51
|
Ermakova GV, Alexandrova EM, Kazanskaya OV, Vasiliev OL, Smith MW, Zaraisky AG. The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. Development 1999; 126:4513-23. [PMID: 10498686 DOI: 10.1242/dev.126.20.4513] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From the onset of neurectoderm differentiation, homeobox genes of the Anf class are expressed within a region corresponding to the presumptive telencephalic and rostral diencephalic primordia. Here we investigate functions of the Xenopus member of Anf, Xanf-1, in the differentiation of the anterior neurectoderm. We demonstrate that ectopic Xanf-1 can expand the neural plate at expense of adjacent non-neural ectoderm. In tadpoles, the expanded regions of the plate developed into abnormal brain outgrowths. At the same time, Xanf-1 can inhibit terminal differentiation of primary neurones. We also show that, during gastrula/neurula stages, the exogenous Xanf-1 can downregulate four transcription regulators, XBF-1, Otx-2, Pax-6 and the endogenous Xanf-1, that are expressed in the anterior neurectoderm. However, during further development, when the exogenous Xanf-1 was presumably degraded, re-activation of XBF-1, Otx-2 and Pax-6 was observed in the abnormal outgrowths developed from blastomeres microinjected with Xanf-1 mRNA. Other effects of the ectopic Xanf-1 include cyclopic phenotype and inhibition of the cement gland, both by Otx-2-dependent and -independent mechanisms. Using fusions of Xanf-1 with the repressor domain of Drosophila engrailed or activator domain of herpes virus VP16 protein, we showed that most of the observed effects of Xanf-1 were probably elicited by its functioning as a transcription repressor. Altogether, our data indicate that the repressor function of Xanf-1 may be necessary for regulation of both neural differentiation and patterning in the presumptive anterior neurectoderm.
Collapse
Affiliation(s)
- G V Ermakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Mikluho-Maklaya 16/10, V-437 Moscow 117871, Russia
| | | | | | | | | | | |
Collapse
|
52
|
Wang JM, Préfontaine GG, Lemieux ME, Pope L, Akimenko MA, Haché RJ. Developmental effects of ectopic expression of the glucocorticoid receptor DNA binding domain are alleviated by an amino acid substitution that interferes with homeodomain binding. Mol Cell Biol 1999; 19:7106-22. [PMID: 10490647 PMCID: PMC84705 DOI: 10.1128/mcb.19.10.7106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroid hormone receptors are distinguished from other members of the nuclear hormone receptor family through their association with heat shock proteins and immunophilins in the absence of ligands. Heat shock protein association represses steroid receptor DNA binding and protein-protein interactions with other transcription factors and facilitates hormone binding. In this study, we investigated the hormone-dependent interaction between the DNA binding domain (DBD) of the glucocorticoid receptor (GR) and the POU domains of octamer transcription factors 1 and 2 (Oct-1 and Oct-2, respectively). Our results indicate that the GR DBD binds directly, not only to the homeodomains of Oct-1 and Oct-2 but also to the homeodomains of several other homeodomain proteins. As these results suggest that the determinants for binding to the GR DBD are conserved within the homeodomain, we examined whether the ectopic expression of GR DBD peptides affected early embryonic development. The expression of GR DBD peptides in one-cell-stage zebra fish embryos severely affected their development, beginning with a delay in the epibolic movement during the blastula stage and followed by defects in convergence-extension movements during gastrulation, as revealed by the abnormal patterns of expression of several dorsal gene markers. In contrast, embryos injected with mRNA encoding a GR peptide with a point mutation that disrupted homeodomain binding or with mRNA encoding the DBD of the closely related mineralocorticoid receptor, which does not bind octamer factors, developed normally. Moreover, coinjection of mRNA encoding the homeodomain of Oct-2 completely rescued embryos from the effects of the GR DBD. These results highlight the potential of DNA-independent effects of GR in a whole-animal model and suggest that at least some of these effects may result from direct interactions with homeodomain proteins.
Collapse
Affiliation(s)
- J M Wang
- Department of Medicine, Microbiology, and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
Xenopus has played a key role in defining the general mechanisms that underlie early vertebrate development. Recent studies reveal how the transcriptional regulation of signaling and transcription factors is used to pattern the early dorsal-ventral axis. With the development of new methods for producing transgenic frogs, Xenopus will become a very attractive system for studying transcriptional regulation at all stages of embryogenesis.
Collapse
Affiliation(s)
- D Kimelman
- Department of Biochemistry Center for Developmental Biology University of Washington Seattle, Washington 98195-7350, USA.
| |
Collapse
|
54
|
Abstract
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.
Collapse
Affiliation(s)
- L Kodjabachian
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6B/Room 420, Bethesda, Maryland, 20892, USA.
| | | | | |
Collapse
|
55
|
Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS. An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 1999; 9:946-54. [PMID: 10508583 DOI: 10.1016/s0960-9822(99)80421-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Signals from anterior endodermal cells that express the homeobox gene Hex initiate development of the most rostral tissues of the mouse embryo. The dorsal/anterior endoderm of the Xenopus gastrula, which expresses Hex and the putative head-inducing gene cerberus, is proposed to be equivalent to the mouse anterior endoderm. Here, we report the origin and signalling properties of this population of cells in the early Xenopus embryo. RESULTS Xenopus anterior endoderm was found to derive in part from cells at the centre of the blastocoel floor that express XHex, the Xenopus cognate of Hex. Like their counterparts in the mouse embryo, these Hex-expressing blastomeres moved to the dorsal side of the Xenopus embryo as gastrulation commenced, and populated deep endodermal adjacent to Spemann's organiser. Experiments involving the induction of secondary axes confirmed that XHex expression was associated with anterior development. Ventral misexpression of XHex induced ectopic cerberus expression and conferred anterior signalling properties to the endoderm. Unlike the effect of misexpressing cerberus, these signals could not neuralise overlying ectoderm. CONCLUSIONS XHex expression reveals the unexpected origin of an anterior signalling centre in Xenopus, which arises in part from the centre of the blastula and localises to the deep endoderm adjacent to Spemann's organiser. Signals originating from these endodermal cells impart an anterior identity to the overlying ectoderm, but are insufficient for neural induction. The anterior movement of Hex-expressing cells in both Xenopus and mouse embryos suggests that this process is a conserved feature of vertebrate development.
Collapse
Affiliation(s)
- C M Jones
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, UK.
| | | | | | | | | |
Collapse
|
56
|
Li X, Wikramanayake AH, Klein WH. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling. Dev Biol 1999; 212:425-39. [PMID: 10433832 DOI: 10.1006/dbio.1999.9360] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show here that the homeodomain transcription factor SpOtx is required for endoderm and aboral ectoderm formation during sea urchin embryogenesis. SpOtx target genes were repressed by fusing the SpOtx homeodomain to an active repression domain of Drosophila Engrailed. The Engrailed-SpOtx fusion protein reduced the expression of endoderm- and aboral ectoderm-specific genes and inhibited the formation of endoderm and aboral ectoderm cell types. Coexpressing activated beta-catenin with Engrailed-SpOtx did not overcome the inhibition of endoderm and aboral ectoderm formation, suggesting that SpOtx functioned either downstream of or parallel to nuclear beta-catenin. Embryos expressing C-cadherin, which blocks nuclear translocation of beta-catenin, have defects in endoderm and aboral ectoderm formation. Coexpressing SpOtx with C-cadherin restored aboral ectoderm-specific gene expression and aboral ectoderm morphology, but with C-cadherin present, SpOtx was not sufficient for endoderm formation. Our results show that SpOtx plays a key role in the activation of aboral ectoderm- and endoderm-specific gene expression and, in addition, suggest that SpOtx mediates some of beta-catenin's functions in endoderm and aboral ectoderm formation.
Collapse
Affiliation(s)
- X Li
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | | |
Collapse
|
57
|
Melby AE, Clements WK, Kimelman D. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev Biol 1999; 211:293-305. [PMID: 10395789 DOI: 10.1006/dbio.1999.9296] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patterning in the vertebrate embryo is controlled by an interplay between signals from the dorsal organizer and the ventrally expressed BMPs. Here we examine the function of Vox, a homeodomain-containing gene that is activated by the ventralizing signal BMP-4. Inhibition of BMP signaling using a dominant negative BMP receptor (DeltaBMPR) leads to the ectopic activation of dorsal genes in the ventral marginal zone, and this activation is prevented by co-injection of Vox. chordin is the most strongly activated of those genes that are up-regulated by DeltaBMPR and is the gene most strongly inhibited by Vox expression. We demonstrate that Vox acts as a transcriptional repressor, showing that the activity of native Vox is mimicked by a Vox-repressor fusion (VoxEnR) and that a Vox-activator fusion (VoxG4A) acts as an antimorph, causing the formation of a partial secondary axis when expressed on the ventral side of the embryo. Although Vox can ectopically activate BMP-4 expression in whole embryos, we see no activation of BMP-4 by VoxG4A, demonstrating that this activation is indirect. Using a hormone-inducible version of VoxG4A, we find that a critical time window for Vox function is during the late blastula period. Using this construct, we demonstrate that only a subset of dorsal genes is directly repressed by Vox, revealing that there are different modes of regulation for organizer genes. Since the major direct target for Vox repression is chordin, we propose that Vox acts in establishing a BMP-4 morphogen gradient by restricting the expression domain of chordin.
Collapse
Affiliation(s)
- A E Melby
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195-7350, USA
| | | | | |
Collapse
|
58
|
Affiliation(s)
- A Camus
- Embryology Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
59
|
Wei Z, Angerer LM, Angerer RC. Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis. Development 1999; 126:1729-37. [PMID: 10079234 DOI: 10.1242/dev.126.8.1729] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because the transcription of the SpHE gene is regulated cell-autonomously and asymmetrically along the maternally determined animal-vegetal axis of the very early sea urchin embryo, its regulators provide an excellent entry point for investigating the mechanism(s) that establishes this initial polarity. Previous studies support a model in which spatial regulation of SpHE transcription relies on multiple nonvegetal positive transcription factor activities (Wei, Z., Angerer, L. M. and Angerer, R. C. (1997) Dev. Biol. 187, 71–78) and a yeast one-hybrid screen has identified one, SpEts4, which binds with high specificity to a cis element in the SpHE regulatory region and confers positive activation of SpHE promoter transgenes (Wei, Z., Angerer, R. C. and Angerer, L. M. (1999) Mol. Cell. Biol. 19, 1271–1278). Here we demonstrate that SpEts4 can bind to the regulatory region of the endogenous SpHE gene because a dominant repressor, created by fusing SpEts4 DNA binding and Drosophila engrailed repression domains, suppresses its transcription. The pattern of expression of the SpEts4 gene is consistent with a role in regulating SpHE transcription in the nonvegetal region of the embryo during late cleavage/early blastula stages. Although maternal transcripts are uniformly distributed in the egg and early cleaving embryo, they rapidly turn over and are replaced by zygotic transcripts that accumulate in a pattern congruent with SpHE transcription. In addition, in vivo functional tests show that the SpEts4 cis element confers nonvegetal transcription of a beta-galactosidase reporter gene containing the SpHE basal promoter, and provide strong evidence that the activity of this transcription factor is an integral component of the nonvegetal transcriptional regulatory apparatus, which is proximal to, or part of, the mechanism that establishes the animal-vegetal axis of the sea urchin embryo.
Collapse
Affiliation(s)
- Z Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
60
|
Fekany K, Yamanaka Y, Leung T, Sirotkin HI, Topczewski J, Gates MA, Hibi M, Renucci A, Stemple D, Radbill A, Schier AF, Driever W, Hirano T, Talbot WS, Solnica-Krezel L. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 1999; 126:1427-38. [PMID: 10068636 DOI: 10.1242/dev.126.7.1427] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.
Collapse
Affiliation(s)
- K Fekany
- Department of Molecular Biology, Vanderbilt University, Box 1820, Station B, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Paulson AF, Fang X, Ji H, Reynolds AB, McCrea PD. Misexpression of the catenin p120(ctn)1A perturbs Xenopus gastrulation but does not elicit Wnt-directed axis specification. Dev Biol 1999; 207:350-63. [PMID: 10068468 DOI: 10.1006/dbio.1998.9158] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulators of cadherin function are of great interest given that the cadherin complex actively contributes to the morphogenesis of virtually all tissues. The catenin p120(ctn) (formerly p120cas) was first identified as a src- and receptor-protein tyrosine kinase substrate and later shown to interact directly with cadherins. In common with beta-catenin and plakoglobin (gamma-catenin), p120(ctn) contains a central Armadillo repeat region by which it binds cadherin cytoplasmic domains. However, little is known about the function of p120(ctn) within the cadherin complex. We examined the role of p120(ctn)1A in early vertebrate development via its exogenous expression in Xenopus. Ventral overexpression of p120(ctn)1A, in contrast to beta-catenin, did not induce the formation of duplicate axial structures resulting from the activation of the Wnt signaling pathway, nor did p120(ctn) affect mesoderm induction. Rather, dorsal misexpression of p120(ctn) specifically perturbed gastrulation. Lineage tracing of cells expressing exogenous p120(ctn) indicated that cell movements were disrupted, while in vitro studies suggested that this may have been a consequence of reduced adhesion between blastomeres. Thus, while cadherin-binding proteins beta-catenin, plakoglobin, and p120(ctn) are members of the Armadillo protein family, it is clear that these proteins have distinct biological functions in early vertebrate development. This work indicates that p120(ctn) has a role in cadherin function and that heightened expression of p120(ctn) interferes with appropriate cell-cell interactions necessary for morphogenesis.
Collapse
Affiliation(s)
- A F Paulson
- Department of Biochemistry and Molecular Biology-117, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | | | | | | |
Collapse
|
62
|
Analysis for the dorsalization potency of the animal blastomeres of the 16 cell stageXenopus embryo. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf02885543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Laurent MN, Cho KW. Bone morphogenetic protein antagonism of Spemann's organizer is independent of Wnt signaling. Dev Biol 1999; 206:157-62. [PMID: 9986729 DOI: 10.1006/dbio.1998.9143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus homeobox gene twin is involved in the Wnt-mediated induction of Spemann's organizer. Additionally, several lines of evidence indicate that bone morphogenetic proteins (BMPs) play a role in repressing the formation of the organizer by antagonizing the expression of genes involved in organizer establishment. In order to determine at what level BMPs exert their effect, we measured the activity of different genes expressed within the organizer region. We report that BMP signaling can antagonize the induction of the dorsal-specific gene goosecoid but is unable to affect Wnt signaling at the level of twin. These results suggest that the antagonistic activities of BMPs in organizer formation occur postzygotically, independent of twin regulation, and that Wnt-like dorsal determinant signaling pathways do not crosstalk with BMPs.
Collapse
Affiliation(s)
- M N Laurent
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California at Irvine, Irvine, California, 92697-2300, USA
| | | |
Collapse
|
64
|
Mariani FV, Harland RM. XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue. Development 1998; 125:5019-31. [PMID: 9811586 DOI: 10.1242/dev.125.24.5019] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified Xenopus Brain Factor 2 (XBF-2) as a potent neuralizing activity in an expression cloning screen. In ectodermal explants, XBF-2 converts cells from an epidermal to a neural fate. Such explants contain neurons with distinct axonal profiles and express both anterior and posterior central nervous system (CNS) markers. In striking contrast to X-ngnR-1a or X-NeuroD, ectopic expression of XBF-2 in Xenopus embryos results in an expansion of the neural plate to the ventral midline. The enlarged neural plate consists predominantly of undifferentiated neurons. XBF-2 lies downstream of the BMP antagonists noggin, cerberus, and gremlin since ectodermal explants expressing these molecules exhibit strong expression of XBF-2. While XBF-2 does not upregulate the expression of secreted neural inducers, it downregulates the transcription of BMP-4, an epidermal inducer. We show that XBF-2 acts as a transcriptional repressor and that its effects can be phenocopied with either the engrailed or hairy repressor domain fused to the XBF-2 DNA-binding domain. A fusion of the DNA-binding domain to the activator domain of VP16 blocks the effects of XBF-2 and prevents neural plate development in the embryo. This provides evidence that a transcriptional repressor can affect both regional neural development and neurogenesis in vertebrates.
Collapse
Affiliation(s)
- F V Mariani
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
65
|
Fu Y, Yan W, Mohun TJ, Evans SM. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998; 125:4439-49. [PMID: 9778503 DOI: 10.1242/dev.125.22.4439] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tinman is a Drosophila homeodomain protein that is required for formation of both visceral and cardiac mesoderm, including formation of the dorsal vessel, a heart-like organ. Although several vertebrate tinman homologues have been characterized, their requirement in earliest stages of heart formation has been an open question, perhaps complicated by potential functional redundancy of tinman homologues. We have utilized a novel approach to investigate functional redundancy within a gene family, by coinjecting DNA encoding dominantly acting repressor derivatives specific for each family member into developing Xenopus embryos. Our results provide the first evidence that vertebrate tinman homologues are required for earliest stages of heart formation, and that they are required in a functionally redundant manner. Coinjection of dominant repressor constructs for both XNkx2-3 and XNkx2-5 is synergistic, resulting in a much higher frequency of mutant phenotypes than that obtained with injection of either dominant repressor construct alone. Rescue of mutant phenotypes can be effected by coinjection of either wild-type tinman homologue. The most extreme mutant phenotype is a complete absence of expression of XNkx2-5 in cardiogenic mesoderm, an absence of markers of differentiated myocardium, and absence of morphologically distinguishable heart on the EnNkxHD-injected side of the embryo. This phenotype represents the most severe cardiac phenotype of any vertebrate mutant yet described, and underscores the importance of the tinman family for heart development. These results provide the first in vivo evidence that XNkx2-3 and XNkx2-5 are required as transcriptional activators for the earliest stages of heart formation. Furthermore, our results suggest an intriguing mechanism by which functional redundancy operates within a gene family during development. Our experiments have been performed utilizing a recently developed transgenic strategy, and attest to the efficacy of this strategy for enabling transgene expression in limited cell populations within the developing Xenopus embryo.
Collapse
Affiliation(s)
- Y Fu
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0613C, USA
| | | | | | | |
Collapse
|
66
|
Abstract
We report the molecular cloning and expression of the zebrafish tcf-3 homologue and study its function and that of zebrafish betacat in dorsoventral patterning. Overexpression of mutant zTcf-3 products and Cadherin leads to a reduction in the expression of the dorsal-specific genes goosecoid and chording at the blastula stages, indicating a conserved role for betacat and tcf-3 in zebrafish dorsal axis induction. Later during gastrulation, overexpression of these same products leads to the ectopic expression of dorsal-specific genes in the marginal zone and the induction of ectopic axes, suggesting an additional role for betacat and Tcf-3 at these later stages in the repression of dorsal fates.
Collapse
Affiliation(s)
- F Pelegri
- Max-Planck Institut fur Entwicklungsbiologie, Spemannstrasse 35/111, 72076, Tübingen, Germany.
| | | |
Collapse
|
67
|
Lemaire P, Darras S, Caillol D, Kodjabachian L. A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 1998; 125:2371-80. [PMID: 9609820 DOI: 10.1242/dev.125.13.2371] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have studied the role of the activin immediate-early response gene Mix.1 in mesoderm and endoderm formation. In early gastrulae, Mix.1 is expressed throughout the vegetal hemisphere, including marginal-zone cells expressing the trunk mesodermal marker Xbra. During gastrulation, the expression domains of Xbra and Mix.1 become progressively exclusive as a result of the establishment of a negative regulatory loop between these two genes. This mutual repression is important for the specification of the embryonic body plan as ectopic expression of Mix.1 in the Xbra domain suppresses mesoderm differentiation. The same effect was obtained by overexpressing VP16Mix.1, a fusion protein comprising the strong activator domain of viral VP16 and the homeodomain of Mix.1, suggesting that Mix.1 acts as a transcriptional activator. Mix.1 also has a role in endoderm formation. It cooperates with the dorsal vegetal homeobox gene Siamois to activate the endodermal markers edd, Xlhbox8 and cerberus in animal caps. Conversely, vegetal overexpression of enRMix.1, an antimorphic Mix.1 mutant, leads to a loss of endoderm differentiation. Finally, by targeting enRMix.1 expression to the anterior endoderm, we could test the role of this tissue during embryogenesis and show that it is required for head formation.
Collapse
Affiliation(s)
- P Lemaire
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS-INSERM-Université de la Méditérannée-AP de Marseille, Cedex 9, France.
| | | | | | | |
Collapse
|
68
|
Moon RT, Kimelman D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 1998; 20:536-45. [PMID: 9723002 DOI: 10.1002/(sici)1521-1878(199807)20:7<536::aid-bies4>3.0.co;2-i] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
After fertilization of Xenopus eggs, the cortex rotates relative to the cytoplasm, resulting in the formation of a cytoplasmic and transplantable dorsal-determining activity opposite the sperm entry point. This activity induces the dorsal expression of regulatory genes, which in turn establishes the Spemann organizer at the start of gastrulation. There has been considerable debate as to whether Vg1, or components of the Wnt-1 signaling pathway, normally function as this early dorsal determinant. Experiments now support the hypothesis that beta-catenin, a component of the Wnt pathway, provides the initial dorsoventral polarity to the embryo, and that Vg1 functions at a subsequent step in development. Specifically, beta-catenin is required for formation of the endogenous axes, and it is expressed at greater levels in dorsal cells during the early cleavage stages. Moreover, on the dorsal side of the embryo, complexes of beta-catenin and Tcf-3 directly bind the promoter of the dorsal regulatory genes siamois and twin and facilitate their expression, thereby contributing to the subsequent formation of the Spemann organizer. On the ventral side of the embryo, Tcf-3 likely works in the absence of beta-catenin as a transcriptional repressor of siamois. These and other data are considered in the context of how the initial polarization of the fertilized egg by the localized accumulation of beta-catenin establishes a range of subsequent dorsoventral asymmetries in the embryo.
Collapse
Affiliation(s)
- R T Moon
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA.
| | | |
Collapse
|
69
|
Yost C, Farr GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 1998; 93:1031-41. [PMID: 9635432 DOI: 10.1016/s0092-8674(00)81208-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dorsal accumulation of beta-catenin in early Xenopus embryos is required for body axis formation. Recent evidence indicates that beta-catenin is dorsally stabilized by the localized inhibition of the kinase Xgsk-3, utilizing a novel Wnt ligand-independent mechanism. Using a two-hybrid screen, we identified GBP, a maternal Xgsk-3-binding protein that is homologous to a T cell protooncogene in three well-conserved domains. GBP inhibits in vivo phosphorylation by Xgsk-3, and ectopic GBP expression induces an axis by stabilizing beta-catenin within Xenopus embryos. Importantly, antisense oligonucleotide depletion of the maternal GBP mRNA demonstrates that GBP is required for the establishment of the dorsal-ventral axis in Xenopus embryos. Our results define a family of GSK-3-binding proteins with roles in development and cell proliferation.
Collapse
Affiliation(s)
- C Yost
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
The establishment of cell and tissue polarity during animal development often requires signaling by Wnts, extracellular signaling polypeptides. Transmembrane receptors of the Frizzled family are implicated in the transduction of Wnt signals in responding cells. Xfz8 is a novel cDNA encoding a Xenopus homologue of mouse Frizzled 8. Xfz8 transcripts are expressed zygotically in the organizer at the early gastrula stage and in the most anterior ectoderm at later stages, suggesting a role in axis specification. When Xfz8 mRNA is overexpressed in ventral marginal zone cells, a secondary body axis with prominent head structures develops. Surprisingly, axis induction was not accompanied by activation of early dorsal marginal zone markers at the gastrula stages, whereas Xwnt8 induced these markers with high efficiency. These findings suggest that Xfz8 is a product of the organizer and mimics its function. Head induction by Xfz8 was blocked by co-expression of GSK3beta or a dominant negative form of Xenopus Dishevelled, suggesting that this effect of Xfz8 requires Wnt signal transduction. When Xfz8 is overexpressed in animal pole cells, dorsal marginal zone markers Xnr3, Xotx2 and a promoter construct for Siamois, were selectively activated, demonstrating the difference in competence between animal pole cells and ventral marginal zone cells in response to Xfz8. It is proposed that the Wnt pathways are activated at two different steps during axis formation: to induce the Spemann organizer and to implement organizer functions by triggering dorsoanterior development.
Collapse
Affiliation(s)
- K Itoh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
71
|
Wacker S, Brodbeck A, Lemaire P, Niehrs C, Winklbauer R. Patterns and control of cell motility in the Xenopus gastrula. Development 1998; 125:1931-42. [PMID: 9550725 DOI: 10.1242/dev.125.10.1931] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By comparing cells with respect to several motility-related properties and the ability to migrate on fibronectin, three cell types can be distinguished in the Xenopus gastrula. These occur in a distinct spatial pattern, thus defining three motility domains which do not correspond to the prospective germ layers. Migratory behavior is confined to a region encompassing the anterior mesoderm and endoderm. When stationary animal cap cells are induced to migrate by treatment with activin, cells become adhesive at low concentrations of fibronectin, show polarized protrusive activity, and form lamellipodia. Adhesion and polarization, but not lamellipodia formation, are mimicked by the immediate early response gene Mix.1. Goosecoid, another immediate early gene, is without effect when expressed alone in animal cap cells, but it acts synergistically with Mix.1 in the control of adhesion, and antagonistically in the polarization of protrusive activity. bFGF also induces migration, lamellipodia formation and polarization in animal cap cells, but has no effect on adhesion. By the various treatments of animal cap cells, new combinations of motile properties can be generated, yielding cell types which are not found in the embryo.
Collapse
Affiliation(s)
- S Wacker
- Universität zu Köln, Zoologisches Institut, Köln, Germany.
| | | | | | | | | |
Collapse
|
72
|
Fan MJ, Grüning W, Walz G, Sokol SY. Wnt signaling and transcriptional control of Siamois in Xenopus embryos. Proc Natl Acad Sci U S A 1998; 95:5626-31. [PMID: 9576934 PMCID: PMC20429 DOI: 10.1073/pnas.95.10.5626] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Wnt-inducible homeobox gene Siamois is expressed in Xenopus embryos before gastrulation and is necessary for formation of the Spemann organizer. Here we show that 5'-flanking sequences of the Siamois coding region can specifically activate a heterologous reporter gene in dorsovegetal cells, thus mimicking Siamois's endogenous expression. A 245-bp DNA fragment is sufficient for activation by both Wnts and endogenous inducers. A dominant negative form of Xenopus T cell-specific factor 3 (XTCF-3) inhibited promoter activity, indicating that T cell-specific factor (TCF)/lymphocyte enhancer binding factor 1 (LEF-1) signaling is necessary for regulation of Siamois. Mutagenesis of two individual TCF sites in the -245 promoter revealed that the proximal, but not distal, site is necessary for dorsovegetal activation. These observations suggest that Siamois is directly regulated by TCFs during dorsoventral axis determination. Further deletion analysis identified a positive regulatory region that is required for dorsal activation, but not for Wnt inducibility, of the promoter. We also present evidence for autoregulation of Siamois transcription. Furthermore, the Siamois promoter was activated by Wnt signaling in 293T tissue culture cells, demonstrating that regulation of the promoter is functionally conserved.
Collapse
Affiliation(s)
- M J Fan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
73
|
Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol 1998; 8:591-4. [PMID: 9601644 DOI: 10.1016/s0960-9822(98)70229-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signaling by the Wnt family of extracellular proteins is critical in a variety of developmental processes in which cell and tissue polarity are established [1-5]. Wnt signal transduction has been studied mostly by the genetic approach in Drosophila and Caenorhabditis elegans [1,2,5], but the biochemical mechanisms involved remain to be elucidated. The Wnt pathway also operates during axis determination in vertebrates [3,5]. Frizzled receptors transduce a signal to Dishevelled, leading to inactivation of glycogen synthase kinase 3 (GSK3) and regulation of gene expression by the complex of beta-catenin with LEF/TCF (lymphocyte enhancer factor/T-cell factor) transcription factors [3,5]. Axin is a negative regulator of Wnt signaling and dorsal axial development in vertebrates [6]. Here, we demonstrate that axin is associated with GSK3 in the Xenopus embryo and we localize the GSK3-binding domain to a short region of axin. Binding of GSK3 correlates with the ability of axin to inhibit axial development and with the axis-inducing activity of its dominant-negative form (delta RGS). We also find that wild-type axin, but not delta RGS, forms a complex with beta-catenin. Thus, axin may act as a docking station mediating negative regulation of beta-catenin by GSK3 during dorsoventral axis determination in vertebrate embryos.
Collapse
Affiliation(s)
- K Itoh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
74
|
Abstract
goosecoid (gsc) is a homeobox gene expressed in the Spemann organizer that has been implicated in vertebrate axis formation. Here antimorphic gscs are described. One antimorphic gsc (MTgsc) was fortuitously created by adding 5 myc epitopes to the N terminus of gsc. The other antimorph (VP16gsc) contains the transcriptional activation domain of VP16. mRNA injection of either antimorph inhibits dorsal gastrulation movements and leads to embryos with severe axial defects. They upregulate ventral gene expression in the dorsal marginal zone and inhibit dorsal mesoderm differentiation. Like the VP16 domain, the N-terminal myc tags act by converting wild-type gsc from a transcriptional repressor into an activator. However, unlike MTgsc, VP16gsc is able at low dose to uncouple head from trunk formation, indicating that different antimorphs may elicit distinct phenotypes. The experiments reveal that gsc and/or gsc-related genes function in axis formation and gastrulation. Moreover, this work warns against using myc tags indiscriminately for labeling DNA-binding proteins.
Collapse
Affiliation(s)
- B Ferreiro
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
75
|
Affiliation(s)
- K M Cadigan
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University Medical Center, Stanford, California 94305-5323, USA
| | | |
Collapse
|
76
|
Laurent MN, Blitz IL, Hashimoto C, Rothbächer U, Cho KW. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development 1997; 124:4905-16. [PMID: 9428427 DOI: 10.1242/dev.124.23.4905] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the isolation of the Xenopus homeobox gene twin (Xtwn), which was identified in an expression cloning screen for molecules with dorsalizing activities. Injection of synthetic Xtwn mRNA restores a complete dorsal axis in embryos lacking dorsal structures and induces a complete secondary dorsal axis when ectopically expressed in normal embryos. The sequence homology, expression pattern and gain-of-function phenotype of Xtwn is most similar to the previously isolated Xenopus homeobox gene siamois (Xsia) suggesting that Xtwn and Xsia comprise a new subclass of homeobox genes important in dorsal axis specification. We find that Xtwn is able to activate the Spemann organizer-specific gene goosecoid (gsc) via direct binding to a region of the gsc promoter previously shown to mediate Wnt induction. Since Xtwn expression is strongly induced in ectodermal (animal cap) cells in response to overexpression of a dorsalizing Wnt molecule, we examined the possibility that Xtwn might be a direct target of a Wnt signal transduction cascade. First, we demonstrate that purified LEF1 protein can interact, in vitro, with consensus LEF1/TCF3-binding sites found within the Xtwn promoter. Second, these binding sites were shown to be required for Wnt-mediated induction of a Xtwn reporter gene containing these sites. As LEF1/TCF3 family transcription factors have previously been shown to directly mediate Wnt signaling, these results suggest that Xtwn induction by Wnt may be direct. Finally, in UV-hyperventralized embryos, expression of endogenous Xtwn is confined to the vegetal pole and a Xtwn reporter gene is hyperinduced vegetally in a LEF1/TCF3-binding-site-dependent manner. These results suggest that cortical rotation distributes Wnt-like dorsal determinants to the dorsal side of the embryo, including the dorsal marginal zone, and that these determinants may directly establish Spemann's organizer in this region.
Collapse
Affiliation(s)
- M N Laurent
- Department of Developmental and Cell Biology, and the Developmental Biology Center, University of California, Irvine 92697-2300, USA
| | | | | | | | | |
Collapse
|
77
|
Kessler DS. Siamois is required for formation of Spemann's organizer. Proc Natl Acad Sci U S A 1997; 94:13017-22. [PMID: 9371792 PMCID: PMC24255 DOI: 10.1073/pnas.94.24.13017] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1997] [Accepted: 09/12/1997] [Indexed: 02/05/2023] Open
Abstract
Spemann's organizer develops in response to dorsal determinants that act via maternal components of the wnt pathway. The function of siamois, a wnt-inducible homeobox gene, in Spemann's organizer development was examined by fusion of defined transcriptional regulatory domains to the siamois homeodomain. Similar to native siamois, a VP16 activator fusion induced axis formation, indicating that siamois functions as a transcriptional activator in axis induction. Fusion of the engrailed repressor generated a dominant inhibitor that blocked axis induction by Xwnt8, beta-catenin, and siamois, and repressed wnt activation of the goosecoid promoter. Dorsal injection of the engrailed-siamois fusion resulted in complete inhibition of dorsal development and organizer gene expression, an effect rescued by siamois, but not by Xwnt8 or beta-catenin. Thus, as a zygotic mediator of maternal dorsal signals, siamois function is required for development of Spemann's organizer.
Collapse
Affiliation(s)
- D S Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| |
Collapse
|
78
|
Abstract
This review starts from the classical standpoint that there are at least two separable processes acting with respect to axis formation and tissue specification in the early Xenopus embryo: a UV-insensitive event establishing a postgastrula embryo consisting of three concentric germ layers, ectoderm, mesoderm and endoderm, all of a ventral character; and a UV-sensitive event producing tissue of a dorsal type, including somites, notochord and neural tissue, and concomitantly establishing the dorsoventral and anteroposterior axes. The experimental evidence suggesting the molecular basis of the dorsal and ventral pathways is reviewed.
Collapse
Affiliation(s)
- J Heasman
- Institute of Human Genetics and Department of Cell Biology and Neuroanatomy, University of Minnesota School of Medicine, Minneapolis 55455, USA.
| |
Collapse
|
79
|
Darras S, Marikawa Y, Elinson RP, Lemaire P. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 1997; 124:4275-86. [PMID: 9334276 DOI: 10.1242/dev.124.21.4275] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The maternal dorsal determinants required for the specification of the dorsal territories of Xenopus early gastrulae are located at the vegetal pole of unfertilised eggs and are moved towards the prospective dorsal region of the fertilised egg during cortical rotation. While the molecular identity of the determinants is unknown, there are dorsal factors in the vegetal cortical cytoplasm (VCC). Here, we show that the VCC factors, when injected into animal cells activate the zygotic genes Siamois and Xnr3, suggesting that they act along the Wnt/beta-catenin pathway. In addition, Siamois and Xnr3 are activated at the vegetal pole of UV-irradiated embryos, indicating that these two genes are targets of the VCC factors in all embryonic cells. However, the consequences of their activation in cells that occupy different positions along the animal-vegetal axis differ. Dorsal vegetal cells of normal embryos or VCC-treated injected animal cells are able to dorsalise ventral mesoderm in conjugate experiments but UV-treated vegetal caps do not have this property. This difference is unlikely to reflect different levels of activation of FGF or activin-like signal transduction pathways but may reflect the activation of different targets of Siamois. Chordin, a marker of the head and axial mesoderm, is activated by the VCC/Siamois pathway in animal cells but not in vegetal cells whereas cerberus, a marker of the anterior mesendoderm which lacks dorsalising activity, can only be activated by the VCC/Siamois pathway in vegetal cells. We propose that the regionalisation of the organiser during gastrulation proceeds from the differential interpretation along the animal-vegetal axis of the activation of the VCC/beta-catenin/Siamois pathway.
Collapse
Affiliation(s)
- S Darras
- Institut de Biologie du Développement de Marseille, UMR 6545 CNRS-Université de la Méditerranée, Campus de Luminy, France
| | | | | | | |
Collapse
|
80
|
Hudson C, Clements D, Friday RV, Stott D, Woodland HR. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 1997; 91:397-405. [PMID: 9363948 DOI: 10.1016/s0092-8674(00)80423-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated two Xenopus relatives of murine Sox17 expressed in gastrula presumptive endoderm. Xsox17alpha and -beta expression can be induced in animal caps by activin, but not by FGF. Ectopic expression of these genes in animal caps induces the expression of endoderm markers; this induction is blocked by overexpression of a fusion of the Xsox17beta HMG domain to the Drosophila Engrailed repressor domain, as is induction of endoderm markers by activin and the expression of endodermal markers in whole embryos and isolated vegetal poles. These experiments, as well as the effects of the mRNAs on embryo phenotypes, suggest that the Xsox17 genes mediate an activin-induced endoderm differentiation pathway in animal caps and are involved in normal endoderm differentiation in embryos.
Collapse
Affiliation(s)
- C Hudson
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|