51
|
Chan SSK, Chan HHW, Kyba M. Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq. Biochem Biophys Res Commun 2016; 474:469-475. [PMID: 27131741 DOI: 10.1016/j.bbrc.2016.04.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023]
Abstract
Mesp1 is a transcription factor that promotes differentiation of pluripotent cells into different mesoderm lineages including hematopoietic, cardiac and skeletal myogenic. This occurs via at least two transient cell populations: a common hematopoietic/cardiac progenitor population and a common cardiac/skeletal myogenic progenitor population. It is not established whether Mesp1-induced mesoderm cells are intrinsically heterogeneous, or are simply capable of multiple lineage decisions. In the current study, we applied single-cell RNA-seq to analyze Mesp1+ mesoderm. Initial whole transcriptome analysis showed a surprising homogeneity among Mesp1-induced mesoderm cells. However, this apparent global homogeneity masked an intrinsic heterogeneity revealed by interrogating a panel of early mesoderm patterning factors. This approach enabled discovery of subpopulations primed for hematopoietic or cardiac development. These studies demonstrate the heterogeneic nature of Mesp1+ mesoderm.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Howe H W Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
52
|
Nakano A, Nakano H, Smith KA, Palpant NJ. The developmental origins and lineage contributions of endocardial endothelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1937-47. [PMID: 26828773 DOI: 10.1016/j.bbamcr.2016.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Endocardial development involves a complex orchestration of cell fate decisions that coordinate with endoderm formation and other mesodermal cell lineages. Historically, investigations into the contribution of endocardium in the developing embryo was constrained to the heart where these cells give rise to the inner lining of the myocardium and are a major contributor to valve formation. In recent years, studies have continued to elucidate the complexities of endocardial fate commitment revealing a much broader scope of lineage potential from developing endocardium. These studies cover a wide range of species and model systems and show direct contribution or fate potential of endocardium giving rise to cardiac vasculature, blood, fibroblast, and cardiomyocyte lineages. This review focuses on the marked expansion of knowledge in the area of endocardial fate potential. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Haruko Nakano
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly A Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
53
|
A serum-free and defined medium for the culture of mammalian postimplantation embryos. Biochem Biophys Res Commun 2015; 468:813-9. [DOI: 10.1016/j.bbrc.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
54
|
Beketaev I, Zhang Y, Weng KC, Rhee S, Yu W, Liu Y, Mager J, Wang J. cis-regulatory control of Mesp1 expression by YY1 and SP1 during mouse embryogenesis. Dev Dyn 2015; 245:379-87. [DOI: 10.1002/dvdy.24349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/20/2015] [Accepted: 09/12/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ilimbek Beketaev
- Center for Stem Cell Engineering, Department of Basic Research Laboratories; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston Texas USA
| | - Yi Zhang
- In Vitro Fertilization Center; Affiliated Hospital of Hainan Medical University; Haikou Hainan People's Republic of China
| | - Kuo-Chan Weng
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Siyeon Rhee
- Department of Veterinary & Animal Sciences; University of Massachusetts; Amherst Massachusetts USA
| | - Wei Yu
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Yu Liu
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Jesse Mager
- Department of Veterinary & Animal Sciences; University of Massachusetts; Amherst Massachusetts USA
| | - Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston Texas USA
| |
Collapse
|
55
|
Nie J, Jiang M, Zhang X, Tang H, Jin H, Huang X, Yuan B, Zhang C, Lai JC, Nagamine Y, Pan D, Wang W, Yang Z. Post-transcriptional Regulation of Nkx2-5 by RHAU in Heart Development. Cell Rep 2015; 13:723-732. [PMID: 26489465 DOI: 10.1016/j.celrep.2015.09.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/27/2015] [Accepted: 09/15/2015] [Indexed: 01/28/2023] Open
Abstract
RNA G-quadruplexes (G4s) play important roles in RNA biology. However, the function and regulation of mRNA G-quadruplexes in embryonic development remain elusive. Previously, we identified RHAU (DHX36, G4R1) as an RNA helicase that resolves mRNA G-quadruplexes. Here, we find that cardiac deletion of Rhau leads to heart defects and embryonic lethality in mice. Gene expression profiling identified Nkx2-5 mRNA as a target of RHAU that associates with its 5' and 3' UTRs and modulates its stability and translation. The 5' UTR of Nkx2-5 mRNA contains a G-quadruplex that requires RHAU for protein translation, while the 3' UTR of Nkx2-5 mRNA possesses an AU-rich element (ARE) that facilitates RHAU-mediated mRNA decay. Thus, we uncovered the mechanisms underlying Nkx2-5 post-transcriptional regulation during heart development. Meanwhile, this study demonstrates the function of mRNA 5' UTR G-quadruplex-mediated protein translation in organogenesis.
Collapse
Affiliation(s)
- Junwei Nie
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Mingyang Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Xiaotian Zhang
- The MOE Key Laboratory for Cell Proliferation and Regulation Biology, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hao Tang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hengwei Jin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Xinyi Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Baiyin Yuan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Chenxi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Janice Ching Lai
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Yoshikuni Nagamine
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Dejing Pan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
56
|
Fleury M, Eliades A, Carlsson P, Lacaud G, Kouskoff V. FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development 2015; 142:3307-20. [PMID: 26293303 DOI: 10.1242/dev.124685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.
Collapse
Affiliation(s)
- Maud Fleury
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexia Eliades
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
57
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
58
|
Cheng YT, Yeih DF, Liang SM, Chien CY, Yu YL, Ko BS, Jan YJ, Kuo CC, Sung LY, Shyue SK, Chen MF, Yet SF, Wu KK, Liou JY. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells. Int J Cardiol 2015; 201:441-8. [PMID: 26313863 DOI: 10.1016/j.ijcard.2015.08.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. METHODS Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. RESULTS Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. CONCLUSIONS These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Ting Cheng
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Dong-Feng Yeih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Ying Chien
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ling Yu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Fong Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
59
|
The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development. Protein Cell 2015; 6:553-561. [PMID: 26088191 PMCID: PMC4506290 DOI: 10.1007/s13238-015-0176-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/03/2015] [Indexed: 11/02/2022] Open
Abstract
Mesp family proteins comprise two members named mesodermal posterior 1 (Mesp1) and mesodermal posterior 2 (Mesp2). Both Mesp1 and Mesp2 are transcription factors and they share an almost identical basic helix-loop-helix motif. They have been shown to play critical regulating roles in mammalian heart and somite development. Mesp1 sits in the core of the complicated regulatory network for generation of cardiovascular progenitors while Mesp2 is central for somitogenesis. Here we summarize the similarities and differences in their molecular functions during mammalian early mesodermal development and discuss possible future research directions for further study of the functions of Mesp1 and Mesp2. A comprehensive knowledge of molecular functions of Mesp family proteins will eventually help us better understand mammalian heart development and somitogenesis as well as improve the production of specific cell types from pluripotent stem cells for future regenerative therapies.
Collapse
|
60
|
Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 2015; 290:9614-25. [PMID: 25694434 DOI: 10.1074/jbc.m114.614628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.
Collapse
Affiliation(s)
- Xiaozhong Shi
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Katie M Zirbes
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Tara L Rasmussen
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Anwarul Ferdous
- the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mary G Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Daniel J Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
61
|
Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R. Dual ReporterMESP1mCherry/w-NKX2-5eGFP/whESCs Enable Studying Early Human Cardiac Differentiation. Stem Cells 2014; 33:56-67. [DOI: 10.1002/stem.1842] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/15/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Chantal Schreurs
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | | | - Richard P. Davis
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - David A. Elliott
- Murdoch Childrens Research Institute, Royal Children's Hospital; Parkville Melbourne Victoria Australia
| | - Christine L. Mummery
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| |
Collapse
|
62
|
Cho GS, Fernandez L, Kwon C. Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxid Redox Signal 2014; 21:2018-31. [PMID: 25133793 PMCID: PMC4208610 DOI: 10.1089/ars.2014.6063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. RECENT ADVANCES Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. CRITICAL ISSUES In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. FUTURE DIRECTIONS Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Cardiology, Department of Medicine, Institute for Cell Engineering, Johns Hopkins University , Baltimore, Maryland
| | | | | |
Collapse
|
63
|
Devine WP, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 2014; 3:e03848. [PMID: 25296024 PMCID: PMC4356145 DOI: 10.7554/elife.03848] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor 'fields' has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies.
Collapse
Affiliation(s)
- W Patrick Devine
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Joshua D Wythe
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, United States
| | - Matthew George
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, United States
- Developmental and Stem Cell Biology Program, University of San Francisco, San Francisco, United States
| | - Kazuko Koshiba-Takeuchi
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, United States
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
- Developmental and Stem Cell Biology Program, University of San Francisco, San Francisco, United States
| |
Collapse
|
64
|
Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 2014; 16:829-40. [PMID: 25150979 DOI: 10.1038/ncb3024] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.
Collapse
|
65
|
Milgrom-Hoffman M, Michailovici I, Ferrara N, Zelzer E, Tzahor E. Endothelial cells regulate neural crest and second heart field morphogenesis. Biol Open 2014; 3:679-88. [PMID: 24996922 PMCID: PMC4133721 DOI: 10.1242/bio.20148078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Napoleone Ferrara
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
66
|
Shenje LT, Andersen P, Uosaki H, Fernandez L, Rainer PP, Cho GS, Lee DI, Zhong W, Harvey RP, Kass DA, Kwon C. Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. eLife 2014; 3:e02164. [PMID: 24843018 PMCID: PMC4007206 DOI: 10.7554/elife.02164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cardiac progenitor cells (CPCs) must control their number and fate to sustain the rapid heart growth during development, yet the intrinsic factors and environment governing these processes remain unclear. Here, we show that deletion of the ancient cell-fate regulator Numb (Nb) and its homologue Numblike (Nbl) depletes CPCs in second pharyngeal arches (PA2s) and is associated with an atrophic heart. With histological, flow cytometric and functional analyses, we find that CPCs remain undifferentiated and expansive in the PA2, but differentiate into cardiac cells as they exit the arch. Tracing of Nb- and Nbl-deficient CPCs by lineage-specific mosaicism reveals that the CPCs normally populate in the PA2, but lose their expansion potential in the PA2. These findings demonstrate that Nb and Nbl are intrinsic factors crucial for the renewal of CPCs in the PA2 and that the PA2 serves as a microenvironment for their expansion. DOI:http://dx.doi.org/10.7554/eLife.02164.001 Human embryos contain cells called ‘cardiac progenitor cells’ that serve as the building blocks to make the heart. Cardiac progenitor cells, or CPCs for short, initially move into areas of the embryo called the first and second heart fields, and then undergo a change to become specific types of heart cells: such as cardiac muscle cells. However, it is not known if CPCs are maintained during the development of the heart. Now, Shenje, Andersen et al. have shown that Numb and Numblike—two proteins that are needed for the development of nerve cells—are also involved in the development of the heart. Mouse embryos without the genes for Numb and Numblike failed to develop hearts normally; and these mutants also had fewer CPCs in the ‘second pharyngeal arch’: a part of the embryo that becomes the sides and front of the neck. Experiments on wild-type mice showed that the CPCs multiplied within this arch, and then changed into specific heart cells as they left this structure. Furthermore, mixing CPCs in a petri dish with cells taken from this arch encouraged the CPCs to multiply without changing into specific cell types. To investigate the importance of these two proteins further, Shenje, Andersen et al. engineered ‘chimeric’ mice in which some CPCs contained the Numb and Numblike genes and other CPCs did not. In most of these chimeric mice, the hearts developed normally, but the CPCs without the Numb or Numblike genes failed to multiply in the second pharyngeal arch. This shows that these genes must be present within an individual CPC to regulate the multiplication of that cell within this arch. By uncovering how problems with the maintenance of CPCs can lead to heart defects—a very common birth defect in humans—this work may lead to new ways to prevent or treat congenital heart disease. Furthermore, identifying the other factors or mechanisms that can allow the long-term maintenance of CPCs in the laboratory will be crucial for research into heart regeneration, and for CPC-based treatments to repair the heart. DOI:http://dx.doi.org/10.7554/eLife.02164.002
Collapse
Affiliation(s)
- Lincoln T Shenje
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States The Knight Cardiovascular Institute, Oregon Health & Science Universtiy, Portland, United States Institute for Cell Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States Institute for Cell Engineering, Johns Hopkins University, Baltimore, United States
| | - Hideki Uosaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States Institute for Cell Engineering, Johns Hopkins University, Baltimore, United States
| | - Laviel Fernandez
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Gun-Sik Cho
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States Institute for Cell Engineering, Johns Hopkins University, Baltimore, United States
| | - Dong-Ik Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States
| | - Weimin Zhong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, United States Institute for Cell Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
67
|
Zhao XM, Liu C, Li QY, Hu WB, Zhou MT, Nie HY, Zhang YX, Peng ZC, Zhao P, Xia QY. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori. PLoS One 2014; 9:e94091. [PMID: 24740008 PMCID: PMC3989216 DOI: 10.1371/journal.pone.0094091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/11/2014] [Indexed: 11/25/2022] Open
Abstract
Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qiong-Yan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Wen-Bo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Meng-Ting Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Hong-Yi Nie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Yin-Xia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Zhang-Chuan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing, China
| |
Collapse
|
68
|
Chan SSK, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 2014; 12:587-601. [PMID: 23642367 DOI: 10.1016/j.stem.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/12/2012] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Mesp1 is regarded as the master regulator of cardiovascular development, initiating the cardiac transcription factor cascade to direct the generation of cardiac mesoderm. To define the early embryonic cell population that responds to Mesp1, we performed pulse inductions of gene expression over tight temporal windows following embryonic stem cell differentiation. Remarkably, instead of promoting cardiac differentiation in the initial wave of mesoderm, Mesp1 binds to the Tal1 (Scl) +40 kb enhancer and generates Flk-1+ precursors expressing Etv2 (ER71) and Tal1 that undergo hematopoietic differentiation. The second wave of mesoderm responds to Mesp1 by differentiating into PDGFRα+ precursors that undergo cardiac differentiation. Furthermore, in the absence of serum-derived factors, Mesp1 promotes skeletal myogenic differentiation. Lineage tracing revealed that the majority of yolk sac and many adult hematopoietic cells derive from Mesp1+ precursors. Thus, Mesp1 is a context-dependent determination factor, integrating the stage of differentiation and the signaling environment to specify different lineage outcomes.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
70
|
Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32:1805-16. [PMID: 23756463 PMCID: PMC3981183 DOI: 10.1038/emboj.2013.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non-coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.
Collapse
|
71
|
Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013; 152:570-83. [PMID: 23352431 DOI: 10.1016/j.cell.2013.01.003] [Citation(s) in RCA: 746] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/09/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.
Collapse
Affiliation(s)
- Carla A Klattenhoff
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development 2013; 140:1024-33. [PMID: 23344709 DOI: 10.1242/dev.083790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.
Collapse
Affiliation(s)
- Stephen A Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
73
|
Hartung S, Schwanke K, Haase A, David R, Franz WM, Martin U, Zweigerdt R. Directing cardiomyogenic differentiation of human pluripotent stem cells by plasmid-based transient overexpression of cardiac transcription factors. Stem Cells Dev 2013; 22:1112-25. [PMID: 23157212 DOI: 10.1089/scd.2012.0351] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) possess a high potential for regenerative medicine. Previous publications suggested that viral transduction of a defined set of transcription factors (TFs) known to play pivotal roles in heart development also increases cardiomyogenesis in vitro upon overexpression in mouse or human ES cells. To circumvent issues associated with viral approaches such as insertional mutagenesis, we have established a transient transfection system for straightforward testing of TF combinations. Applying this method, the transfection efficiency and the temporal pattern of transgene expression were extensively assessed in hPSCs by quantitative real time-polymerase chain reaction (qRT-PCR), TF-specific immunofluorescence analysis, and flow cytometry. Testing TF combinations in our approach revealed that BAF60C, GATA4, and MESP1 (BGM) were most effective for cardiac forward programming in human induced pluripotent stem cell lines and human ES cells as well. Removal of BAF60C slightly diminished formation of CM-like cells, whereas depletion of GATA4 or MESP1 abolished cardiomyogenesis. Each of these TFs alone had no inductive effect. In addition, we have noted sensitivity of CM formation to cell density effects, which highlights the necessity for cautious analysis when interpreting TF-directed lineage induction. In summary, this is the first report on TF-induced cardiomyogenesis of hPSCs applying a transient, nonintegrating method of cell transfection.
Collapse
Affiliation(s)
- Susann Hartung
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Wu Q, Kanata K, Saba R, Deng CX, Hamada H, Saga Y. Nodal/activin signaling promotes male germ cell fate and suppresses female programming in somatic cells. Development 2012; 140:291-300. [PMID: 23221368 DOI: 10.1242/dev.087882] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Testicular development in the mouse is triggered in somatic cells by the function of Sry followed by the activation of fibroblast growth factor 9 (FGF9), which regulates testicular differentiation in both somatic and germ cells. However, the mechanism is unknown. We show here that the nodal/activin signaling pathway is activated in both male germ cells and somatic cells. Disruption of nodal/activin signaling drives male germ cells into meiosis and causes ectopic initiation of female-specific genes in somatic cells. Furthermore, we prove that nodal/activin-A works directly on male germ cells to induce the male-specific gene Nanos2 independently of FGF9. We conclude that nodal/activin signaling is required for testicular development and propose a model in which nodal/activin-A acts downstream of fibroblast growth factor signaling to promote male germ cell fate and protect somatic cells from initiating female differentiation.
Collapse
Affiliation(s)
- Quan Wu
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
75
|
Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012; 96:352-62. [PMID: 22893679 PMCID: PMC3500045 DOI: 10.1093/cvr/cvs270] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology.
Collapse
Affiliation(s)
- Patrick Van Vliet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, CA, USA
| | - Sean M. Wu
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stéphane Zaffran
- Aix-Marseille University, Marseille, France
- INSERM UMRS910, Faculté de Médecine de la Timone, France
| | - Michel Pucéat
- INSERM UMR633, Paris Descartes University, Campus Genopole 1, 4, rue Pierre Fontaine, Evry 91058, Paris, France
| |
Collapse
|
76
|
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial, evolutionarily conserved process that occurs during development and is essential for shaping embryos. Also implicated in cancer, this morphological transition is executed through multiple mechanisms in different contexts, and studies suggest that the molecular programs governing EMT, albeit still enigmatic, are embedded within developmental programs that regulate specification and differentiation. As we review here, knowledge garnered from studies of EMT during gastrulation, neural crest delamination and heart formation have furthered our understanding of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jormay Lim
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
77
|
Abstract
Differentiated adult cardiomyocytes (CMs) lack significant regenerative potential, which is one reason why degenerative heart diseases are the leading cause of death in the western world. For future cardiac repair, stem cell-based therapeutic strategies may become alternatives to donor heart transplantation. The principle of reprogramming adult terminally differentiated cells (iPSC) had a major impact on stem cell biology. One can now generate autologous pluripotent cells that highly resemble embryonic stem cells (ESC) and that are ethically inoffensive as opposed to human ESC. Yet, due to genetic and epigenetic aberrations arising during the full reprogramming process, it is questionable whether iPSC will enter the clinic in the near future. Therefore, the recent achievement of directly reprogramming fibroblasts into cardiomyocytes via a milder approach, thereby avoiding an initial pluripotent state, may become of great importance. In addition, various clinical scenarios will depend on the availability of specific cardiac cellular subtypes, for which a first step was achieved via our own programming approach to achieve cardiovascular cell subtypes. In this review, we discuss recent progress in the cardiovascular stem cell field addressing the above mentioned aspects.
Collapse
Affiliation(s)
- Robert David
- 1st Medical Department, University of Munich, Campus Grosshadern, Munich, Germany
| | | |
Collapse
|
78
|
Abstract
Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.
Collapse
Affiliation(s)
- Arif Aziz
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
79
|
Spatial restriction of bone morphogenetic protein signaling in mouse gastrula through the mVam2-dependent endocytic pathway. Dev Cell 2012; 22:1163-75. [PMID: 22698281 DOI: 10.1016/j.devcel.2012.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/27/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
The embryonic body plan is established through positive and negative control of various signaling cascades. Late endosomes and lysosomes are thought to terminate signal transduction by compartmentalizing the signaling molecules; however, their roles in embryogenesis remain poorly understood. We showed here that the endocytic pathway participates in the developmental program by regulating the signaling activity. We modified the mouse Vam2 (mVam2) locus encoding a regulator of membrane trafficking. mVam2-deficient cells exhibited abnormally fragmented late endosomal compartments. The mutant cells could terminate signaling after the removal of the growth factors including TGF-β and EGF, except BMP-Smad1/Smad5 signaling. mVam2-deficient embryos exhibited ectopic activation of BMP signaling and disorganization of embryo patterning. We found that mVam2, which interacts with BMP type I receptor, is required for the spatiotemporal modulation of BMP signaling, via sequestration of the receptor complex in the late stages of the endocytic pathway.
Collapse
|
80
|
Oyama T, Harigaya K, Sasaki N, Okamura Y, Kokubo H, Saga Y, Hozumi K, Suganami A, Tamura Y, Nagase T, Koga H, Nishimura M, Sakamoto R, Sato M, Yoshida N, Kitagawa M. Mastermind-like 1 (MamL1) and mastermind-like 3 (MamL3) are essential for Notch signaling in vivo. Development 2012; 138:5235-46. [PMID: 22069191 DOI: 10.1242/dev.062802] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mastermind (Mam) is one of the elements of Notch signaling, a system that plays a pivotal role in metazoan development. Mam proteins form transcriptionally activating complexes with the intracellular domains of Notch, which are generated in response to the ligand-receptor interaction, and CSL DNA-binding proteins. In mammals, three structurally divergent Mam isoforms (MamL1, MamL2 and MamL3) have been identified. There have also been indications that Mam interacts functionally with various other transcription factors, including the p53 tumor suppressor, β-catenin and NF-κB. We have demonstrated previously that disruption of MamL1 causes partial deficiency of Notch signaling in vivo. However, MamL1-deficient mice did not recapitulate total loss of Notch signaling, suggesting that other members could compensate for the loss or that Notch signaling could proceed in the absence of Mam in certain contexts. Here, we report the generation of lines of mice null for MamL3. Although MamL3-null mice showed no apparent abnormalities, mice null for both MamL1 and MamL3 died during the early organogenic period with classic pan-Notch defects. Furthermore, expression of the lunatic fringe gene, which is strictly controlled by Notch signaling in the posterior presomitic mesoderm, was undetectable in this tissue of the double-null embryos. Neither of the single-null embryos exhibited any of these phenotypes. These various roles of the three Mam proteins could be due to their differential physical characteristics and/or their spatiotemporal distributions. These results indicate that engagement of Mam is essential for Notch signaling, and that the three Mam isoforms have distinct roles in vivo.
Collapse
Affiliation(s)
- Toshinao Oyama
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
83
|
Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E. The heart endocardium is derived from vascular endothelial progenitors. Development 2011; 138:4777-87. [PMID: 21989917 DOI: 10.1242/dev.061192] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic heart is composed of two cell layers: the myocardium, which contributes to cardiac muscle tissue, and the endocardium, which covers the inner lumen of the heart. Whereas significant progress has been made toward elucidating the embryonic origins of the myocardium, the origins of the endocardium remain unclear. Here, we have identified an endocardium-forming field medial to the cardiac crescent, in a continuum with the endothelial plexus. In vivo live imaging of quail embryos revealed that endothelial progenitors, like second/anterior heart field progenitors, migrate to, and enter, the heart from the arterial pole. Furthermore, embryonic endothelial cells implanted into the cardiac crescent contribute to the endocardium, but not to the myocardium. In mouse, lineage analysis focusing on endocardial cells revealed an unexpected heterogeneity in the origins of the endocardium. To gain deeper insight into this heterogeneity, we conditionally ablated Flk1 in distinct cardiovascular progenitor populations; FLK1 is required in vivo for formation of the endocardium in the Mesp1 and Tie2 lineages, but not in the Isl1 lineage. Ablation of Flk1 coupled with lineage analysis in the Isl1 lineage revealed that endothelium-derived Isl1(-) endocardial cells were significantly increased, whereas Isl1(+) endocardial cells were reduced, suggesting that the endocardium is capable of undergoing regulative compensatory growth. Collectively, our findings demonstrate that the second heart field contains distinct myocardial and endocardial progenitor populations. We suggest that the endocardium derives, at least in part, from vascular endothelial cells.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
84
|
Regionalized Twist1 activity in the forelimb bud drives the morphogenesis of the proximal and preaxial skeleton. Dev Biol 2011; 362:132-40. [PMID: 22178153 DOI: 10.1016/j.ydbio.2011.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 02/01/2023]
Abstract
Development of the mouse forelimb bud depends on normal Twist1 activity. Global loss of Twist1 function before limb bud formation stops limb development and loss of Twist1 throughout the mesenchyme after limb bud initiation leads to polydactyly, the ulnarization or loss of the radius and malformations and reductions of the shoulder girdle. Here we show that conditional deletion of Twist1 by Mesp1-Cre in the mesoderm that migrates into the anterior-proximal part of the forelimb bud results in the development of supernumerary digits and carpals, the acquisition of ulna-like characteristics by the radius and malformations of the humerus and scapula. The mirror-like duplications and posteriorization of pre-axial tissues are preceded by disruptions to anterior-posterior Shh, Bmp and Fgf signaling gradients and dysregulation of transcription factors that regulate anterior-posterior limb patterning.
Collapse
|
85
|
Chen Y, Moon AM, Gaufo GO. Influence of mesodermal Fgf8 on the differentiation of neural crest-derived postganglionic neurons. Dev Biol 2011; 361:125-36. [PMID: 22040872 DOI: 10.1016/j.ydbio.2011.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Accepted: 10/16/2011] [Indexed: 01/06/2023]
Abstract
The interaction between the cranial neural crest (NC) and the epibranchial placode is critical for the formation of parasympathetic and visceral sensory ganglia, respectively. However, the molecular mechanism that controls this intercellular interaction is unknown. Here we show that the spatiotemporal expression of Fibroblast growth factor 8 (Fgf8) is strategically poised to control this cellular relationship. A global reduction of Fgf8 in hypomorph embryos leads to an early loss of placode-derived sensory ganglia and reduced number of NC-derived postganglionic (PG) neurons. The latter finding is associated with the early loss of NC cells by apoptosis. This loss occurs concurrent with the interaction between the NC and placode-derived ganglia. Conditional knockout of Fgf8 in the anterior mesoderm shows that this tissue source of Fgf8 has a specific influence on the formation of PG neurons. Unlike the global reduction of Fgf8, mesodermal loss of Fgf8 leads to a deficiency in PG neurons that is independent of NC apoptosis or defects in placode-derived ganglia. We further examined the differentiation of PG precursors by using a quantitative approach to measure the intensity of Phox2b, a PG neuronal determinant. We found reduced numbers and immature state of PG precursors emerging from the placode-derived ganglia en route to their terminal target areas. Our findings support the view that global expression of Fgf8 is required for early NC survival and differentiation of placode-derived sensory neurons, and reveal a novel role for mesodermal Fgf8 on the early differentiation of the NC along the parasympathetic PG lineage.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
86
|
Gonzalez R, Lee JW, Schultz PG. Stepwise Chemically Induced Cardiomyocyte Specification of Human Embryonic Stem Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
87
|
Gonzalez R, Lee JW, Schultz PG. Stepwise Chemically Induced Cardiomyocyte Specification of Human Embryonic Stem Cells. Angew Chem Int Ed Engl 2011; 50:11181-5. [DOI: 10.1002/anie.201103909] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Bondue A, Tännler S, Chiapparo G, Chabab S, Ramialison M, Paulissen C, Beck B, Harvey R, Blanpain C. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. ACTA ACUST UNITED AC 2011; 192:751-65. [PMID: 21383076 PMCID: PMC3051813 DOI: 10.1083/jcb.201007063] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesp1, the earliest marker of cardiovascular development in vivo, is used to isolate and characterize multipotent cardiovascular progenitors during ESC differentiation. During embryonic development and embryonic stem cell (ESC) differentiation, the different cell lineages of the mature heart arise from two types of multipotent cardiovascular progenitors (MCPs), the first and second heart fields. A key question is whether these two MCP populations arise from differentiation of a common progenitor. In this paper, we engineered Mesp1–green fluorescent protein (GFP) ESCs to isolate early MCPs during ESC differentiation. Mesp1-GFP cells are strongly enriched for MCPs, presenting the ability to differentiate into multiple cardiovascular lineages from both heart fields in vitro and in vivo. Transcriptional profiling of Mesp1-GFP cells uncovered cell surface markers expressed by MCPs allowing their prospective isolation. Mesp1 is required for MCP specification and the expression of key cardiovascular transcription factors. Isl1 is expressed in a subset of early Mesp1-expressing cells independently of Mesp1 and acts together with Mesp1 to promote cardiovascular differentiation. Our study identifies the early MCPs residing at the top of the cellular hierarchy of cardiovascular lineages during ESC differentiation.
Collapse
Affiliation(s)
- Antoine Bondue
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, B1070 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011; 8:228-40. [PMID: 21295278 DOI: 10.1016/j.stem.2010.12.008] [Citation(s) in RCA: 861] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 10/07/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023]
Abstract
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.
Collapse
Affiliation(s)
- Steven J Kattman
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Wong SSY, Bernstein HS. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen Med 2011; 5:763-75. [PMID: 20868331 DOI: 10.2217/rme.10.52] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Directed differentiation of human embryonic stem cells (hESCs) has generated much interest in the field of regenerative medicine. Because of their ability to differentiate into any cell type in the body, hESCs offer a novel therapeutic paradigm for myocardial repair by furnishing a supply of cardiomyocytes (CMs) that would ultimately restore normal myocardial function when delivered to the damaged heart. Spontaneous CM differentiation of hESCs is an inefficient process that yields very low numbers of CMs. In addition, it is not clear that fully differentiated CMs provide the benefits sought from cell transplantation. The need for new methods of directed differentiation of hESCs into functional CMs and cardiac progenitors has led to an explosion of research utilizing chemical, genetic, epigenetic and lineage selection strategies to direct cardiac differentiation and enrich populations of cardiac cells for therapeutic use. Here, we review these approaches and highlight their increasingly important roles in stem cell biology and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Sharon S Y Wong
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-1346, USA
| | | |
Collapse
|
91
|
Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011; 138:861-71. [PMID: 21270052 DOI: 10.1242/dev.055236] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of insulin-producing β-cells from human pluripotent stem cells is dependent on efficient endoderm induction and appropriate patterning and specification of this germ layer to a pancreatic fate. In this study, we elucidated the temporal requirements for TGFβ family members and canonical WNT signaling at these developmental stages and show that the duration of nodal/activin A signaling plays a pivotal role in establishing an appropriate definitive endoderm population for specification to the pancreatic lineage. WNT signaling was found to induce a posterior endoderm fate and at optimal concentrations enhanced the development of pancreatic lineage cells. Inhibition of the BMP signaling pathway at specific stages was essential for the generation of insulin-expressing cells and the extent of BMP inhibition required varied widely among the cell lines tested. Optimal stage-specific manipulation of these pathways resulted in a striking 250-fold increase in the levels of insulin expression and yielded populations containing up to 25% C-peptide+ cells.
Collapse
Affiliation(s)
- M Cristina Nostro
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
In mammals, the heart arises from the differentiation of 2 sources of multipotent cardiovascular progenitors (MCPs). Different studies indicated that an evolutionary conserved transcriptional regulatory network controls cardiovascular development from flies to humans. Whereas in Drosophila, Tinman acts as a master regulator of cardiac development, the identification of such a master regulator in mammals remained elusive for a long time. In this review, we discuss the recent findings suggesting that Mesp1 acts as a key regulator of cardiovascular progenitors in vertebrates. Lineage tracing in mice demonstrated that Mesp1 represents the earliest marker of cardiovascular progenitors, tracing almost all the cells of the heart including derivatives of the primary and second heart fields. The inactivation of Mesp1/2 indicated that Mesp genes are essential for early cardiac mesoderm formation and MCP migration. Several recent studies have demonstrated that Mesp1 massively promotes cardiovascular differentiation during embryonic development and pluripotent stem cell differentiation and indicated that Mesp1 resides at the top of the cellular and transcriptional hierarchy that orchestrates MCP specification. In primitive chordates, Mesp also controls early cardiac progenitor specification and migration, suggesting that Mesp arises during chordate evolution to regulate the earliest step of cardiovascular development. Defining how Mesp1 regulates the earliest step of MCP specification and controls their migration is essential to understand the root of cardiovascular development and how the deregulation of these processes can lead to congenital heart diseases. In addition, these findings will be very useful to boost the production of cardiovascular cells for cellular therapy, drug and toxicity screening.
Collapse
Affiliation(s)
- Antoine Bondue
- Interdisciplinary Research Institute, Université Libre de Bruxelles, 808, route de Lennik, BatC, C6-130, 1070 Bruxelles, Belgium
| | | |
Collapse
|
93
|
Niibe K, Morikawa S, Mabuchi Y, Araki D, Nakagawa T, Okano H, Matsuzaki Y. Mesp1+ early paraxial mesodermal cells supply initial bone marrow mesenchymal stem cells capable of differentiating into neural crest lineage cells. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
94
|
HITACHI K, KONDOW A, DANNO H, NISHIMURA Y, OKABAYASHI K, ASASHIMA M. Molecular analyses of Xenopus laevis Mesp-related genes. Integr Zool 2009; 4:387-94. [DOI: 10.1111/j.1749-4877.2009.00110.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
95
|
Lee HC, Tseng WA, Lo FY, Liu TM, Tsai HJ. FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis. Dev Biol 2009; 336:232-45. [PMID: 19818746 DOI: 10.1016/j.ydbio.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/11/2009] [Accepted: 10/01/2009] [Indexed: 01/06/2023]
Abstract
The transcription factor FoxD5 is expressed in the paraxial mesoderm of zebrafish. However, the roles of FoxD5 in anterior pre-somitic mesoderm (PSM) during somitogenesis are unknown. We knocked down FoxD5 in embryos, which resulted in defects of the newly formed somites, including loss of the striped patterns of anterior-posterior polarity genes deltaC, notch2, notch3 and EphB2a, as well as the absence of mespa expression in S-I. Also, the expression of mespb exhibited a 'salt and pepper' pattern, indicating that FoxD5 is necessary for somite patterning in anterior PSM. Embryos were treated with SU5402, an Fgf receptor (FGFR) inhibitor, resulting in reduction of FoxD5 expression. This finding was consistent with results obtained from Tg(hsp70l:dnfgfr1-EGFP)pd1 embryos, whose dominant-negative form of FGFR1 was produced by heat-induction. Loss of FoxD5 expression was observed in the embryos injected with fgf3-/fgf8-double-morpholinos (MOs). Excessive FoxD5 mRNA could rescue the defective expression levels of mespa and mespb in fgf3-/fgf8-double morphants, suggesting that Fgf signaling acts as an upstream modulator of FoxD5 during somitogenesis. We concluded that FoxD5 is required for maintaining anterior-posterior polarity within a somite and that the striped pattern of FoxD5 in anterior PSM is mainly regulated by Fgf. An Fgf-FoxD5-Mesps signaling network is therefore proposed.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Room 307, Fisheries Science Building, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
96
|
Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, Karamath S, Letarte M, Puri MC. Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 2009; 335:66-77. [PMID: 19703439 DOI: 10.1016/j.ydbio.2009.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/27/2009] [Accepted: 08/15/2009] [Indexed: 11/16/2022]
Abstract
Vascular patterning depends on precisely coordinated timing of endothelial cell differentiation and onset of cardiac function. Endoglin is a transmembrane receptor for members of the TGF-beta superfamily that is expressed on endothelial cells from early embryonic gestation to adult life. Heterozygous loss of function mutations in human ENDOGLIN cause Hereditary Hemorrhagic Telangiectasia Type 1, a vascular disorder characterized by arteriovenous malformations that lead to hemorrhage and stroke. Endoglin null mice die in embryogenesis with numerous lesions in the cardiovascular tree including incomplete yolk sac vessel branching and remodeling, vessel dilation, hemorrhage and abnormal cardiac morphogenesis. Since defects in multiple cardiovascular tissues confound interpretations of these observations, we performed in vivo chimeric rescue analysis using Endoglin null embryonic stem cells. We demonstrate that Endoglin is required cell autonomously for endocardial to mesenchymal transition during formation of the endocardial cushions. Endoglin null cells contribute widely to endothelium in chimeric embryos rescued from cardiac development defects, indicating that Endoglin is dispensable for angiogenesis and vascular remodeling in the midgestation embryo, but is required for early patterning of the heart.
Collapse
Affiliation(s)
- Aya Nomura-Kitabayashi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada M4N-3M5
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Tanaka M, Jokubaitis V, Wood C, Wang Y, Brouard N, Pera M, Hearn M, Simmons P, Nakayama N. BMP inhibition stimulates WNT-dependent generation of chondrogenic mesoderm from embryonic stem cells. Stem Cell Res 2009; 3:126-41. [PMID: 19700382 DOI: 10.1016/j.scr.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/22/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022] Open
Abstract
WNT and bone morphogenetic protein (BMP) signaling are known to stimulate hemogenesis from pluripotent embryonic stem (ES) cells. However, osteochondrogenic mesoderm was generated effectively when BMP signaling is kept to a low level, while WNT signaling was strongly activated. When mesoderm specification from ES cells was exogenous factor dependent, WNT3a addition supported the generation of cardiomyogenic cells expressing lateral plate/extraembryonic mesoderm genes, and this process involved endogenous BMP activities. Exogenous BMP4 showed a similar effect that depended on endogenous WNT activities. However, neither factor induced robust chondrogenic activity. In support, ES cell differentiation in the presence of either WNT3a or BMP4 was associated with elevated levels of both Bmp and Wnt mRNAs, which appeared to provide sufficient levels of active BMPs and WNTs to promote the nonchondrogenic mesoderm specification. The osteochondrogenic mesoderm expressed PDGFRalpha, which also expressed genes that mark somite and rostral presomitic mesoderm. A strong WNT signaling was required for generating the mesodermal progeny, while approximately 50- to 100-fold lower concentration of WNT3a was sufficient for specifying axial mes(end)oderm. Thus, depending on the dose and cofactor (BMP), WNT signaling stimulates the generation of different biological activities and specification of different types of mesodermal progeny from ES cells.
Collapse
Affiliation(s)
- Makoto Tanaka
- Peter MacCallum Cancer Institute, East Melbourne VIC 3002, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimarães-Camboa N, Evans SM, Tzahor E. Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 2009; 16:822-32. [PMID: 19531353 DOI: 10.1016/j.devcel.2009.05.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 04/07/2009] [Accepted: 05/11/2009] [Indexed: 11/28/2022]
Abstract
Adult skeletal muscle possesses a remarkable regenerative capacity, due to the presence of satellite cells, adult muscle stem cells. We used fate-mapping techniques in avian and mouse models to show that trunk (Pax3(+)) and cranial (MesP1(+)) skeletal muscle and satellite cells derive from separate genetic lineages. Similar lineage heterogeneity is seen within the head musculature and satellite cells, due to their shared, heterogenic embryonic origins. Lineage tracing experiments with Isl1Cre mice demonstrated the robust contribution of Isl1(+) cells to distinct jaw muscle-derived satellite cells. Transplantation of myofiber-associated, Isl1-derived satellite cells into damaged limb muscle contributed to muscle regeneration. In vitro experiments demonstrated the cardiogenic nature of cranial- but not trunk-derived satellite cells. Finally, overexpression of Isl1 in the branchiomeric muscles of chick embryos inhibited skeletal muscle differentiation in vitro and in vivo, suggesting that this gene plays a role in the specification of cardiovascular and skeletal muscle stem cell progenitors.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
99
|
David R, Stieber J, Fischer E, Brunner S, Brenner C, Pfeiler S, Schwarz F, Franz WM. Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc Res 2009; 84:263-72. [DOI: 10.1093/cvr/cvp211] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
100
|
Wang Y, Nakayama N. WNT and BMP signaling are both required for hematopoietic cell development from human ES cells. Stem Cell Res 2009; 3:113-25. [PMID: 19595658 DOI: 10.1016/j.scr.2009.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022] Open
Abstract
Pluripotent human embryonic stem (hES) cells are capable of generating a variety of mature cell types, including hematopoietic cells in vitro. However, the precise signaling mechanisms that regulate hematopoietic cell development from hES cells are still poorly documented. Here we demonstrate that hemoangiogenic cells derived from hES cells are defined by their high-level expression of KDR and low-level expression of PDGFRalpha (KDR(+)PDGFRalpha(lo)), and that the generation of such cells from hES cells is significantly elevated by the addition of WNT3a or BMP4 during differentiation. The addition of WNT3a caused the induction of both hemogenic and angiogenic activities, and the addition of BMP4 preferentially increased angiogenic activity, all enriched in the KDR(+)PDGFRalpha(lo) cell fraction. Interestingly, WNT3a stimulation of hemoangiogenic cell genesis was virtually abolished in the presence of a BMP inhibitor. On the other hand, the BMP4-induced angiogenic cell genesis was suppressed by coaddition of a WNT inhibitor. Thus, WNT and BMP signaling coordinately direct the differentiation of hES cells into KDR(+)PDGFRalpha(lo) hemoangiogenic cells.
Collapse
Affiliation(s)
- Yi Wang
- Developmental Biology Laboratory, Australian Stem Cell Centre and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|