51
|
Matsuda S, Shimmi O. Directional transport and active retention of Dpp/BMP create wing vein patterns in Drosophila. Dev Biol 2012; 366:153-62. [PMID: 22542596 DOI: 10.1016/j.ydbio.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
The bone morphogenetic protein (BMP) family ligand decapentaplegic (Dpp) plays critical roles in wing vein development during pupal stages in Drosophila. However, how the diffusible Dpp specifies elaborate wing vein patterns remains unknown. Here, we visualized Dpp distribution in the pupal wing and found that it tightly reflects the wing vein patterns. We show that Dpp is directionally transported from the longitudinal veins (LVs) into the posterior crossvein (PCV) primordial region by the extracellular BMP-binding proteins, short gastrulation (Sog) and crossveinless (Cv). Another BMP-type ligand, glass bottom boat (Gbb), also moves into the PCV region and is required for Dpp distribution, presumably as a Dpp-Gbb heterodimer. In contrast, we found that most of the Dpp is actively retained in the LVs by the BMP type I receptor thickveins (Tkv) and a positive feedback mechanism. We provide evidence that the directionality of Dpp transport is manifested by sog transcription that prepatterns the PCV position in a Dpp signal-independent manner. Taken together, our data suggest that spatial distribution of Dpp is tightly regulated at the extracellular level by combination of long-range facilitated transport toward the PCV and short-range signaling by active retention in the LVs, thereby allowing diffusible ligands to form elaborate wing vein patterns.
Collapse
Affiliation(s)
- Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | | |
Collapse
|
52
|
Liu Z, Matsuoka S, Enoki A, Yamamoto T, Furukawa K, Yamasaki Y, Nishida Y, Sugiyama S. Negative modulation of bone morphogenetic protein signaling by Dullard during wing vein formation in Drosophila. Dev Growth Differ 2011; 53:822-41. [PMID: 21790556 DOI: 10.1111/j.1440-169x.2011.01289.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Studies in Xenopus have shown that the C-terminal domain phosphatase-like domain (CPD) phosphatase Dullard is essential for proper neural development via inhibition of bone morphogenetic protein (BMP) signaling receptors. In contrast, the orthologous budding yeast Nem1 and human Dullard have been shown to dephosphorylate the phosphatidate phosphatases yeast Smp2/Pah1 and human Lipin, and the relationship between phospholipid metabolism and BMP signaling remain unsolved. Here we report evidence that the Dullard-Lipin phosphatase cascade in Drosophila can regulate BMP signaling, most likely by affecting the function of the nuclear envelope. Manipulating expression levels of either the Drosophila Dullard gene, d-dullard (ddd) or the Lipin gene, DmLpin affected wing vein formation in a manner suggesting a negative effect on BMP signaling. Furthermore, both genes exhibit genetic interaction with BMP signaling pathway components, and can affect the levels of phosphorylated-Mothers against dpp (p-Mad). Although changing ddd expression levels did not have an obvious effect on overall nuclear envelope morphology as has been shown for yeast nem1, the nuclear import machinery components Importin-β and RanGAP were mislocalized and membrane lipid staining was altered in cells overexpressing ddd. Considering the known genetic interaction between Nup84 complex nucleoporins and nem1 in yeast, and the recently reported requirement for components from the orthologous nucleoporin complex in the nuclear translocation of Drosophila Mad (Chen & Xu 2010), it is likely that the role of Drosophila Dullard in regulating membrane lipid homeostasis is conserved and is critical for normal BMP signaling.
Collapse
Affiliation(s)
- Ziguang Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Layalle S, Volovitch M, Mugat B, Bonneaud N, Parmentier ML, Prochiantz A, Joliot A, Maschat F. Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development 2011; 138:2315-23. [PMID: 21558379 DOI: 10.1242/dev.057059] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeodomain transcription factors classically exert their morphogenetic activities through the cell-autonomous regulation of developmental programs. In vertebrates, several homeoproteins have also been shown to have direct non-cell-autonomous activities in the developing nervous system. We present the first in vivo evidence for homeoprotein signaling in Drosophila. Focusing on wing development as a model, we first demonstrate that the homeoprotein Engrailed (En) is secreted. Using single-chain anti-En antibodies expressed under the control of a variety of promoters, we delineate the wing territories in which secreted En acts. We show that En is a short-range signaling molecule that participates in anterior crossvein development, interacting with the Dpp signaling pathway. This report thus suggests that direct signaling with homeoproteins is an evolutionarily conserved phenomenon that is not restricted to neural tissues and involves interactions with bona fide signal transduction pathways.
Collapse
Affiliation(s)
- Sophie Layalle
- Institut de Génétique Humaine, CNRS, UPR 1142, 141 rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Molnar C, Ruiz-Gómez A, Martín M, Rojo-Berciano S, Mayor F, de Celis JF. Role of the Drosophila non-visual ß-arrestin kurtz in hedgehog signalling. PLoS Genet 2011; 7:e1001335. [PMID: 21437272 PMCID: PMC3060076 DOI: 10.1371/journal.pgen.1001335] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/14/2011] [Indexed: 01/14/2023] Open
Abstract
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms. Non-visual β-arrestins are key proteins involved in plasma membrane receptor internalization, recycling, and signalling. The activity of β-arrestins is generally linked to seven-transmembrane receptors, but in vertebrates they can also participate in many other signalling pathways. Consistently, β-arrestins play important roles during vertebrate development and are implicated in a variety of human pathologies. Here we take advantage of the fruit fly model to analyse the genetic requirements of the unique fly non-visual β-arrestin (kurtz) in signalling during the development of imaginal epithelia. To our surprise, we find that the complete elimination of kurtz has no major consequences in imaginal cells. Our data suggest that insect epithelial cells have evolved arrestin-independent mechanisms to control receptor turnover and signalling, so arrestin function has become less critical. On the other hand, in contrast to previous reports in vertebrates, we find that the over-expression of Kurtz blocks Hedgehog signalling by promoting the internalization and degradation of the transductor Smoothened. We suggest that such differences are based on the specific requirement of the primary cilia for Hedgehog signalling in most vertebrates. These results could provide important insights into divergent modes of membrane receptor regulation and Hedgehog signalling in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Susana Rojo-Berciano
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Federico Mayor
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
Resnik-Docampo M, de Celis JF. MAP4K3 is a component of the TORC1 signalling complex that modulates cell growth and viability in Drosophila melanogaster. PLoS One 2011; 6:e14528. [PMID: 21267071 PMCID: PMC3022576 DOI: 10.1371/journal.pone.0014528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/17/2010] [Indexed: 12/03/2022] Open
Abstract
Background MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability.
Collapse
Affiliation(s)
- Martín Resnik-Docampo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
56
|
Terriente-Félix A, Molnar C, Gómez-Skarmeta JL, de Celis JF. A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression. Dev Biol 2010; 350:382-92. [PMID: 21146514 DOI: 10.1016/j.ydbio.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/24/2010] [Accepted: 12/01/2010] [Indexed: 12/31/2022]
Abstract
The development of the Drosophila melanogaster wing depends on its subdivision into anterior and posterior compartments, which constitute two independent cell lineages since their origin in the embryonic ectoderm. The anterior-posterior compartment boundary is the place where signaling by the Hedgehog pathway takes place, and this requires pathway activation in anterior cells by ligand expressed exclusively in posterior cells. Several mechanisms ensure the confinement of hedgehog expression to posterior cells, including repression by Cubitus interruptus, the co-repressor Groucho and Master of thick veins. In this work we identified Kismet, a chromodomain-containing protein of the SNF2-like family of ATPases, as a novel component of the hedgehog transcriptional repression mechanism in anterior compartment cells. In kismet mutants, hedgehog is ectopically expressed in a domain of anterior cells close to the anterior-posterior compartment boundary, causing inappropriate activation of the pathway and changes in the development of the central region of the wing. The contribution of Kismet to the silencing of hedgehog expression is limited to anterior cells with low levels of the repressor form of Cubitus interruptus. We also show that knockdown of CHD8, the kismet homolog in Xenopus tropicalis, is also associated with ectopic sonic hedgehog expression and up-regulation of one of its target genes in the eye, Pax2, indicating the evolutionary conservation of Kismet/CHD8 function in negatively controlling hedgehog expression.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
57
|
Tortoriello G, de Celis JF, Furia M. Linking pseudouridine synthases to growth, development and cell competition. FEBS J 2010; 277:3249-63. [DOI: 10.1111/j.1742-4658.2010.07731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Haerry TE. The interaction between two TGF-beta type I receptors plays important roles in ligand binding, SMAD activation, and gradient formation. Mech Dev 2010; 127:358-70. [PMID: 20381612 DOI: 10.1016/j.mod.2010.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 11/27/2022]
Abstract
The goal of this report is to elucidate the contributions of the Drosophila TGF-beta type I receptors TKV and SAX to the activity gradient formed by the two BMP family members DPP and GBB that play important roles in growth and patterning of imaginal discs. Binding studies display preferential interactions of DPP and GBB with homodimers of TKV or SAX, respectively, but also low affinities of both ligands to heterodimers. Inside the cell, constitutively activated forms of both TKV and SAX can ectopically phosphorylate the SMAD transcription factor MAD. However, MAD phosphorylated by homodimers of activated SAX or certain mutant forms of TKV localizes to the nucleus without changing the expression of downstream genes. Differences in signaling between SAX and TKV can be localized to amino acid residues within an area that has been shown to influence complexes formation between type I and type II receptors. The finding that the type II receptor PUT but not activated forms of SAX can enhance signaling of a pseudo-activated MAD-SDVD, which cannot be phosphorylated at the C-terminus, suggests a model, where activation of SMADs requires the presence of type II receptors and a second activation step in addition to C-terminal phosphorylation. Complete activation of MAD can only occur in tetrameric complexes of type II receptors in combination with SAX-TKV heterodimers or TKV homodimers but not SAX homodimers. Since TKV is not distributed equally in wing discs, heterodimers of SAX and TKV play an important role in extending the BMP activity gradient by facilitating DPP diffusion and assisting GBB signaling through functional complexes with type II receptors.
Collapse
Affiliation(s)
- Theodor E Haerry
- Florida Atlantic University, Center for Molecular Biology and Biotechnology, Boca Raton, FL 33431, USA.
| |
Collapse
|
59
|
Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development. Genetics 2010; 185:671-84. [PMID: 20233856 DOI: 10.1534/genetics.109.113670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Collapse
|
60
|
Yan SJ, Zartman JJ, Zhang M, Scott A, Shvartsman SY, Li WX. Bistability coordinates activation of the EGFR and DPP pathways in Drosophila vein differentiation. Mol Syst Biol 2009; 5:278. [PMID: 19536201 PMCID: PMC2710866 DOI: 10.1038/msb.2009.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 04/23/2009] [Indexed: 01/21/2023] Open
Abstract
Cell differentiation in developing tissues is controlled by a small set of signaling pathways, which must coordinate the timing and levels of activation to ensure robust and precise outcomes. Highly coordinated activation of signaling pathways can result from cross-regulatory interactions in multi-pathway networks. Here we explore the dynamics and function of pathway coordination between the EGFR and DPP pathways during Drosophila wing-vein differentiation. We show that simultaneous activation of both the EGFR and DPP pathways must be maintained for vein cell differentiation and that above-threshold ectopic activation of either pathway is sufficient to drive vein cell differentiation outside the proveins. The joint activation of the EGFR and DPP signaling systems is ensured by a positive feedback loop, in which the two pathways stimulate each other at the level of ligand production.
Collapse
Affiliation(s)
- Shian-Jang Yan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeremiah J Zartman
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Minjie Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony Scott
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Stanislav Y Shvartsman
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
61
|
Terriente-Félix A, de Celis JF. Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Dev Biol 2009; 329:350-61. [PMID: 19306864 DOI: 10.1016/j.ydbio.2009.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 03/05/2009] [Accepted: 03/12/2009] [Indexed: 01/27/2023]
Abstract
Gene expression is regulated in part by protein complexes containing ATP-dependent chromatin-remodelling factors of the SWI/SNF family. In Drosophila there is only one SWI/SNF protein, named Brahma, which forms the catalytic subunit of two complexes composed of different proteins. The protein Osa defines the BAP complex, and the proteins Polybromo and Bap170 are only present in the complex named PBAP. In this work we have analysed the functional requirements of Osa during Drosophila wing development, and found that osa is needed for cell growth and survival in the wing imaginal disc, and for the correct patterning of sensory organs, veins and the wing margin. Other members of the BAP complex, such as Snr1, Bap55, Mor and Brm, also share these functions of Osa. We focused on the requirement of Osa during the formation of the wing veins. Genetic interactions between osa alleles and mutations affecting the activity of the EGFR pathway suggest that one aspect of Osa is intimately related to the response to EGFR activity. Thus, loss of osa and EGFR signalling results in similar wing vein phenotypes, and osa alleles enhance the loss of veins caused by reduced EGFR activity. In addition, Osa is required for the expression of several targets of EGFR signalling, such as Delta, rhomboid and argos. We suggest that one role of Osa and Brm in the wing is to establish a chromatin environment in the regulatory regions of EGFR target genes, making them available for both activators and repressors and facilitating transcription in response to EGFR signalling.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
62
|
Glavic A, Molnar C, Cotoras D, de Celis JF. Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mech Dev 2008; 126:184-97. [PMID: 19084594 DOI: 10.1016/j.mod.2008.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/29/2022]
Abstract
Cell division rates and apoptosis sculpt the growing organs, and its regulation implements the developmental programmes that define organ size and shape. The balance between oncogenes and tumour suppressors modulate the cell cycle and the apoptotic machinery to achieve this goal, promoting and restricting proliferation or, in certain conditions, inducing the apoptotic programme. Analysis of human cancer cells with mutation in AXIN gene has uncovered the potential function of AXUD1 as a tumour suppressor. It has been described that Human AXUD1 is a nuclear protein. We find that a DAxud1-GFP fusion protein is localised to the nucleus during interphase, where it accumulates associated to the nuclear envelope, but becomes distributed in a diffused pattern in the nucleus of mitotic cells. We have analysed the function of the Drosophila AXUD1 homologue, and find that DAxud1 behaves as a tumour suppressor that regulates the proliferation rhythm of imaginal cells. Knocking down the activity of DAxud1 enhances the proliferation of these cells, causing in addition a reduction in cell size. Conversely, the increase in DAxud1 expression impedes cell cycle progression at mitosis through disturbance of Cdk1 activity, and induces the apoptosis of these cells in a JNK-dependent manner.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus Center for Genomics of the Cell, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago, Chile.
| | | | | | | |
Collapse
|
63
|
Kucherenko MM, Pantoja M, Yatsenko AS, Shcherbata HR, Fischer KA, Maksymiv DV, Chernyk YI, Ruohola-Baker H. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex. PLoS One 2008; 3:e2418. [PMID: 18545683 PMCID: PMC2398783 DOI: 10.1371/journal.pone.0002418] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022] Open
Abstract
The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.
Collapse
Affiliation(s)
- Mariya M. Kucherenko
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Mario Pantoja
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andriy S. Yatsenko
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Halyna R. Shcherbata
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Karin A. Fischer
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dariya V. Maksymiv
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Yaroslava I. Chernyk
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
64
|
Christoforou CP, Greer CE, Challoner BR, Charizanos D, Ray RP. The detached locus encodes Drosophila Dystrophin, which acts with other components of the Dystrophin Associated Protein Complex to influence intercellular signalling in developing wing veins. Dev Biol 2008; 313:519-32. [PMID: 18093579 DOI: 10.1016/j.ydbio.2007.09.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Dystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila 'crossveinless' mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det. Null mutations in Drosophila Dystroglycan (Dg) are similarly viable and exhibit this crossvein defect, indicating that both of the central DAPC components have been co-opted for this atypical function of the complex. In the developing wing, the Drosophila DAPC affects the intercellular signalling pathways involved in vein specification. In det and Dg mutant wings, the early BMP signalling that initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to the longitudinal veins, and this results in the production of a crossvein fragment in the intervein between the two longitudinal veins. Genetic interaction studies suggest that the DAPC may exert this effect indirectly by down-regulating Notch signalling in pro-vein territories, leading to enhanced BMP signalling in the intervein by diffusion of BMP ligands from the longitudinal veins.
Collapse
Affiliation(s)
- Christina P Christoforou
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | |
Collapse
|
65
|
Abstract
The positioning and elaboration of ectodermal veins in the wing of Drosophila melanogaster rely on widely utilized developmental signals, including those mediated by EGF, BMP, Hedgehog, Notch, and Wnt. Analysis of vein patterning mutants, using the molecular and genetic mosaic techniques available in Drosophila, has provided important insights into how a combination of short-range and long-range signaling can pattern a simple epidermal tissue. Moreover, venation has become a powerful system for isolating and analyzing novel components in these signaling pathways. I here review the basic events of vein patterning and give examples of how changes in venation have been used to identify important features of cell signaling pathways.
Collapse
Affiliation(s)
- Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
66
|
O’Keefe DD, Prober DA, Moyle PS, Rickoll WL, Edgar BA. Egfr/Ras signaling regulates DE-cadherin/Shotgun localization to control vein morphogenesis in the Drosophila wing. Dev Biol 2007; 311:25-39. [PMID: 17888420 PMCID: PMC2128780 DOI: 10.1016/j.ydbio.2007.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 12/31/2022]
Abstract
Egfr/Ras signaling promotes vein cell fate specification in the developing Drosophila wing. While the importance of Ras signaling in vein determination has been extensively documented, the mechanisms linking Ras activity to vein differentiation remain unclear. We found that Ras signaling regulates both the levels and subcellular localization of the cell adhesion molecule DE-cadherin/Shotgun (Shg) in the differentiating wing epithelium. High Ras activity in presumptive vein cells directs the apical localization of Shg containing adherens junctions, whereas low Ras activity in intervein cells allows Shg to relocalize basally. These alterations in Shg-mediated adhesion control cell shape changes that are essential for vein morphogenesis. While Decapentaplegic (Dpp) acts downstream of Ras to maintain vein cell identity in the pupal wing, our results indicate that Ras controls Shg localization via a Dpp-independent mechanism. Ras, therefore, regulates both the transcriptional responses necessary for vein cell identity, and the cell adhesive changes that determine vein and intervein cell morphology.
Collapse
Affiliation(s)
- David D. O’Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - David A. Prober
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | | | | | - Bruce A. Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
67
|
Molnar C, Holguin H, Mayor F, Ruiz-Gomez A, de Celis JF. The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci U S A 2007; 104:7963-8. [PMID: 17483466 PMCID: PMC1876555 DOI: 10.1073/pnas.0702374104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Indexed: 11/18/2022] Open
Abstract
Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulated in a variety of human cancers. Smo is a transmembrane protein with a heptahelical topology characteristic of G protein-coupled receptors. Despite such similarity, the mechanisms regulating Smo signaling are not fully understood. We show that Gprk2, a Drosophila member of the G protein-coupled receptor kinases, plays a key role in the Smo signal transduction pathway. Lowering Gprk2 levels in the wing disc reduces the expression of Smo targets and causes a phenotype reminiscent of loss of Smo function. We found that Gprk2 function is required for transducing the Smo signal and that when Gprk2 levels are lowered, Smo still accumulates at the cell membrane, but its activation is reduced. Interestingly, the expression of Gprk2 in the wing disc is regulated in part by Smo, generating a positive feedback loop that maintains high Smo activity close to the anterior-posterior compartment boundary.
Collapse
Affiliation(s)
| | - Helena Holguin
- *Centro de Biología Molecular “Severo Ochoa” and
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Federico Mayor
- *Centro de Biología Molecular “Severo Ochoa” and
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Ruiz-Gomez
- *Centro de Biología Molecular “Severo Ochoa” and
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
68
|
Ramel MC, Emery CM, Emery CS, Foulger R, Goberdhan DCI, van den Heuvel M, Wilson C. Drosophila SnoN modulates growth and patterning by antagonizing TGF-beta signalling. Mech Dev 2007; 124:304-17. [PMID: 17289352 DOI: 10.1016/j.mod.2006.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/22/2022]
Abstract
Signalling by TGF-beta ligands through the Smad family of transcription factors is critical for developmental patterning and growth. Disruption of this pathway has been observed in various cancers. In vertebrates, members of the Ski/Sno protein family can act as negative regulators of TGF-beta signalling, interfering with the Smad machinery to inhibit the transcriptional output of this pathway. In some contexts ski/sno genes function as tumour suppressors, but they were originally identified as oncogenes, whose expression is up-regulated in many tumours. These growth regulatory effects and the normal physiological functions of Ski/Sno proteins have been proposed to result from changes in TGF-beta signalling. However, this model is controversial and may be over-simplified, because recent findings indicate that Ski/Sno proteins can affect other signalling pathways. To address this issue in an in vivo context, we have analyzed the function of the Drosophila Ski/Sno orthologue, SnoN. We found that SnoN inhibits growth when overexpressed, indicating a tumour suppressor role in flies. It can act in multiple tissues to selectively and cell autonomously antagonise signalling by TGF-beta ligands from both the BMP and Activin sub-families. By contrast, analysis of a snoN mutant indicates that the gene does not play a global role in TGF-beta-mediated functions, but specifically inhibits TGF-beta-induced wing vein formation. We propose that SnoN normally functions redundantly with other TGF-beta pathway antagonists to finely adjust signalling levels, but that it can behave as an extremely potent inhibitor of TGF-beta signalling when highly expressed, highlighting the significance of its deregulation in cancer cells.
Collapse
Affiliation(s)
- M-C Ramel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | |
Collapse
|
69
|
Barrio R, López-Varea A, Casado M, de Celis JF. Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila. Dev Biol 2007; 306:66-81. [PMID: 17434471 DOI: 10.1016/j.ydbio.2007.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 12/13/2022]
Abstract
Vertebrate members of the ski/snoN family of proto-oncogenes antagonize TGFbeta and BMP signaling in a variety of experimental situations. This activity of Ski/SnoN proteins is related to their ability to interact with Smads, the proteins acting as key mediators of the transcriptional response to the TGFbeta superfamily members. However, despite extensive efforts to identify the physiological roles of the Ski/SnoN proteins, it is not yet clear whether they participate in regulating Activin and/or BMP signaling during normal development. It is therefore crucial to examine their roles in vivo mostly because of the large number of known Ski/SnoN-interacting proteins and the association between the up-regulation of these genes and cancer progression. Here we characterize the Drosophila homolog to vertebrate ski and snoN genes. The Drosophila dSnoN protein retains the ability of its vertebrate counterparts to antagonize BMP signaling in vivo and in cultured cells. dSnoN does not interfere with Mad phosphorylation but it interacts genetically with Mad, Medea and dSmad2. Mutations in either the Smad2-3 or Smad4 putative binding sites of dSnoN prevent the antagonism of dSnoN towards Dpp signaling, although homozygous flies for these mutations or for a genetic deficiency of the locus are viable and have wings of normal size and pattern.
Collapse
Affiliation(s)
- Rosa Barrio
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
70
|
Baker RE, Maini PK. A mechanism for morphogen-controlled domain growth. J Math Biol 2006; 54:597-622. [PMID: 17180375 DOI: 10.1007/s00285-006-0060-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 10/31/2006] [Indexed: 12/31/2022]
Abstract
Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc.
Collapse
Affiliation(s)
- R E Baker
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB, UK.
| | | |
Collapse
|
71
|
Bökel C, Schwabedissen A, Entchev E, Renaud O, González-Gaitán M. Sara endosomes and the maintenance of Dpp signaling levels across mitosis. Science 2006; 314:1135-9. [PMID: 17110576 DOI: 10.1126/science.1132524] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During development, cells acquire positional information by reading the concentration of morphogens. In the developing fly wing, a gradient of the transforming growth factor-beta (TGF-beta)-type morphogen decapentaplegic (Dpp) is transduced into a gradient of concentration of the phosphorylated form of the R-Smad transcription factor Mad. The endosomal protein Sara (Smad anchor for receptor activation) recruits R-Smads for phosphorylation by the type I TGF-beta receptor. We found that Sara, Dpp, and its type I receptor Thickveins were targeted to a subpopulation of apical endosomes in the developing wing epithelial cells. During mitosis, the Sara endosomes and the receptors therein associated with the spindle machinery to segregate into the two daughter cells. Daughter cells thereby inherited equal amounts of signaling molecules and thus retained the Dpp signaling levels of the mother cell.
Collapse
Affiliation(s)
- Christian Bökel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
72
|
Makhijani K, Kalyani C, Srividya T, Shashidhara LS. Modulation of Decapentaplegic gradient during haltere specification in Drosophila. Dev Biol 2006; 302:243-55. [PMID: 17045257 DOI: 10.1016/j.ydbio.2006.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 02/03/2023]
Abstract
Suppression of wing fate and specification of haltere fate in Drosophila by Ultrabithorax is a classical example of Hox regulation of serial homology. However, the mechanism of Ultrabithorax function in specifying haltere size and shape is not well understood. Here we show that Decapentaplegic signaling, which controls wing growth and shape, is a target of Ultrabithorax function during haltere specification. The Decapentaplegic signaling is down-regulated in haltere discs due to a combination of reduced levels of the Dpp, its trapping at the A/P boundary by increased levels of its receptor Thick-vein and its inability to diffuse in the absence of Dally. Results presented here suggest a complex mechanism adopted by Ultrabithorax to modulate Decapentaplegic signaling. We discuss how this complexity may regulate the final form of the adult haltere in the fly, without compromising features such as cell survival, which is also dependent on Decapentaplegic signaling.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, India.
| | | | | | | |
Collapse
|
73
|
Molnar C, López-Varea A, Hernández R, de Celis JF. A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing. Genetics 2006; 174:1635-59. [PMID: 16980395 PMCID: PMC1667087 DOI: 10.1534/genetics.106.061283] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The formation of the Drosophila wing involves developmental processes such as cell proliferation, pattern formation, and cell differentiation that are common to all multicellular organisms. The genes controlling these cellular behaviors are conserved throughout the animal kingdom, and the genetic analysis of wing development has been instrumental in their identification and functional characterization. The wing is a postembryonic structure, and most loss-of-function mutations are lethal in homozygous flies before metamorphosis. In this manner, loss-of-function genetic screens aiming to identify genes affecting wing formation have not been systematically utilized. As an alternative, a number of genetic searches have utilized the phenotypic consequences of gene gain-of-expression, as a method more efficient to search for genes required during imaginal development. Here we present the results of a gain-of-function screen designed to identify genes involved in the formation of the wing veins. We generated 13,000 P-GS insertions of a P element containing UAS sequences (P-GS) and combined them with a Gal4 driver expressed mainly in the developing pupal veins. We selected 500 P-GSs that, in combination with the Gal4 driver, result in modifications of the veins, changes in the morphology of the wing, or defects in the differentiation of the trichomes. The P-element insertion sites were mapped to the genomic sequence, identifying 373 gene candidates to participate in wing morphogenesis and vein formation.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
74
|
Molnar C, de Celis JF. Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling. Mech Dev 2006; 123:337-51. [PMID: 16682173 DOI: 10.1016/j.mod.2006.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 12/31/2022]
Abstract
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-of-function alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
75
|
Dworkin I, Gibson G. Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 2006; 173:1417-31. [PMID: 16648592 PMCID: PMC1526698 DOI: 10.1534/genetics.105.053868] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wing development in Drosophila is a common model system for the dissection of genetic networks and their roles during development. In particular, the RTK and TGF-beta regulatory networks appear to be involved with numerous aspects of wing development, including patterning, cell determination, growth, proliferation, and survival in the developing imaginal wing disc. However, little is known as to how subtle changes in the function of these genes may contribute to quantitative variation for wing shape, per se. In this study 50 insertional mutations, representing 43 loci in the RTK, Hedgehog, TGF-beta pathways, and their genetically interacting factors were used to study the role of these networks on wing shape. To concurrently examine how genetic background modulates the effects of the mutation, each insertion was introgressed into two wild-type genetic backgrounds. Using geometric morphometric methods, it is shown that the majority of these mutations have profound effects on shape but not size of the wing when measured as heterozygotes. To examine the relationships between how each mutation affects wing shape hierarchical clustering was used. Unlike previous observations of environmental canalization, these mutations did not generally increase within-line variation relative to their wild-type counterparts. These results provide an entry point into the genetics of wing shape and are discussed within the framework of the dissection of complex phenotypes.
Collapse
Affiliation(s)
- Ian Dworkin
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
76
|
Bangi E, Wharton K. Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning. Dev Biol 2006; 295:178-93. [PMID: 16643887 DOI: 10.1016/j.ydbio.2006.03.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/06/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
Morphogen gradients ensure the specification of different cell fates by dividing initially unpatterned cellular fields into distinct domains of gene expression. It is becoming clear that such gradients are not always simple concentration gradients of a single morphogen; however, the underlying mechanism of generating an activity gradient is poorly understood. Our data indicate that the relative contributions of two BMP ligands, Gbb and Dpp, to patterning the wing imaginal disc along its A/P axis, change as a function of distance from the ligand source. Gbb acts over a long distance to establish BMP target gene boundaries and a variety of cell fates throughout the wing disc, while Dpp functions at a shorter range. On its own, Dpp is not sufficient to mediate the low-threshold responses at the end points of the activity gradient, a function that Gbb fulfills. Given that both ligands signal through the Tkv type I receptor to activate the same downstream effector, Mad, the difference in their effective ranges must reflect an inherent difference in the ligands themselves, influencing how they interact with other molecules. The existence of related ligands with different functional ranges may represent a conserved mechanism used in different species to generate robust long range activity gradients.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
77
|
Oishi K, Gaengel K, Krishnamoorthy S, Kamiya K, Kim IK, Ying H, Weber U, Perkins LA, Tartaglia M, Mlodzik M, Pick L, Gelb BD. Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Hum Mol Genet 2006; 15:543-53. [PMID: 16399795 DOI: 10.1093/hmg/ddi471] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase SHP-2, causes Noonan syndrome (NS), an autosomal dominant disorder with pleomorphic developmental abnormalities. Certain germline and somatic PTPN11 mutations cause leukemias. Mutations have gain-of-function (GOF) effects with the commonest NS allele, N308D, being weaker than the leukemia-causing mutations. To study the effects of disease-associated PTPN11 alleles, we generated transgenic fruitflies with GAL4-inducible expression of wild-type or mutant csw, the Drosophila orthologue of PTPN11. All three transgenic mutant CSWs rescued a hypomorphic csw allele's eye phenotype, documenting activity. Ubiquitous expression of two strong csw mutant alleles were lethal, but did not perturb development from some CSW-dependent receptor tyrosine kinase pathways. Ubiquitous expression of the weaker N308D allele caused ectopic wing veins, identical to the EGFR GOF phenotype. Epistatic analyses established that csw(N308D)'s ectopic wing vein phenotype required intact EGF ligand and receptor, and that this transgene interacted genetically with Notch, DPP and JAK/STAT signaling. Expression of the mutant csw transgenes increased RAS-MAP kinase activation, which was necessary but not sufficient for transducing their phenotypes. The findings from these fly models provided hypotheses testable in mammalian models, in which these signaling cassettes are largely conserved. In addition, these fly models can be used for sensitized screens to identify novel interacting genes as well as for high-throughput screening of therapeutic compounds for NS and PTPN11-related cancers.
Collapse
Affiliation(s)
- Kimihiko Oishi
- Departments of Pediatrics and Human Genetics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Vrailas AD, Moses K. Smoothened, thickveins and the genetic control of cell cycle and cell fate in the developing Drosophila eye. Mech Dev 2006; 123:151-65. [PMID: 16412615 DOI: 10.1016/j.mod.2005.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 11/18/2022]
Abstract
The Hedgehog and Decapentaplegic pathways have several well-characterized functions in the developing Drosophila compound eye, including initiation and progression of the morphogenetic furrow. Other functions involve control of cell cycle and cell survival as well as cell type specification. Here we have used the mosaic clone analysis of null mutations of the smoothened and thickveins genes (which encode the receptors for these two signals) both alone and in combination, to study cell cycle and cell fate in the developing eye. We conclude that both pathways have several, but differing roles in furrow induction and cell fate and survival, but that neither directly affects cell type specification.
Collapse
Affiliation(s)
- Alysia D Vrailas
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
79
|
Sotillos S, de Celis JF. Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mech Dev 2006; 123:241-51. [PMID: 16423512 DOI: 10.1016/j.mod.2005.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The differentiation of veins in the Drosophila wing relies on localised expression of decapentaplegic (dpp) in pro-vein territories during pupal development. The expression of dpp in the pupal veins requires the integrity of the shortvein region (shv), localised 5' to the coding region. It is likely that this DNA integrates positive and negative regulatory signals directing dpp transcription during pupal development. Here, we identify a minimal 0.9 kb fragment giving localised expression in the vein L5 and a 0.5 kb fragment giving expression in all longitudinal veins. Using a combination of in vivo expression of reporter genes regulated by shv sequences, in vitro binding assays and sequence comparisons between the shv region of different Drosophila species, we found binding sites for the vein-specific transciption factors Araucan, Knirps and Ventral veinless, as well as binding sites for the Dpp pathway effectors Mad and Med. We conclude that conserved vein-specific enhancers regulated by transcription factors expressed in individual veins collaborate with general vein and intervein regulators to establish and maintain the expression of dpp confined to the veins during pupal development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Crta. de Utrera Km1, 41013 Sevilla, Spain.
| | | |
Collapse
|
80
|
Kulikov AM, Myasnyankina EN. Fertility of Drosophila melanogaster females affected by mutation l(2)M167 DTS. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Moser M, Campbell G. Generating and interpreting the Brinker gradient in the Drosophila wing. Dev Biol 2005; 286:647-58. [PMID: 16171794 DOI: 10.1016/j.ydbio.2005.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/14/2005] [Accepted: 08/19/2005] [Indexed: 11/27/2022]
Abstract
The transcription factor Brinker (Brk) represses gene expression in the Drosophila wing imaginal disc, where it is expressed in symmetrical lateral-to-medial gradients, a pattern that is established by inverse gradients of the TGF-beta, Dpp, which is in turn transduced into graded phosphorylated Mad (pMad, an R-Smad). pMad is part of a complex which directly represses brk. sal and omb are targets of Brk and are, thus, only expressed medially with their domains extending mediolaterally into the region where Brk is graded. omb extends more laterally than sal, indicating that higher levels of Brk are required to repress it. This is supported by our demonstration that higher levels of ectopic Brk are required to completely repress omb than sal. We also show, however, that Mad antagonizes the ability of Brk to repress these genes, indicating that pMad directly activates their expression (as well as repressing brk). Thus, whether a gene is expressed at a particular location may depend not only on how much Brk is present, but also on the level of pMad. We have also investigated the mechanism by which the brk expression gradient is established and show that it is not just a simple readout of the pMad gradient but requires Brk to repress its own expression. In brk mutants, the brk gradient is not established: brk is still off medially and on at high levels laterally, but there is almost no graded expression between these extremes. This Brk negative autoregulation appears to increase the sensitivity of the cells to Dpp/pMad and should also function to stabilize the brk gradient.
Collapse
Affiliation(s)
- Melissa Moser
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
82
|
Vilmos P, Sousa-Neves R, Lukacsovich T, Lawrence Marsh J. crossveinless defines a new family of Twisted-gastrulation-like modulators of bone morphogenetic protein signalling. EMBO Rep 2005; 6:262-7. [PMID: 15711536 PMCID: PMC1299258 DOI: 10.1038/sj.embor.7400347] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/13/2004] [Accepted: 01/03/2005] [Indexed: 11/09/2022] Open
Abstract
The Twisted gastrulation (Tsg) proteins are modulators of bone morphogenetic protein (BMP) activity in both vertebrates and insects. We find that the crossveinless (cv) gene of Drosophila encodes a new tsg-like gene. Genetic experiments show that cv, similarly to tsg, interacts with short gastrulation (sog) to modulate BMP signalling. Despite this common property, Cv shows a different BMP ligand specificity as compared with Tsg, and its expression is limited to the developing wing. These findings and the presence of two types of Tsg-like protein in several insects suggest that Cv represents a subgroup of the Tsg-like BMP-modulating proteins.
Collapse
Affiliation(s)
- Peter Vilmos
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
| | - Rui Sousa-Neves
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California at Irvine, Irvine, California 92697, USA
- Tel: +1 949 824 6677; Fax: +1 949 824 3571; E-mail:
| |
Collapse
|
83
|
Shimmi O, Ralston A, Blair SS, O'Connor MB. The crossveinless gene encodes a new member of the Twisted gastrulation family of BMP-binding proteins which, with Short gastrulation, promotes BMP signaling in the crossveins of the Drosophila wing. Dev Biol 2005; 282:70-83. [PMID: 15936330 DOI: 10.1016/j.ydbio.2005.02.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/26/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
In the early Drosophila embryo, Bone morphogenetic protein (BMP) activity is positively and negatively regulated by the BMP-binding proteins Short gastrulation (Sog) and Twisted gastrulation (Tsg). We show here that a similar mechanism operates during crossvein formation, utilizing Sog and a new member of the tsg gene family, encoded by the crossveinless (cv) locus. The initial specification of crossvein fate in the Drosophila wing requires signaling mediated by Dpp and Gbb, two members of the BMP family. cv is required for the promotion of BMP signaling in the crossveins. Large sog clones disrupt posterior crossvein formation, suggesting that Sog and Cv act together in this context. We demonstrate that sog and cv can have both positive and negative effects on BMP signaling in the wing. Moreover, Cv is functionally equivalent to Tsg, since Tsg and Cv can substitute for each other's activity. We also confirm that Tsg and Cv have similar biochemical activities: Sog/Cv complex binds a Dpp/Gbb heterodimer with high affinity. Taken together, these studies suggest that Sog and Cv promote BMP signaling by transporting a BMP heterodimer from the longitudinal veins into the crossvein regions.
Collapse
Affiliation(s)
- Osamu Shimmi
- Department of Genetics Cell Biology and Development, Howard Hughes Medical Institute, University of Minnesota, 6-160 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
84
|
Ralston A, Blair SS. Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone. Dev Biol 2005; 280:187-200. [PMID: 15766758 DOI: 10.1016/j.ydbio.2005.01.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 01/08/2005] [Accepted: 01/11/2005] [Indexed: 11/19/2022]
Abstract
The sensitivity of the crossveins of the Drosophila wing to reductions in BMP signaling provides a valuable system for characterizing members of this signaling pathway. We demonstrate here two reasons for that sensitivity. First, the initial stage of posterior crossvein development depends on BMP signaling but is independent of EGF signaling. This is the opposite of the longitudinal veins, which rely of EGF signaling for their initial specification. Second, BMP signaling in the posterior crossvein depends on Decapentaplegic (Dpp) at a stage when it is being produced in the longitudinal veins. Thus, the posterior crossvein will be especially vulnerable to reductions in the levels or range of Dpp signaling. We investigated the roles of the BMP receptor Thickveins (Tkv) and the BMP inhibitor Short gastrulation (Sog) in allowing this long-range signaling. Expression of both is downregulated in the developing posterior crossvein. The Tkv downregulation depends on BMP signaling and may provide a positive feedback by allowing the spread of Dpp. The Sog downregulation is independent of BMP signaling; Sog misexpression experiments indicate that this prepattern is essential for posterior crossvein development. However, this requirement can be overridden by co-misexpression of the BMP agonist Cv-2, indicating the presence of as yet unknown cues; we discuss possible candidates.
Collapse
Affiliation(s)
- Amy Ralston
- Department of Zoology, 250 N. Mills Street, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
85
|
Gómez AR, López-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gómez M, Gómez-Skarmeta JL, de Celis JF. Conserved cross-interactions inDrosophilaandXenopusbetween Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 2005; 232:695-708. [PMID: 15704110 DOI: 10.1002/dvdy.20227] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a key transducer of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) signaling pathways, and its function is required in multiple processes during animal development. The activity of ERK depends on the phosphorylation state of conserved threonine and tyrosine residues, and this state is regulated by different kinases and phosphatases. A family of phosphatases with specificity toward both threonine and tyrosine residues in ERK (dual-specificity phosphatases) play a conserved role in its dephosphorylation and consequent inactivation. Here, we characterize the function of the dual-specificity phosphatase MKP3 in Drosophila EGFR and Xenopus FGFR signaling. The function of MKP3 is required during Drosophila wing vein formation and Xenopus anteroposterior neural patterning. We find that the expression of the MKP3 gene is localized in places of high EGFR and FGFR signaling. Furthermore, this restricted expression depends on ERK function both in Drosophila and Xenopus, suggesting that MKP3 constitutes a conserved negative feedback loop on the activity of the Ras/ERK signaling pathway.
Collapse
Affiliation(s)
- Ana Ruiz Gómez
- Centro de Biologóa Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
86
|
Sotillos S, De Celis JF. Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation duringDrosophila pupal wing development. Dev Dyn 2005; 232:738-52. [PMID: 15704120 DOI: 10.1002/dvdy.20270] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by the conserved signaling pathways Decapentaplegic (Dpp), Notch, and epidermal growth factor receptor (EGFR). Interactions between Notch and EGFR taking place in the wing disc divide each vein into a central domain, where EGFR is active, and two boundary domains where Notch is active. The expression of decapentaplegic (dpp) is activated in the veins during pupal development, and we have generated Gal4 drivers using the regulatory region that drives dpp expression at this stage. By using these drivers, we studied the relationships between the Notch, EGFR, and Dpp signaling pathways that occur during pupal development. Our results indicate that the interactions between EGFR and Notch initiated in the imaginal disc are maintained throughout pupal development and contribute to determine the places where dpp is expressed. Once dpp expression is initiated, Dpp and EGFR activities in the provein maintain each other and, in cooperation, determine vein cell differentiation.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
87
|
Abstract
The development of the Drosophila wing is a classical model for studying the genetic control of tissue size, shape and patterning. A detailed picture of how positional information is interpreted by cells in the imaginal disc and translated into the adult wing vein pattern has recently emerged. It highlights the central role of dose-dependent activation of distinct cell transcription programs in response to the Hedgehog (Hh) and Decapentaplegic (Dpp) morphogens, as well as an early role of Notch signalling, in connecting the positioning of vein primordia and vein differentiation proper. The biochemical basis of the cross-talk that operates between these different signalling pathways is less well understood. New strategies made possible by the genome sequencing of several insect models should provide an important complement to the knowledge obtained from >60 years of genetic studies.
Collapse
Affiliation(s)
- Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 and IFR 109, CNRS/Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
88
|
Marenda DR, Zraly CB, Dingwall AK. The Drosophila Brahma (SWI/SNF) chromatin remodeling complex exhibits cell-type specific activation and repression functions. Dev Biol 2004; 267:279-93. [PMID: 15013794 DOI: 10.1016/j.ydbio.2003.10.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 10/25/2003] [Indexed: 11/21/2022]
Abstract
The Brahma (Brm) complex of Drosophila melanogaster is a SWI/SNF-related chromatin remodeling complex required to correctly maintain proper states of gene expression through ATP-dependent effects on chromatin structure. The SWI/SNF complexes are comprised of 8-11 stable components, even though the SWI2/SNF2 (BRM, BRG1, hBRM) ATPase subunit alone is partially sufficient to carry out chromatin remodeling in vitro. The remaining subunits are required for stable complex assembly and/or proper promoter targeting in vivo. Our data reveals that SNR1 (SNF5-Related-1), a highly conserved subunit of the Brm complex, is required to restrict complex activity during the development of wing vein and intervein cells, illustrating a functional requirement for SNR1 in modifying whole complex activation functions. Specifically, we found that snr1 and brm exhibited opposite mutant phenotypes in the wing and differential misregulation of genes required for vein and intervein cell development, including rhomboid, decapentaplegic, thick veins, and blistered, suggesting possible regulatory targets for the Brm complex in vivo. Our genetic results suggest a novel mechanism for SWI/SNF-mediated gene repression that relies on the function of a 'core' subunit to block or shield BRM (SWI2/SNF2) activity in specific cells. The SNR1-mediated repression is dependent on cooperation with histone deacetylases (HDAC) and physical associations with NET, a localized vein repressor.
Collapse
Affiliation(s)
- Daniel R Marenda
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA
| | | | | |
Collapse
|
89
|
McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, Wan H, O'Connor MB, Goodman CS, Haghighi AP. Highwire Regulates Presynaptic BMP Signaling Essential for Synaptic Growth. Neuron 2004; 41:891-905. [PMID: 15046722 DOI: 10.1016/s0896-6273(04)00073-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 12/15/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
Highwire (Hiw), a putative RING finger E3 ubiquitin ligase, negatively regulates synaptic growth at the neuromuscular junction (NMJ) in Drosophila. hiw mutants have dramatically larger synaptic size and increased numbers of synaptic boutons. Here we show that Hiw binds to the Smad protein Medea (Med). Med is part of a presynaptic bone morphogenetic protein (BMP) signaling cascade consisting of three receptor subunits, Wit, Tkv, and Sax, in addition to the Smad transcription factor Mad. When compared to wild-type, mutants of BMP signaling components have smaller NMJ size, reduced neurotransmitter release, and aberrant synaptic ultrastructure. BMP signaling mutants suppress the excessive synaptic growth in hiw mutants. Activation of BMP signaling, which in wild-type does not cause additional growth, in hiw mutants does lead to further synaptic expansion. These results reveal a balance between positive BMP signaling and negative regulation by Highwire, governing the growth of neuromuscular synapses.
Collapse
Affiliation(s)
- Brian D McCabe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The ommatidia of the Drosophila eye initiate development by stepwise recruitment of photoreceptors into symmetric ommatidial clusters. As they mature, the clusters become asymmetric, adopting opposite chirality on either side of the dorsoventral midline and rotating exactly 90 degrees (Figures 1A and 1B, ). The choice of chirality is governed by higher activity of the frizzled (fz) gene in one cell of the R3/R4 photoreceptor pair and by Notch-Delta (N-Dl) signaling. The 90 degrees rotation also requires activity of planar polarity genes such as fz as well as the roulette (rlt) locus. We now show that two regulators of EGF signaling, argos and sprouty (sty), and a gain-of-function Ras85D allele, interact genetically with fz in ommatidial polarity. Furthermore, we find that argos is required for ommatidial rotation, but not chirality, and that rlt is a novel allele of argos. We present evidence that there are two pathways by which EGF signaling affects ommatidial rotation. In the first, typified by the rlt phenotype, there is partial transformation of the "mystery cells" toward a neuronal fate. Although most of these mystery cells subsequently fail to develop as neurons, their partial transformation results in inappropriate subcellular localization of the Fz receptor, a likely cue for regulating ommatidial rotation. Secondly, reducing EGF signaling can specifically affect ommatidial rotation without showing transformation of the mystery cells or defects in polarity protein localization.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
91
|
Abstract
The veins are cuticular structures that differentiate in precise patterns in insect wings. The genetic and molecular basis of vein pattern formation in Drosophila melanogaster is beginning to be unravelled with the identification and characterisation of the gene products that position the veins and direct their differentiation. Genes affecting the veins fall into two groups: transcriptional regulators that specify individual veins, and members of signalling pathways involved in patterning and differentiation of the veins. The elaboration of the vein pattern is progressive in time and requires the coordinated activities of these signalling pathways and the transcription factors regulated by them. Although the network of genetic interactions that determine vein cell fate is well understood, very little is known about the cellular biology underlying the acquisition of vein histotype.
Collapse
Affiliation(s)
- Jose F De Celis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
92
|
Marenda DR, Zraly CB, Feng Y, Egan S, Dingwall AK. The Drosophila SNR1 (SNF5/INI1) subunit directs essential developmental functions of the Brahma chromatin remodeling complex. Mol Cell Biol 2003; 23:289-305. [PMID: 12482982 PMCID: PMC140686 DOI: 10.1128/mcb.23.1.289-305.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Drosophila melanogaster Brahma (Brm) complex, a counterpart of the Saccharomyces cerevisiae SWI/SNF ATP-dependent chromatin remodeling complex, is important for proper development by maintaining specific gene expression patterns. The SNR1 subunit is strongly conserved with yeast SNF5 and mammalian INI1 and is required for full activity of the Brm complex. We identified a temperature-sensitive allele of snr1 caused by a single amino acid substitution in the conserved repeat 2 region, implicated in a variety of protein-protein interactions. Genetic analyses of snr1(E1) reveal that it functions as an antimorph and that snr1 has critical roles in tissue patterning and growth control. Temperature shifts show that snr1 is continuously required, with essential functions in embryogenesis, pupal stages, and adults. Allele-specific genetic interactions between snr1(E1) and mutations in genes encoding other members of the Brm complex suggest that snr1(E1) mutant phenotypes result from reduced Brm complex function. Consistent with this view, SNR1(E1) is stably associated with other components of the Brm complex at the restrictive temperature. SNR1 can establish direct contacts through the conserved repeat 2 region with the SET domain of the homeotic regulator Trithorax (TRX), and SNR1(E1) is partially defective for functional TRX association. As truncating mutations of INI1 are strongly correlated with aggressive cancers, our results support the view that SNR1, and specifically the repeat 2 region, has a critical role in mediating cell growth control functions of the metazoan SWI/SNF complexes.
Collapse
Affiliation(s)
- Daniel R Marenda
- Department of Biology, Syracuse University, New York 13244-1270, USA
| | | | | | | | | |
Collapse
|
93
|
Johannes B, Preiss A. Wing vein formation in Drosophila melanogaster: hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech Dev 2002; 115:3-14. [PMID: 12049762 DOI: 10.1016/s0925-4773(02)00083-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wing vein development in Drosophila is controlled by different morphogenetic pathways, including Notch. Hairless (H) antagonizes Notch target gene activation by binding to the Notch signal transducer Suppressor of Hairless [Su(H)]. Accordingly, overexpression of H phenocopies reduction of Notch activity. Deletion of the Su(H)-binding domain in H-C2 results in loss of H activity. However, overexpression of H-C2 induces formation of ectopic veins. In a screen for genetic modifiers of this phenotype, we have identified several genes involved in Notch and epidermal growth factor (EGF) signaling. Most notably veinlet, an activator of EGF signaling, acts downstream of H-C2. H-C2 positively regulates veinlet maybe through inhibition of inter-vein determinants in agreement with a model, whereby Notch and EGF signaling pathways cross-regulate vein pre-patterning.
Collapse
Affiliation(s)
- Bernd Johannes
- Institut für Genetik (240), Universität Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | |
Collapse
|
94
|
Nagaso H, Murata T, Day N, Yokoyama KK. Simultaneous detection of RNA and protein by in situ hybridization and immunological staining. J Histochem Cytochem 2001; 49:1177-82. [PMID: 11511686 DOI: 10.1177/002215540104900911] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proteinase K is widely used in methods for detection of transcripts in biological specimens by in situ hybridization (ISH). However, treatment with proteinase K hampers detection of RNA and protein simultaneously. We have developed a method for double staining of transcripts and proteins by ISH and IHC staining in imaginal discs and embryos of Drosophila. Instead of treatment with proteinase K, samples are treated with ethanol plus xylene and with acetone. Acetone renders cell membranes permeable to probes and antibodies without damaging tissue integrity, whereas treatment with proteinase K sometimes damages tissues. Treatment of samples with acetone allows hybridization of probe with transcripts in tissue. It is also effective for immunological staining of samples after ISH with a riboprobe. Thus, our method allows detection not only of transcripts but also of specific proteins in relatively intact single samples. (J Histochem Cytochem 49:1177-1182, 2001)
Collapse
Affiliation(s)
- H Nagaso
- Gene Engineering Division, BioResource Center, RIKEN (The Institute of Physical and Chemical Research), Tsukuba Science City, Ibaraki, Japan
| | | | | | | |
Collapse
|
95
|
Verheyen EM, Mirkovic I, MacLean SJ, Langmann C, Andrews BC, MacKinnon C. The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mech Dev 2001; 101:119-32. [PMID: 11231065 DOI: 10.1016/s0925-4773(00)00574-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drosophila nemo was first identified as a gene required for tissue polarity during ommatidial development. We have extended the analysis of nemo and found that it participates in multiple developmental processes. It is required during wing development for wing shape and vein patterning. We observe genetic interactions between nemo and mutations in the Notch, Wingless, Frizzled and Decapentaplegic pathways. Our data support the findings from other organisms that Nemo proteins act as negative regulators of Wingless signaling. nemo mutations cause polarity defects in the adult wing and overexpression of nemo leads to abdominal polarity defects. The expression of nemo during embryogenesis is dynamic and dsRNA inhibition and ectopic expression studies indicate that nemo is essential during embryogenesis.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Northern
- Body Patterning
- DNA, Complementary/metabolism
- Drosophila/embryology
- Drosophila Proteins
- Frizzled Receptors
- In Situ Hybridization
- Insect Proteins/genetics
- Membrane Proteins/genetics
- Microscopy, Electron, Scanning
- Mitogen-Activated Protein Kinases/physiology
- Models, Biological
- Models, Genetic
- Mutation
- Phenotype
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/physiology
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Notch
- Signal Transduction
- Wings, Animal/embryology
- Wings, Animal/physiology
Collapse
Affiliation(s)
- E M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, B.C., V5A 1S6, Burnaby, Canada.
| | | | | | | | | | | |
Collapse
|
96
|
Torres-Vazquez J, Warrior R, Arora K. schnurri is required for dpp-dependent patterning of the Drosophila wing. Dev Biol 2000; 227:388-402. [PMID: 11071762 DOI: 10.1006/dbio.2000.9900] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The BMP-related ligand Decapentaplegic (Dpp) has a well-characterized role in pattern formation during Drosophila embryogenesis and in larval development. Previous work has shown that transcription of Dpp-responsive genes requires the activity of the BMP-specific Smad, Mothers against dpp (Mad). In this study we investigated the role of the zinc finger transcription factor Schnurri (Shn) in mediating the nuclear response to Dpp during adult patterning. Using clonal analysis, we show that wing imaginal disc cells mutant for shn fail to transcribe the genes spalt, optomotor blind, vestigial, and Dad, that are known to be induced by dpp signaling. shn clones also ectopically express brinker, a gene that is downregulated in response to dpp, thus implicating Shn in both activation and repression of Dpp target genes. We demonstrate that loss of shn activity affects anterior-posterior patterning and cell proliferation in the wing blade, in a manner that reflects the graded requirement for Dpp in these processes. Furthermore, we find that shn is expressed in the pupal wing and plays a distinct role in mediating dpp-dependent vein differentiation at this stage. The absence of shn activity results in defects that are similar in nature and severity to those caused by elimination of Mad, suggesting that Shn has an essential role in dpp signal transduction in the developing wing. Our data are consistent with a model in which Shn acts as a cofactor for Mad.
Collapse
Affiliation(s)
- J Torres-Vazquez
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
97
|
Conley CA, Silburn R, Singer MA, Ralston A, Rohwer-Nutter D, Olson DJ, Gelbart W, Blair SS. Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development 2000; 127:3947-59. [PMID: 10952893 DOI: 10.1242/dev.127.18.3947] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The BMP-like signaling mediated by the ligands Dpp and Gbb is required to reinforce the development of most veins in the Drosophila wing. However, the formation of the cross veins is especially sensitive to reductions in BMP-like signaling. We show here that the formation of the definitive cross veins occurs after the initial specification of the longitudinal veins in a process that requires localized BMP-like activity. Since Dpp and Gbb levels are not detectably higher in the early phases of cross vein development, other factors apparently account for this localized activity. Our evidence suggests that the product of the crossveinless 2 gene is a novel member of the BMP-like signaling pathway required to potentiate Gbb of Dpp signaling in the cross veins. crossveinless 2 is expressed at higher levels in the developing cross veins and is necessary for local BMP-like activity. The Crossveinless 2 protein contains a putative signal or transmembrane sequence, and a partial Von Willebrand Factor D domain similar to those known to regulate the formation of intramolecular and intermolecular bonds. It also contains five cysteine-rich domains, similar to the cysteine-rich domains found in Chordin, Short Gastrulation and Procollagen that are known to bind BMP-like ligands. These features strongly suggest that Crossveinless 2 acts extracelluarly or in the secretory pathway to directly potentiate Dpp or Gbb signaling.
Collapse
Affiliation(s)
- C A Conley
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Nussbaumer U, Halder G, Groppe J, Affolter M, Montagne J. Expression of the blistered/DSRF gene is controlled by different morphogens during Drosophila trachea and wing development. Mech Dev 2000; 96:27-36. [PMID: 10940622 DOI: 10.1016/s0925-4773(00)00373-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.
Collapse
Affiliation(s)
- U Nussbaumer
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|
99
|
Certel K, Hudson A, Carroll SB, Johnson WA. Restricted patterning of vestigial expression in Drosophila wing imaginal discs requires synergistic activation by both Mad and the drifter POU domain transcription factor. Development 2000; 127:3173-83. [PMID: 10862753 DOI: 10.1242/dev.127.14.3173] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila Vestigial protein has been shown to play an essential role in the regulation of cell proliferation and differentiation within the developing wing imaginal disc. Cell-specific expression of vg is controlled by two separate transcriptional enhancers. The boundary enhancer controls expression in cells near the dorsoventral (DV) boundary and is regulated by the Notch signal transduction pathway, while the quadrant enhancer responds to the Decapentaplegic and Wingless morphogen gradients emanating from cells near the anteroposterior (AP) and DV boundaries, respectively. MAD-dependent activation of the vestigial quadrant enhancer results in broad expression throughout the wing pouch but is excluded from cells near the DV boundary. This has previously been thought to be due to direct repression by a signal from the DV boundary; however, we show that this exclusion of quadrant enhancer-dependent expression from the DV boundary is due to the absence of an additional essential activator in those cells. The Drosophila POU domain transcriptional regulator, Drifter, is expressed in all cells within the wing pouch expressing a vgQ-lacZ transgene and is also excluded from the DV boundary. Viable drifter hypomorphic mutations cause defects in cell proliferation and wing vein patterning correlated with decreased quadrant enhancer-dependent expression. Drifter misexpression at the DV boundary using the GAL4/UAS system causes ectopic outgrowths at the distal wing tip due to induction of aberrant Vestigial expression, while a dominant-negative Drifter isoform represses expression of vgQ-lacZ and causes severe notching of the adult wing. In addition, we have identified an essential evolutionarily conserved sequence element bound by the Drifter protein with high affinity and located adjacent to the MAD binding site within the quadrant enhancer. Our results demonstrate that Drifter functions along with MAD as a direct activator of Vestigial expression in the wing pouch.
Collapse
Affiliation(s)
- K Certel
- University of Iowa, Genetics Program, College of Medicine, Department of Physiology and Biophysics, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
100
|
de Celis JF, Bray SJ. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 2000; 127:1291-302. [PMID: 10683181 DOI: 10.1242/dev.127.6.1291] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Notch signalling pathway regulates cell fate choices during both vertebrate and invertebrate development. In the Drosophila wing disc, the activation of Notch by its ligands Delta and Serrate is required to make the dorsoventral boundary, where several genes, such as wingless and cut, are expressed in a 2- to 4-cell-wide domain. The interactions between Notch and its ligands are modulated by Fringe via a mechanism that may involve post-transcriptional modifications of Notch. The ligands themselves also help to restrict Notch activity to the dorsoventral boundary cells, because they antagonise the activation of the receptor in the cells where their expression is high. This function of the ligands is critical to establish the polarity of signalling, but very little is known about the mechanisms involved in the interactions between Notch and its ligands that result in suppression of Notch activity. The extracellular domain of Notch contains an array of 36 EGF repeats, two of which, repeats 11 and 12, are necessary for direct interactions between Notch with Delta and Serrate. We investigate here the function of a region of the Notch extracellular domain where several missense mutations, called Abruptex, are localised. These Notch alleles are characterised by phenotypes opposite to the loss of Notch function and also by complex complementation patterns. We find that, in Abruptex mutant discs, only the negative effects of the ligands and Fringe are affected, resulting in the failure to restrict the expression of cut and wingless to the dorsoventral boundary. We suggest that Abruptex alleles identify a domain in the Notch protein that mediates the interactions between Notch, its ligands and Fringe that result in suppression of Notch activity.
Collapse
Affiliation(s)
- J F de Celis
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | |
Collapse
|