [PMID: 24120505 DOI: 10.1016/j.ygcen.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/11/2013] [Accepted: 09/29/2013] [Indexed: 01/31/2023]
Abstract
Morphogenetic signaling by small terpenoid hormones is a common feature of both vertebrate and invertebrate development. Most attention on insect developmental signaling by small terpenoids has focused on signaling by juvenile hormone through bHLH-PAS proteins (e.g., the MET protein), especially as that signaling axis intersects with ecdysteroid action through the receptor EcR. However, a series of endocrine and pharmacological studies on pupariation in cyclorrhaphous Diptera have remained persistently refractory to explanation with the above two-axis model. Recently, the terpenoid compound methyl farnesoate has been physicochemically demonstrated to exist in circulation at physiological concentrations, in several mecopterid orders, including Diptera. In addition, it has also been recently demonstrated that the receptor to which methyl farnesoate binds with nanomolar affinity (ultraspiracle, an ortholog of retinoid X receptor) requires a functioning ligand binding pocket to sustain the morphogenetic transition to puparium formation. This review evaluates endocrine and pharmacological evidence for developmental pathways reached by methyl farnesoate action, and assesses the participation of the retinoid X receptor ligand pocket in signal transduction to those developmental endpoints.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40504, USA.
| | | | | |
Collapse
|
64
|
The hormone-dependent function of Hsp90 in the crosstalk between 20-hydroxyecdysone and juvenile hormone signaling pathways in insects is determined by differential phosphorylation and protein interactions. Biochim Biophys Acta Gen Subj 2013; 1830:5184-92. [DOI: 10.1016/j.bbagen.2013.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/05/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
|
65
|
Rus F, Flatt T, Tong M, Aggarwal K, Okuda K, Kleino A, Yates E, Tatar M, Silverman N. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J 2013; 32:1626-38. [PMID: 23652443 DOI: 10.1038/emboj.2013.100] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/04/2013] [Indexed: 01/09/2023] Open
Abstract
Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.
Collapse
Affiliation(s)
- Florentina Rus
- Department of Medicine, Division of Infectious Disease, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family.
Collapse
|
67
|
Huang JH, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta Gen Subj 2013; 1830:2178-87. [DOI: 10.1016/j.bbagen.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
|
68
|
Kim J, Kim Y. RNA interference of broad gene expression mimics antimetamorphic effect of pyriproxyfen on the beet armyworm, Spodoptera exigua. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:214-227. [PMID: 22899018 DOI: 10.1002/arch.21051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A larva-to-pupa metamorphosis is induced by a low or undetectable level of juvenile hormone (JH) during last instar in holometabolous insects. An exogenous application of JH agonist, pyriproxyfen (PYR), inhibited pupal metamorphosis of the beet armyworm, Spodoptera exigua. Last instar larvae of S. exigua exhibited increase of body size at first 3 days along with active feeding behavior. Also, at this period, prothoracic gland increased in size, while corpora allata remained little change. Storage proteins were accumulated in hemolymph plasma from penultimate to last instars, during which two storage protein genes (SeHex and SeSP1) were actively expressed. A Broad-Complex 1 (BRC1) gene of S. exigua (SeBRC1) was partially cloned and showed a specific expression at the last instar in all tested tissues including hemocytes, fat body, epidermis, gut, nerve, and salivary gland. Knockdown of SeBRC1 expression by its specific double-strand RNA mimicked the antimetamorphic effect induced by PYR treatment. PYR treatment at early last instar inhibited expression of SeBRC1, but did not that of other nuclear receptor, βFTZ-F1. These results indicate that a transcriptional factor, SeBRC1, plays a crucial role in pupal metamorphosis of S. exigua.
Collapse
Affiliation(s)
- Jiwan Kim
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | |
Collapse
|
69
|
Hackney JF, Zolali-Meybodi O, Cherbas P. Tissue damage disrupts developmental progression and ecdysteroid biosynthesis in Drosophila. PLoS One 2012; 7:e49105. [PMID: 23166607 PMCID: PMC3496736 DOI: 10.1371/journal.pone.0049105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
In humans, chronic inflammation, severe injury, infection and disease can result in changes in steroid hormone titers and delayed onset of puberty; however the pathway by which this occurs remains largely unknown. Similarly, in insects injury to specific tissues can result in a global developmental delay (e.g. prolonged larval/pupal stages) often associated with decreased levels of ecdysone – a steroid hormone that regulates developmental transitions in insects. We use Drosophila melanogaster as a model to examine the pathway by which tissue injury disrupts developmental progression. Imaginal disc damage inflicted early in larval development triggers developmental delays while the effects are minimized in older larvae. We find that the switch in injury response (e.g. delay/no delay) is coincident with the mid-3rd instar transition – a developmental time-point that is characterized by widespread changes in gene expression and marks the initial steps of metamorphosis. Finally, we show that developmental delays induced by tissue damage are associated with decreased expression of genes involved in ecdysteroid synthesis and signaling.
Collapse
Affiliation(s)
- Jennifer F. Hackney
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Omid Zolali-Meybodi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Peter Cherbas
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
70
|
Yu J, Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. Identification of ecdysone response elements (EcREs) in the Bombyx mori cathepsin D promoter. Biochem Biophys Res Commun 2012; 425:113-8. [DOI: 10.1016/j.bbrc.2012.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
|
71
|
Hou L, Cai MJ, Liu W, Song Q, Zhao XF. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis. Dev Biol 2012; 371:13-22. [PMID: 22824427 DOI: 10.1016/j.ydbio.2012.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/13/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect growth and metamorphosis. However, the molecular mechanism of the interaction of these two pathways in regulating insect development is not well understood. In the present study, we found that a small GTPase Rab4b from a lepidopteran insect Helicoverpa armigera participates in gene transcription in the two pathways. The results show that RNA interference of Rab4b in larvae results in a decrease in glycogen levels, small pupae, abnormal metamorphic transition, or larval death. The molecular mechanisms are demonstrated that knockdown of Rab4b in the larvae suppresses the transcription of glycogen synthase (GS), as well as the metamorphic-initiating factor (Br) and hormone receptor 3 (HR3), but increases the transcription of Forkhead box class O (FOXO). Further studies in the cell line confirm that Rab4b is necessary for gene transcription in the insulin and 20E pathways. Rab4b locates in the cytoplasm and takes part in regulation on FOXO cytoplasmic location by insulin induction, but travels toward the cell membrane upon 20E induction without affecting the FOXO location. The transcription of Rab4b could be upregulated by insulin injection or glucose feeding to the larvae, but not by 20E or juvenile hormone analogy methoprene. Our data suggest that Rab4b takes part in metamorphosis by regulating gene transcription and glycogen level in the insulin and 20E pathways.
Collapse
Affiliation(s)
- Li Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | | | | | | | | |
Collapse
|
72
|
Cruz J, Mane-Padros D, Zou Z, Raikhel AS. Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction. Mol Cell Endocrinol 2012; 349:262-71. [PMID: 22115961 PMCID: PMC3306807 DOI: 10.1016/j.mce.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/15/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
Mosquitoes are adapted to using vertebrate blood as a nutrient source to promote egg development and as a consequence serve as disease vectors. Blood-meal activated reproductive events in female mosquitoes are hormonally and nutritionally controlled with an insect steroid hormone 20-hydroxyecdysone (20E) playing a central role. The nuclear receptor E75 is an essential factor in the 20E genetic hierarchy, however functions of its three isoforms - E75A, E75B, and E75C - in mosquito reproduction are unclear. By means of specific RNA interference depletion of E75 isoforms, we identified their distinct roles in regulating the level and timing of expression of key genes involved in vitellogenesis in the fat body (an insect analog of vertebrate liver and adipose tissue) of the mosquito Aedes aegypti. Heme is required in a high level of expression of 20E-controlled genes in the fat body, and this heme action depends on E75. Thus, in mosquitoes, heme is an important signaling molecule, serving as a sensor of the availability of a protein meal for egg development. Disruption of this signaling pathway could be explored in the design of mosquito control approaches.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Raikhel
- Corresponding author: Department of Entomology and Institute of Integrative Genome Biology, 900 University Avenue, Riverside, CA 92521, USA. Tel: +1 951 827 2129;
| |
Collapse
|
73
|
Bortolin F, Piulachs MD, Congiu L, Fusco G. Cloning and expression pattern of the ecdysone receptor and retinoid X receptor from the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Gen Comp Endocrinol 2011; 174:60-9. [PMID: 21871895 DOI: 10.1016/j.ygcen.2011.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/10/2023]
Abstract
In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.
Collapse
Affiliation(s)
- Francesca Bortolin
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
74
|
Stepchenko AG, Pankratova EV, Doronin SA, Gulag PV, Georgieva SG. The alternative protein isoform NK2B, encoded by the vnd/NK-2 proneural gene, directly activates transcription and is expressed following the start of cells differentiation. Nucleic Acids Res 2011; 39:5401-11. [PMID: 21422076 PMCID: PMC3141242 DOI: 10.1093/nar/gkr121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NK-2 is a homeodomain protein essential for the development of the central nervous system in the Drosophila embryo. Here, we show that the vnd/NK-2 gene encodes an additional protein isoform (NK-2B) that differs from the known one (NK-2A) in its N-terminal domain. While NK-2A is a transcription repressor, NK-2B directly activates transcription from promoters containing NK-2 binding sites, with its N-terminal domain possessing a strong transcription activation potency. The transcription of NK-2B starts at the onset of metamorphosis. Its expression is observed in precursors of differentiating photoreceptors and in photoreceptors of the adult eye. Both NK-2B and NK-2A are expressed in the lamina. However, the expression of NK-2A is mostly associated with the undifferentiated state of nervous cells.
Collapse
Affiliation(s)
- Alexander G Stepchenko
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 32, Moscow, 119991 Russia.
| | | | | | | | | |
Collapse
|
75
|
Shigenobu S, Bickel RD, Brisson JA, Butts T, Chang CC, Christiaens O, Davis GK, Duncan EJ, Ferrier DEK, Iga M, Janssen R, Lin GW, Lu HL, McGregor AP, Miura T, Smagghe G, Smith JM, van der Zee M, Velarde RA, Wilson MJ, Dearden PK, Stern DL. Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage-specific duplications and losses of developmental genes. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:47-62. [PMID: 20482639 DOI: 10.1111/j.1365-2583.2009.00944.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Aphids exhibit unique attributes, such as polyphenisms and specialized cells to house endosymbionts, that make them an interesting system for studies at the interface of ecology, evolution and development. Here we present a comprehensive characterization of the developmental genes in the pea aphid, Acyrthosiphon pisum, and compare our results to other sequenced insects. We investigated genes involved in fundamental developmental processes such as establishment of the body plan and organogenesis, focusing on transcription factors and components of signalling pathways. We found that most developmental genes were well conserved in the pea aphid, although many lineage-specific gene duplications and gene losses have occurred in several gene families. In particular, genetic components of transforming growth factor beta (TGFbeta) Wnt, JAK/STAT (Janus kinase/signal transducer and activator of transcription) and EGF (Epidermal Growth Factor) pathways appear to have been significantly modified in the pea aphid.
Collapse
Affiliation(s)
- S Shigenobu
- HHMI and Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA. <>
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
77
|
Erezyilmaz DF, Rynerson MR, Truman JW, Riddiford LM. The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev Genes Evol 2009; 219:535-44. [PMID: 20127251 PMCID: PMC2884998 DOI: 10.1007/s00427-009-0315-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/17/2009] [Indexed: 01/22/2023]
Abstract
Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects.
Collapse
Affiliation(s)
- Deniz F Erezyilmaz
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|
78
|
Chen J, Wang H, Wang YF. Overexpression of HmgD causes the failure of pupariation in Drosophila by affecting ecdysone receptor pathway. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:123-133. [PMID: 18330897 DOI: 10.1002/arch.20237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
HmgD encodes Drosophila homologue of high mobility group proteins (HMGD), which are thought to have an architectural function in chromatin organization. However, current opinions about the function of HMGD in Drosophila development are controversial. Our previous studies have shown that ubiquitous overexpression of HmgD caused the formation of melanotic tumors in the Drosophila larvae by prematurely activating the Ras-MAPK pathway. Here we report that under maternal control, the viability of flies links with overexpression of HmgD, while under ubiquitous control, ActGal4, overexpressing HmgD animals, which display prolonged larval stages around day 13, developmentally stagnate in the larva-white pupa transition. Ecdysone feeding did not rescue overexpressing HmgD animals. RT-PCR analyses show that overexpression of HmgD does not affect the temporal expression pattern of ecdysone receptor gene EcR, whereas transcriptional patterns of some key regulatory genes, such as E74A, E74B, E75A, E75B, betaFTZ-F1, are changed greatly. These results suggest that ubiquitous overexpression of HmgD results in the failure of pupariation neither by affecting the process of ecdysone synthesis and release nor by abnormal EcR transcription, but by causing expression of EcR regulatory nuclear receptors out of schedule. The results led us to postulate that overexpression of HMGD likely changes the signaling cascade of Drosophila metamorphosis by an interaction between HMGD and DNA strands, and subsequently by an error of DNA binding abilities and transcriptional activities of some nuclear receptor genes. Arch. Insect Biochem. Physiol. 2008.
Collapse
Affiliation(s)
- Jing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, PR China
| | | | | |
Collapse
|
79
|
Parthasarathy R, Tan A, Palli SR. bHLH-PAS family transcription factor methoprene-tolerant plays a key role in JH action in preventing the premature development of adult structures during larval-pupal metamorphosis. Mech Dev 2008; 125:601-16. [PMID: 18450431 PMCID: PMC2486318 DOI: 10.1016/j.mod.2008.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/14/2008] [Accepted: 03/15/2008] [Indexed: 11/18/2022]
Abstract
The biological actions of juvenile hormones are well studied; they regulate almost all aspects of an insect's life. However, the molecular actions of these hormones are not well understood. Recent studies in the red flour beetle, Tribolium castaneum, demonstrated the utility of this insect as a model system to study JH action. These studies confirmed that the bHLH-PAS family transcription factor, methoprene-tolerant (TcMet,) plays a key role in JH action during larval stages. In this study, we investigated the role of TcMet in JH action during larval-pupal metamorphosis. The phenotypes of TcMet RNAi insects shared similarity with the phenotypes of some allatectomized lepidopteran larvae that were attempting to undergo precocious larval-pupal metamorphosis. Knocking-down TcMet during the final instar also disrupted larval-pupal ecdysis, resulting in the development of adultoid underneath the larval skin. However, the loss of TcMet did not completely block remodeling of internal tissues such as midgut. T. castaneum larvae injected with TcMet dsRNA demonstrated a resistance to a JH analog (JHA), hydroprene, irrespective of time and route of application. Knocking-down TcMet also caused down regulation of JH-response genes, JHE and Kr-h1 suggesting that TcMet might be involved in the expression of these genes. Based on the phenotype, gene expression, and JHA action studies in TcMet RNAi insects, this study concludes that Met plays a key role in JH action for preventing the premature development of adult structures during larval-pupal metamorphosis.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, USA
| | | | | |
Collapse
|
80
|
Two subunits specific to the PBAP chromatin remodeling complex have distinct and redundant functions during drosophila development. Mol Cell Biol 2008; 28:5238-50. [PMID: 18573871 DOI: 10.1128/mcb.00747-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin remodeling complexes control the availability of DNA binding sites to transcriptional regulators. Two distinct conserved forms of the SWI/SNF class of complexes are characterized by the presence of specific accessory subunits. In Drosophila, the core Brahma complex associates either with Osa to form the BAP complex or with Bap170 and Bap180 to form the PBAP complex. osa mutations reproduce only a subset of the developmental phenotypes caused by mutations in subunits of the core complex. To test whether the PBAP complex performs the remaining functions, we generated mutations in bap170 and bap180. Surprisingly, we found that Bap180 is not essential for viability, although it is required in ovarian follicle cells for normal eggshell development. Bap170 is necessary to stabilize the Bap180 protein, but a mutant form that retains this function is sufficient for both survival and fertility. The two subunits act redundantly to allow metamorphosis; using gene expression profiling of bap170 bap180 double mutants, we found that the PBAP complex regulates genes involved in tissue remodeling and immune system function. Finally, we generated mutants lacking Bap170, Bap180, and Osa in the germ line to demonstrate that the core Brahma complex can function in oogenesis without any of these accessory subunits.
Collapse
|
81
|
Costantino BFB, Bricker DK, Alexandre K, Shen K, Merriam JR, Antoniewski C, Callender JL, Henrich VC, Presente A, Andres AJ. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genet 2008; 4:e1000102. [PMID: 18566664 PMCID: PMC2413497 DOI: 10.1371/journal.pgen.1000102] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.
Collapse
Affiliation(s)
- Benjamin F. B. Costantino
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Daniel K. Bricker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kelly Alexandre
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kate Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - John R. Merriam
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Jenna L. Callender
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Vincent C. Henrich
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Asaf Presente
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Andrew J. Andres
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
82
|
Kojima K, Oritani K, Nakatsukasa T, Asano S, Sahara K, Bando H. Ecdysone response element in a baculovirus immediate-early gene, ie1, promoter. Virus Res 2007; 130:202-9. [PMID: 17658648 DOI: 10.1016/j.virusres.2007.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/23/2022]
Abstract
A computer-assisted analysis identified tentative target sequences for regulatory proteins including ecdysone-inducible factors such as BmFTZ-F1 and Broad-Complex Z4 (BR-C Z4) in the ie1 promoter of BmNPV. A transient expression experiment using BmN cells and a series of truncated ie1 promoter constructs demonstrated that the activity of the ie1 promoter responded to alpha-ecdysone and 20-hydroxyecdysone, which required a tridecameric nucleotide stretch (ie1EcRE, 5'-GTGTTATCGACCT-3') homologous to the ecdysone response element reported for Drosophila (DmEcRE). RT-PCR demonstrated the expression of BmEcR and BmUSP, which are required as ecdysone-specific activators for EcRE-mediated activation, in BmN cells. Furthermore, the ie1 EcRE-mediated response was confirmed by using a recombinant BmNPV possessing a luciferase gene under the control of the ie1 promoter with or without ie1 EcRE. This is the first report of an ecdysone response element in a baculoviral gene promoter. These results also suggested that the regulation of the ie1 by ecdysone may militate viral replication at least under certain conditions during natural infections in vivo.
Collapse
Affiliation(s)
- K Kojima
- Silk-Materials Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Parthasarathy R, Tan A, Bai H, Palli SR. Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech Dev 2007; 125:299-313. [PMID: 18083350 DOI: 10.1016/j.mod.2007.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
Abstract
Broad (br), a transcription factor containing the Broad-Tramtrack-Bric-a-brac (BTB) and zinc finger domains was shown to mediate 20-hydroxyecdysone (20E) action and pupal development in Drosophila melanogaster and Manduca sexta. We determined the key roles of br during larval-pupal metamorphosis using RNA interference (RNAi) in a coleopteran insect, Tribolium castaneum. Two major peaks of T. castaneum broad (Tcbr) mRNA, one peak at the end of feeding stage prior to the larvae entering the quiescent stage and another peak during the quiescent stage were detected in the whole body and midgut tissue dissected from staged insects. Expression of br during the final instar larval stage is essential for successful larval-pupal metamorphosis, because, RNAi-mediated knock-down of Tcbr during this stage derailed larval-pupal metamorphosis and produced insects that showed larval, pupal and adult structures. Tcbr dsRNA injected into the final instar larvae caused reduction in the mRNA levels of genes known to be involved in 20E action (EcRA, E74 and E75B). Tcbr dsRNA injected into the final instar larvae also caused an increase in the mRNA levels of JH-response genes (JHE and Kr-h1b). Knock-down of Tcbr expression also affected 20E-mediated remodeling of midgut during larval-pupal metamorphosis. These data suggest that the expression of Tcbr during the final instar larval stage promotes pupal program while suppressing the larval and adult programs ensuring a transitory pupal stage in holometabolous insects.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | |
Collapse
|
84
|
Mitrofanov VG. Molecular-genetic mechanisms of the effect of developmental hormones in insects. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407050025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Spokony RF, Restifo LL. Anciently duplicated Broad Complex exons have distinct temporal functions during tissue morphogenesis. Dev Genes Evol 2007; 217:499-513. [PMID: 17530286 DOI: 10.1007/s00427-007-0159-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/20/2007] [Indexed: 12/22/2022]
Abstract
Broad Complex (BRC) is an essential ecdysone-pathway gene required for entry into and progression through metamorphosis in Drosophila melanogaster. Mutations of three BRC complementation groups cause numerous phenotypes, including a common suite of morphogenesis defects involving central nervous system (CNS), adult salivary glands (aSG), and male genitalia. These defects are phenocopied by the juvenile hormone mimic methoprene. Four BRC isoforms are produced by alternative splicing of a protein-binding BTB/POZ-encoding exon (BTBBRC) to one of four tandemly duplicated, DNA-binding zinc-finger-encoding exons (Z1BRC, Z2BRC, Z3BRC, Z4BRC). Highly conserved orthologs of BTBBRC and all four ZBRC were found among published cDNA sequences or genome databases from Diptera, Lepidoptera, Hymenoptera, and Coleoptera, indicating that BRC arose and underwent internal exon duplication before the split of holometabolous orders. Tramtrack subfamily members, abrupt, tramtrack, fruitless, longitudinals lacking (lola), and CG31666 were characterized throughout Holometabola and used to root phylogenetic analyses of ZBRC exons, which revealed that the ZBRC clade includes Zabrupt. All four ZBRC domains, including Z4BRC, which has no known essential function, are evolving in a manner consistent with selective constraint. We used transgenic rescue to explore how different BRC isoforms contribute to shared tissue-morphogenesis functions. As predicted from earlier studies, the common CNS and aSG phenotypes were rescued by BRC-Z1 in rbp mutants, BRC-Z2 in br mutants, and BRC-Z3 in 2Bc mutants. However, the isoforms are required at two different developmental stages, with BRC-Z2 and -Z3 required earlier than BRC-Z1. The sequential action of BRC isoforms indicates subfunctionalization of duplicated ZBRC exons even when they contribute to common developmental processes.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, AZ 85721-0108, USA.
| | | |
Collapse
|
86
|
Zhu J, Chen L, Raikhel AS. Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, Vitellogenin, in the mosquito Aedes aegypti. Mol Cell Endocrinol 2007; 267:97-105. [PMID: 17303321 PMCID: PMC1929017 DOI: 10.1016/j.mce.2007.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
We investigated the role of the mosquito broad (br) gene in regulating the 20-hydroxyecdysone (20E) effector Vitellogenin (Vg) gene. Injection of double-stranded RNA corresponding to the BR isoform Z2 led to a significant decrease in expression of the Vg gene at 8 and 24h post-blood meal. Knockdown of Z1 or Z4 resulted in enhanced Vg expression beyond its normal expression time. In vitro studies suggested that the effects of BR require its direct binding to the Vg promoter, as well as protein-protein interaction between BR and the ecdysone receptor complex. The BR isoforms are therefore essential for a proper stage-specific biological response to 20E in the adult female mosquito. In particular, the isoform Z2 is required for 20E-mediated activation of Vg, while isoforms Z1 and Z4 serve as repressors to ensure appropriate termination of Vg expression.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
87
|
Békési A, Pukáncsik M, Muha V, Zagyva I, Leveles I, Hunyadi-Gulyás E, Klement E, Medzihradszky KF, Kele Z, Erdei A, Felföldi F, Kónya E, Vértessy BG. A novel fruitfly protein under developmental control degrades uracil-DNA. Biochem Biophys Res Commun 2007; 355:643-8. [PMID: 17306761 DOI: 10.1016/j.bbrc.2007.01.196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/30/2007] [Indexed: 12/23/2022]
Abstract
Uracil in DNA may arise by cytosine deamination or thymine replacement and is removed during DNA repair. Fruitfly larvae lack two repair enzymes, the major uracil-DNA glycosylase and dUTPase, and may accumulate uracil-DNA. We asked if larval tissues contain proteins that specifically recognize uracil-DNA. We show that the best hit of pull-down on uracil-DNA is the protein product of the Drosophila melanogaster gene CG18410. This protein binds to both uracil-DNA and normal DNA but degrades only uracil-DNA; it is termed Uracil-DNA Degrading Factor (UDE). The protein has detectable homology only to a group of sequences present in genomes of pupating insects. It is under detection level in the embryo, most of the larval stages and in the imago, but is strongly upregulated right before pupation. In Schneider 2 cells, UDE mRNA is upregulated by ecdysone. UDE represents a new class of proteins that process uracil-DNA with potential involvement in metamorphosis.
Collapse
Affiliation(s)
- Angéla Békési
- Institute of Enzymology, Karolina út 29. H-1113, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Basso LR, de C Neves M, Monesi N, Paçó-Larson ML. Broad-Complex,E74, andE75early genes control DNA puffBhC4-1expression in prepupal salivary glands. Genesis 2006; 44:505-14. [PMID: 17083105 DOI: 10.1002/dvg.20239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The DNA puff BhC4-1 gene of the sciarid Bradysia hygida is induced in salivary glands prior to the pupal molt as a secondary response to the increase in ecdysone titers. Previous studies demonstrated that the BhC4-1 promoter is activated in transgenic Drosophila melanogaster salivary glands as a late response to the ecdysone peak that triggers metamorphosis, revealing that this aspect of BhC4-1 transcriptional regulation is conserved in the Drosophila background. To identify regulators of BhC4-1 expression, we utilized a candidate gene approach and tested the roles of the ecdysone-induced genes BR-C, E74, and E75. Our results reveal that the BR-C Z3 isoform is essential for BhC4-1-lacZ induction in prepupal salivary glands and constitute the first demonstration of the participation of early genes products on DNA puff genes regulation.
Collapse
Affiliation(s)
- L R Basso
- Departamento de Biologia Celular e Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
89
|
Deng X, Meller VH. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 2006; 174:1859-66. [PMID: 17028315 PMCID: PMC1698640 DOI: 10.1534/genetics.106.064568] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The male-specific lethal (MSL) ribonucleoprotein complex is necessary for equalization of X:A expression levels in Drosophila males, which have a single X chromosome. It binds selectively to the male X chromosome and directs acetylation of histone H4 at lysine 16 (H4Ac16), a modification linked to elevated transcription. roX1 and roX2 noncoding RNAs are essential but redundant components of this complex. Simultaneous removal of both roX RNAs reduces X localization of the MSL proteins and permits their ectopic binding to autosomal sites and the chromocenter. However, the MSL proteins still colocalize, and low levels of H4Ac16 are detected at ectopic sites of MSL binding and residual sites on the X chromosome of roX1- roX2- males. Microarray analysis was performed to reveal the effect of roX1 and roX2 elimination on X-linked and autosomal gene expression. Expression of the X chromosome is decreased by 26% in roX1- roX2- male larvae. Enhanced expression could not be detected at autosomal sites of MSL binding in roX1- roX2- males. These results implicate failure to compensate X-linked genes, rather than inappropriate upregulation of autosomal genes at ectopic sites of MSL binding, as the primary cause of male lethality upon loss of roX RNAs.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Biological Science, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
90
|
Kelly KF, Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006; 16:578-87. [PMID: 16996269 DOI: 10.1016/j.tcb.2006.09.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/22/2006] [Accepted: 09/07/2006] [Indexed: 02/05/2023]
Abstract
The BTB/POZ-ZF [Broad complex, Tramtrack, Bric à brac (BTB) or poxvirus and zinc finger (POZ)-zinc finger] protein family comprises a diverse group of transcription factors. POZ-ZF proteins have been implicated in many biological processes, including B cell fate determination, DNA damage responses, cell cycle progression and a multitude of developmental events, including gastrulation, limb formation and hematopoietic stem cell fate determination. Consequently, dysfunction of vertebrate POZ-ZF proteins, such as promyelocytic leukemia zinc finger (PLZF), B cell lymphoma 6 (Bcl-6), hypermethylated in cancer 1 (HIC-1), Kaiso, ZBTB7 and Fanconi anemia zinc finger (FAZF), has been linked directly or indirectly to tumorigenesis and developmental disorders. Here, we discuss recent advances in the POZ-ZF field and the implications for the design of future studies to elucidate the biological roles of these unique transcription factors.
Collapse
Affiliation(s)
- Kevin F Kelly
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | |
Collapse
|
91
|
Erezyilmaz DF, Riddiford LM, Truman JW. The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc Natl Acad Sci U S A 2006; 103:6925-30. [PMID: 16641104 PMCID: PMC1458995 DOI: 10.1073/pnas.0509983103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key regulatory gene in metamorphosing (holometabolous) insect life histories is the transcription factor broad (br), which specifies pupal development. To determine the role of br in a direct-developing (hemimetabolous) insect that lacks a pupal stage, we cloned br from the milkweed bug, Oncopeltus fasciatus (Of'br). We find that, unlike metamorphosing insects, in which br expression is restricted to the larval-pupal transition, Of'br mRNA is expressed during embryonic development and is maintained at each nymphal molt but then disappears at the molt to the adult. Induction of a supernumerary nymphal stage with a juvenile hormone (JH) mimic prevented the disappearance of br mRNA. In contrast, induction of a precocious adult molt by application of precocene II to third-stage nymphs caused a loss of br mRNA at the precocious adult molt. Thus, JH is necessary to maintain br expression during the nymphal stages. Injection of Of'br dsRNA into either early third- or fourth-stage nymphs caused a repetition of stage-specific pigmentation patterns and prevented the normal anisometric growth of the wing pads without affecting isometric growth or molting. Therefore, br is necessary for the mutable (heteromorphic) changes that occur during hemimetabolous development. Our results suggest that metamorphosis in insects arose as expression of br, which conveys competence for change, became restricted to one postembryonic instar. After this shift in br expression, the progressive changes that occur within the nymphal series in basal insects became compressed to the one short period of morphogenesis seen in the larva-to-pupa transition of holometabolous insects.
Collapse
Affiliation(s)
- Deniz F Erezyilmaz
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|
92
|
Lovato TL, Benjamin AR, Cripps RM. Transcription of Myocyte enhancer factor-2 in adult Drosophila myoblasts is induced by the steroid hormone ecdysone. Dev Biol 2005; 288:612-21. [PMID: 16325168 DOI: 10.1016/j.ydbio.2005.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/20/2022]
Abstract
The steroid hormone 20-hydroxyecdysone (ecdysone) activates a relatively small number of immediate-early genes during Drosophila pupal development, yet is able to orchestrate distinct differentiation events in a wide variety of tissues. Here, we demonstrate that expression of the muscle differentiation gene Myocyte enhancer factor-2 (Mef2) is normally delayed in twist-expressing adult myoblasts until the end of the third larval instar. The late up-regulation of Mef2 transcription in larval myoblasts is an ecdysone-dependent event which acts upon an identified Mef2 enhancer, and we identify enhancer sequences required for up-regulation. We also present evidence that the ecdysone-induced Broad Complex of zinc finger transcription factor genes is required for full activation of the myogenic program in these cells. Since forced early expression of Mef2 in adult myoblasts leads to premature muscle differentiation, our results explain how and why the adult muscle differentiation program is attenuated prior to pupal development. We propose a mechanism for the initiation of adult myogenesis, whereby twist expression in myoblasts provides a cellular context upon which an extrinsic signal builds to control muscle-specific differentiation events, and we discuss the general relevance of this model for gene regulation in animals.
Collapse
Affiliation(s)
- TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-1091, USA
| | | | | |
Collapse
|
93
|
Badenhorst P, Xiao H, Cherbas L, Kwon SY, Voas M, Rebay I, Cherbas P, Wu C. The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev 2005; 19:2540-5. [PMID: 16264191 PMCID: PMC1276728 DOI: 10.1101/gad.1342605] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/26/2005] [Indexed: 01/29/2023]
Abstract
Drosophila NURF is an ISWI-containing ATP-dependent chromatin remodeling complex that regulates transcription by catalyzing nucleosome sliding. To determine in vivo gene targets of NURF, we performed whole genome expression analysis on mutants lacking the NURF-specific subunit NURF301. Strikingly, a large set of ecdysone-responsive targets is included among several hundred NURF-regulated genes. Null Nurf301 mutants do not undergo larval to pupal metamorphosis, and also enhance dominant-negative mutations in ecdysone receptor. Moreover, purified NURF binds EcR in an ecdysone-dependent manner, suggesting it is a direct effector of nuclear receptor activity. The conservation of NURF in mammals has broad implications for steroid signaling.
Collapse
Affiliation(s)
- Paul Badenhorst
- Laboratory of Molecular Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Wilson TG, Yerushalmi Y, Donnell DM, Restifo LL. Interaction between hormonal signaling pathways in Drosophila melanogaster as revealed by genetic interaction between methoprene-tolerant and broad-complex. Genetics 2005; 172:253-64. [PMID: 16204218 PMCID: PMC1456152 DOI: 10.1534/genetics.105.046631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Juvenile hormone (JH) regulates insect development by a poorly understood mechanism. Application of JH agonist insecticides to Drosophila melanogaster during the ecdysone-driven onset of metamorphosis results in lethality and specific morphogenetic defects, some of which resemble those in mutants of the ecdysone-regulated Broad-Complex (BR-C). The Methoprene-tolerant (Met) bHLH-PAS gene mediates JH action, and Met mutations protect against the lethality and defects. To explore relationships among these two genes and JH, double mutants were constructed between Met alleles and alleles of each of the BR-C complementation groups: broad (br), reduced bristles on palpus (rbp), and 2Bc. Defects in viability and oogenesis were consistently more severe in rbp Met or br Met double mutants than would be expected if these genes act independently. Additionally, complementation between BR-C mutant alleles often failed when MET was absent. Patterns of BRC protein accumulation during metamorphosis revealed essentially no difference between wild-type and Met-null individuals. JH agonist treatment did not block accumulation of BRC proteins. We propose that MET and BRC interact to control transcription of one or more downstream effector genes, which can be disrupted either by mutations in Met or BR-C or by application of JH/JH agonist, which alters MET interaction with BRC.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
95
|
Reza AMS, Kanamori Y, Shinoda T, Shimura S, Mita K, Nakahara Y, Kiuchi M, Kamimura M. Hormonal control of a metamorphosis-specific transcriptional factor Broad-Complex in silkworm. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:753-61. [PMID: 15581808 DOI: 10.1016/j.cbpc.2004.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/13/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Insect metamorphosis is induced by the steroid 20-hydroxyecdysone (20E) in the absence of sesquiterpenoid juvenile hormone (JH). In Drosophila melanogaster, the Broad-Complex (BR-C) transcriptional factor plays critical roles during metamorphosis. We isolated cDNAs encoding BR-C in the silkworm Bombyx mori and examined their mRNA expression. cDNAs for three BR-C isoforms with zinc finger pairs (Z1, Z2 and Z4) and four isoforms lacking them were cloned. Their mRNAs were expressed in multiple tissues at the larval-pupal metamorphosis. In the anterior silk gland, BR-C mRNAs were expressed at the end of the last larval instar but not expressed during the penultimate instar. 20E administration induced BR-C mRNA expression and JH suppressed 20E-induced BR-C expression in this tissue both in vivo and in vitro. Thus, BR-C mRNAs are inducible by 20E only in the absence of JH, a finding that explains their metamorphosis-specific expression.
Collapse
Affiliation(s)
- A M S Reza
- Developmental Biology Department, National Institute of Agrobiological Sciences, 1-2, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Consoulas C, Levine RB, Restifo LL. The steroid hormone-regulated geneBroad Complex is required for dendritic growth of motoneurons during metamorphosis ofDrosophila. J Comp Neurol 2005; 485:321-37. [PMID: 15803508 DOI: 10.1002/cne.20499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors.
Collapse
Affiliation(s)
- Christos Consoulas
- ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
97
|
Ijiro T, Urakawa H, Yasukochi Y, Takeda M, Fujiwara Y. cDNA cloning, gene structure, and expression of Broad-Complex (BR-C) genes in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:963-969. [PMID: 15350615 DOI: 10.1016/j.ibmb.2004.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 05/24/2023]
Abstract
To clarify the molecular mechanisms of metamorphosis, we analyzed the Broad-Complex (BR-C) gene in the silkworm, Bombyx mori. We cloned cDNAs for the full coding regions of the Z1, Z2, and Z4 isoforms of BR-C. The Z3 zinc finger sequence was found in the 3'UTR of the Z2 isoform. The predicted amino acid sequence showed high homology with Drosophila and Manduca BR-C proteins. Five bacterial artificial chromosome (BAC) clones were screened from a Bombyx BAC library. Restriction enzyme cleavage maps of 170 kb regions were constructed, and a total of 25.8 kb were sequenced. The BAC analysis showed that the 5'UTR of the BR-C gene consists of the first two exons, while the coding region contains a core region domain with five exons and four zinc finger exons in the order Z1, Z4, Z2, and Z3. Expression analysis revealed 9.5, 6.5, and 5.5 kb BR-C transcripts. These increased during the spinning ecdysone peak on day 6 of the fifth instar when pupal commitment occurs in the Bombyx epidermis. In addition, a small amount of BR-C mRNA was detected in the epidermis before this peak. BR-C mRNA was also expressed in the fat body from day 1 in the fourth instar to day 7 in the fifth instar.
Collapse
Affiliation(s)
- Tomoyuki Ijiro
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
98
|
Wilson TG. The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:111-121. [PMID: 15019512 DOI: 10.1016/j.jinsphys.2003.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 05/24/2023]
Abstract
Studies in a variety of insects during the past four decades has deepened our understanding of juvenile hormone (JH) physiology, but how this hormone works at the molecular level remains elusive. Similarly, the mechanism of toxicity of JH analogue insecticides is still in question. There is much evidence from laboratory usage that JHAs act as JH agonists and generally show the highest toxicity when applied at the onset of metamorphosis. A physiological basis for the toxicity and morphogenetic effects has been suggested by recent work linking these effects with interference with the expression or action of certain genes, particularly the Broad-Complex (BR-C) transcription factor gene, that direct metamorphic change. Misexpressed BR-C then leads to improper expression of one or more downstream effector genes controlled by BR-C gene products, resulting in abnormal developmental and physiological changes that disrupt metamorphosis. Therefore, JH is a necessary molecule at certain times in insect development but becomes toxic when present during metamorphosis.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Entomology, 400 Aronoff Laboratory, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
99
|
Daish TJ, Cakouros D, Kumar S. Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ 2003; 10:1348-56. [PMID: 12970673 DOI: 10.1038/sj.cdd.4401312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DRONC is an apical Drosophila caspase essential for programmed cell death during fly development. During metamorphosis, dronc gene expression is regulated by the steroid hormone ecdysone, which also regulates the levels of a number of other critical cell death proteins. As DRONC protein levels are important in determining caspase activation and initiation of cell death, we have analyzed the regulation of the dronc promoter using transgenic flies expressing a LacZ reporter gene under the control of the dronc promoter. Our results indicate that dronc expression is highly dynamic during Drosophila development, and is controlled both spatially and temporally. We demonstrate that while a 2.3 kb dronc promoter region contains most of the information required for correct gene expression, a 1.1 kb promoter region is expressed in some tissues and not others. We further demonstrate that during larval-pupal metamorphosis, two ecdysone-induced transcription factors, Broad-Complex and E93, are required for correct dronc expression. Our data suggest that the dronc promoter is regulated in a highly complex manner, and provides an ideal system to explore the temporal and spatial regulation of gene expression driven by nuclear hormone receptors.
Collapse
Affiliation(s)
- T J Daish
- Hanson Institute, IMVS, Adelaide 5000, Australia
| | | | | |
Collapse
|
100
|
Riddiford LM, Hiruma K, Zhou X, Nelson CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1327-1338. [PMID: 14599504 DOI: 10.1016/j.ibmb.2003.06.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This short review summarizes our current knowledge about the role of transcription factors regulated by ecdysteroids and juvenile hormone (JH) in larval molting and metamorphosis in the tobacco hornworm, Manduca sexta, and Drosophila melanogaster. We show new evidence that EcR-A/USP-2 and E75A contribute to the down-regulation of MHR3 after the peak of ecdysteroid. Also, there is suggestive evidence that both MHR4 and betaFTZ-F1 may regulate the expression of dopa decarboxylase as the ecdysteroid titer declines. We summarize the regulation by JH of the Broad transcription factor that normally appears in the epidermis in the final larval instar and specifies pupal cuticle formation at the metamorphic molt. Premature expression of different Broad isoforms also is shown to cause precocious degeneration of the prothoracic glands as well as to prevent ecdysteroid release during its presence.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|