51
|
Zheng X, Goodwin AF, Tian H, Jheon AH, Klein OD. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor. J Dent Res 2017. [PMID: 28644741 DOI: 10.1177/0022034517717255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.
Collapse
Affiliation(s)
- X Zheng
- 1 Department of Stomatology, Peking University Third Hospital, Beijing, China.,2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - A F Goodwin
- 2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - H Tian
- 2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - A H Jheon
- 2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - O D Klein
- 2 Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA.,3 Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
52
|
Oginuma M, Moncuquet P, Xiong F, Karoly E, Chal J, Guevorkian K, Pourquié O. A Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the Body Axis in Amniote Embryos. Dev Cell 2017; 40:342-353.e10. [PMID: 28245921 DOI: 10.1016/j.devcel.2017.02.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/23/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
Abstract
Mammalian embryos transiently exhibit aerobic glycolysis (Warburg effect), a metabolic adaptation also observed in cancer cells. The role of this particular type of metabolism during vertebrate organogenesis is currently unknown. Here, we provide evidence for spatiotemporal regulation of glycolysis in the posterior region of mouse and chicken embryos. We show that a posterior glycolytic gradient is established in response to graded transcription of glycolytic enzymes downstream of fibroblast growth factor (FGF) signaling. We demonstrate that glycolysis controls posterior elongation of the embryonic axis by regulating cell motility in the presomitic mesoderm and by controlling specification of the paraxial mesoderm fate in the tail bud. Our results suggest that glycolysis in the tail bud coordinates Wnt and FGF signaling to promote elongation of the embryonic axis.
Collapse
Affiliation(s)
- Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Edward Karoly
- Metabolon, 617 Davis Drive, Suite 400, Morrisville, NC 27560, USA
| | - Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Karine Guevorkian
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Tang L, Wu X, Zhang H, Lu S, Wu M, Shen C, Chen X, Wang Y, Wang W, Shen Y, Gu M, Ding X, Jin X, Fei J, Wang Z. A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome. Hum Mol Genet 2017; 26:1280-1293. [PMID: 28169396 DOI: 10.1093/hmg/ddx029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Xiaolin Wu
- Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Min Wu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Yicheng Wang
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Weigang Wang
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Mingmin Gu
- Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Xiaoyi Ding
- Department of Radiology and Department of Pathology of Rui-Jin Hospital, SJTUSM, Shanghai, P.R. China
| | - Xiaolong Jin
- Department of Radiology and Department of Pathology of Rui-Jin Hospital, SJTUSM, Shanghai, P.R. China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| |
Collapse
|
54
|
Chatzeli L, Gaete M, Tucker AS. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development 2017; 144:2294-2305. [PMID: 28506998 PMCID: PMC5482990 DOI: 10.1242/dev.146019] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 05/10/2017] [Indexed: 12/19/2022]
Abstract
Salivary glands are formed by branching morphogenesis with epithelial progenitors forming a network of ducts and acini (secretory cells). During this process, epithelial progenitors specialise into distal (tips of the gland) and proximal (the stalk region) identities that produce the acini and higher order ducts, respectively. Little is known about the factors that regulate progenitor expansion and specialisation in the different parts of the gland. Here, we show that Sox9 is involved in establishing the identity of the distal compartment before the initiation of branching morphogenesis. Sox9 is expressed throughout the gland at the initiation stage before becoming restricted to the distal epithelium from the bud stage and throughout branching morphogenesis. Deletion of Sox9 in the epithelium results in loss of the distal epithelial progenitors, a reduction in proliferation and a subsequent failure in branching. We demonstrate that Sox9 is positively regulated by mesenchymal Fgf10, a process that requires active Erk signalling. These results provide new insights into the factors required for the expansion of salivary gland epithelial progenitors, which can be useful for organ regeneration therapy.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Centre for Craniofacial and Regenerative Biology, Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Marcia Gaete
- Centre for Craniofacial and Regenerative Biology, Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK.,Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
55
|
Percival CJ, Marangoni P, Tapaltsyan V, Klein O, Hallgrímsson B. The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape. G3 (BETHESDA, MD.) 2017; 7:1439-1450. [PMID: 28280213 PMCID: PMC5427488 DOI: 10.1534/g3.117.040659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
Abstract
Inbred genetic background significantly influences the expression of phenotypes associated with known genetic perturbations and can underlie variation in disease severity between individuals with the same mutation. However, the effect of epistatic interactions on the development of complex traits, such as craniofacial morphology, is poorly understood. Here, we investigated the effect of three inbred backgrounds (129X1/SvJ, C57BL/6J, and FVB/NJ) on the expression of craniofacial dysmorphology in mice (Mus musculus) with loss of function in three members of the Sprouty family of growth factor negative regulators (Spry1, Spry2, or Spry4) in order to explore the impact of epistatic interactions on skull morphology. We found that the interaction of inbred background and the Sprouty genotype explains as much craniofacial shape variation as the Sprouty genotype alone. The most severely affected genotypes display a relatively short and wide skull, a rounded cranial vault, and a more highly angled inferior profile. Our results suggest that the FVB background is more resilient to Sprouty loss of function than either C57 or 129, and that Spry4 loss is generally less severe than loss of Spry1 or Spry2 While the specific modifier genes responsible for these significant background effects remain unknown, our results highlight the value of intercrossing mice of multiple inbred backgrounds to identify the genes and developmental interactions that modulate the severity of craniofacial dysmorphology. Our quantitative results represent an important first step toward elucidating genetic interactions underlying variation in robustness to known genetic perturbations in mice.
Collapse
Affiliation(s)
- Christopher J Percival
- Alberta Children's Hospital Institute for Child and Maternal Health, University of Calgary, Alberta T2N 4N1, Canada
- The McCaig Bone and Joint Institute, University of Calgary, Alberta T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Alberta T2N 4N1, Canada
| | - Pauline Marangoni
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
| | - Vagan Tapaltsyan
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California 94143
| | - Ophir Klein
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
- Department of Pediatrics, University of California, San Francisco, California 94143
- Institute for Human Genetics, University of California, San Francisco, California 94143
| | - Benedikt Hallgrímsson
- Alberta Children's Hospital Institute for Child and Maternal Health, University of Calgary, Alberta T2N 4N1, Canada
- The McCaig Bone and Joint Institute, University of Calgary, Alberta T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
56
|
Integration of Shh and Fgf signaling in controlling Hox gene expression in cultured limb cells. Proc Natl Acad Sci U S A 2017; 114:3139-3144. [PMID: 28270602 DOI: 10.1073/pnas.1620767114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During embryonic development, fields of progenitor cells form complex structures through dynamic interactions with external signaling molecules. How complex signaling inputs are integrated to yield appropriate gene expression responses is poorly understood. In the early limb bud, for instance, Sonic hedgehog (Shh) is expressed in the distal posterior mesenchyme, where it acts as a mediator of anterior to posterior (AP) patterning, whereas fibroblast growth factor 8 (Fgf8) is produced by the apical ectodermal ridge (AER) at the distal tip of the limb bud to direct outgrowth along the proximal to distal (PD) axis. Here we use cultured limb mesenchyme cells to assess the response of the target Hoxd genes to these two factors. We find that they act synergistically and that both factors are required to activate Hoxd13 in limb mesenchymal cells. However, the analysis of the enhancer landscapes flanking the HoxD cluster reveals that the bimodal regulatory switch observed in vivo is only partially achieved under these in vitro conditions, suggesting an additional requirement for other factors.
Collapse
|
57
|
Nguyen M, Singhal P, Piet JW, Shefelbine SJ, Maden M, Voss SR, Monaghan JR. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl. Development 2017; 144:601-611. [PMID: 28087637 DOI: 10.1242/dev.139873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2023]
Abstract
Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.
Collapse
Affiliation(s)
- Matthew Nguyen
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Pankhuri Singhal
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Judith W Piet
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sandra J Shefelbine
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
58
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
59
|
Xu Y, Yang X, Li Z, Li S, Guo S, Ismail S, Liu H, Huang Z, Zhang Z, Chen Y, Sun Q. Sprouty2 correlates with favorable prognosis of gastric adenocarcinoma via suppressing FGFR2-induced ERK phosphorylation and cancer progression. Oncotarget 2017; 8:4888-4900. [PMID: 28002800 PMCID: PMC5354878 DOI: 10.18632/oncotarget.13982] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) has been identified as a predictive biomarker for unfavorable prognosis of gastric adenocarcinoma. As a well-defined antagonist in FGFR2-induced RAS/ERK activation, ectopic expression of sprouty (SPRY) family was reported in several kinds of cancers except gastric cancer. To explore the clinical significance of SPRY family and its correlation with FGFR2, we detected the expression of FGFR2 and SPRY family in 104 cases of gastric adenocarcinoma and subsequently analyzed their correlations with clinicopathological factors and overall survival rates by univariate and multivariate analysis. As the result, we demonstrated that both FGFR2 high-expression and SPRY2 low-expression indicated poorer prognosis of gastric adenocarcinoma. SPRY2 low-expression was significantly associated with FGFR2 high-expression, positive lymphatic invasion and metastasis. We further proved that SPRY2 could suppress FGFR2-induced ERK phosphorylation, cell proliferation and invasion with experiments in vitro and in vivo. In conclusion, we demonstrated that SPRY2 low-expression is a biomarker for unfavorable prognosis in gastric adenocarcinoma. SPRY2 can antagonize FGFR2-induced proliferation and invasion via suppressing ERK phosphorylation in gastric cancer cells, indicating SPRY2 as a potential therapeutic target for gastric adenocarcinoma treatment.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoqing Yang
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Neurology, Yidu Central Hospital of Weifang City, Weifang, Shandong, China
| | - Shuo Li
- 302 Hospital of People's Liberation Army, Beijing, China
| | - Sen Guo
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Sayed Ismail
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hongda Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhihong Huang
- Department of Neurosurgery, Yidu Central Hospital of Weifang City, Weifang, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuxin Chen
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
60
|
Jia Y, Nie K, Li J, Liang X, Zhang X. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses. Mol Med Rep 2016; 14:4844-4848. [PMID: 27748870 DOI: 10.3892/mmr.2016.5828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer's disease. Through bioinformatics analysis, potential therapeutic targets and associated biological processes were identified, which may assist in understanding and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yujie Jia
- Institute of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Kun Nie
- Institute of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jing Li
- Institute of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xinyue Liang
- Personnel Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xuezhu Zhang
- Institute of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
61
|
Shaverdashvili K, Zhang K, Osman I, Honda K, Jobava R, Bedogni B. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility. Oncotarget 2016; 6:33512-22. [PMID: 26392417 PMCID: PMC4741782 DOI: 10.18632/oncotarget.5258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 11/26/2022] Open
Abstract
Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keman Zhang
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Iman Osman
- From the Departments of Dermatology, Urology and Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Kord Honda
- From the Department of Pathology and Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rauli Jobava
- From the Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Barbara Bedogni
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
62
|
Cheng JC, Fang L, Chang HM, Sun YP, Leung PCK. hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS. Sci Rep 2016; 6:31675. [PMID: 27539669 PMCID: PMC4990972 DOI: 10.1038/srep31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Sprouty2 (SPRY2) is an important intracellular regulator for epidermal growth factor receptor (EGFR)-mediated ERK1/2 signaling. In human granulosa cells, although SPRY2 is expressed, its regulation and function remains complete unknown and must be defined. Our previous study has shown that human chorionic gonadotropin (hCG)/luteinizing hormone (LH) up-regulates the expression levels of EGF-like growth factor, amphiregulin (AREG), which subsequently contributes to the hCG/LH-induced COX-2 expression and PGE2 production. The aim of the present study was to investigate the effect of hCG on SPRY2 expression and the role of hCG-induced SPRY2 in AREG-stimulated COX-2 expression and PGE2 production in human granulosa cells. Our results demonstrated that the expression of SPRY2 was up-regulated by hCG treatment. Using pharmacological inhibitors and siRNA knockdown, we showed that activation of ERK1/2 signaling was required for hCG-induced up-regulation of SPRY2 expression. Further, SPRY2 knockdown attenuated the AREG-induced COX-2 expression and PGE2 production by inhibiting AREG-activated ERK1/2 signaling. Interestingly, we showed that SPRY2 expression levels were significantly increased in granulosa cells of ovarian hyperstimulation syndrome (OHSS) patients. These results for the first time elucidate the physiological roles of SPRY2 in human granulosa cells and suggest that aberrant expression of SPRY2 may contribute to the pathogenesis of OHSS.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Lanlan Fang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.,Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child &Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
63
|
Tsai WC, Chen CL, Chen HC. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling. Oncotarget 2016. [PMID: 26204488 PMCID: PMC4695156 DOI: 10.18632/oncotarget.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institutue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
64
|
EWS-FLI1-mediated suppression of the RAS-antagonist Sprouty 1 (SPRY1) confers aggressiveness to Ewing sarcoma. Oncogene 2016; 36:766-776. [PMID: 27375017 DOI: 10.1038/onc.2016.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Ewing sarcoma is characterized by chromosomal translocations fusing the EWS gene with various members of the ETS family of transcription factors, most commonly FLI1. EWS-FLI1 is an aberrant transcription factor driving Ewing sarcoma tumorigenesis by either transcriptionally inducing or repressing specific target genes. Herein, we showed that Sprouty 1 (SPRY1), which is a physiological negative feedback inhibitor downstream of fibroblast growth factor (FGF) receptors (FGFRs) and other RAS-activating receptors, is an EWS-FLI1 repressed gene. EWS-FLI1 knockdown specifically increased the expression of SPRY1, while other Sprouty family members remained unaffected. Analysis of SPRY1 expression in a panel of Ewing sarcoma cells showed that SPRY1 was not expressed in Ewing sarcoma cell lines, suggesting that it could act as a tumor suppressor gene in these cells. In agreement, induction of SPRY1 in three different Ewing sarcoma cell lines functionally impaired proliferation, clonogenic growth and migration. In addition, SPRY1 expression inhibited extracellular signal-related kinase/mitogen-activated protein kinase (MAPK) signaling induced by serum and basic FGF (bFGF). Moreover, treatment of Ewing sarcoma cells with the potent FGFR inhibitor PD-173074 reduced bFGF-induced proliferation, colony formation and in vivo tumor growth in a dose-dependent manner, thus mimicking SPRY1 activity in Ewing sarcoma cells. Although the expression of SPRY1 was low when compared with other tumors, SPRY1 was variably expressed in primary Ewing sarcoma tumors and higher expression levels were significantly associated with improved outcome in a large patient cohort. Taken together, our data indicate that EWS-FLI1-mediated repression of SPRY1 leads to unrestrained bFGF-induced cell proliferation, suggesting that targeting the FGFR/MAPK pathway can constitute a promising therapeutic approach for this devastating disease.
Collapse
|
65
|
Joo A, Long R, Cheng Z, Alexander C, Chang W, Klein OD. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone 2016; 88:170-179. [PMID: 27130872 PMCID: PMC4899137 DOI: 10.1016/j.bone.2016.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 01/16/2023]
Abstract
Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2(-/-) mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages.
Collapse
Affiliation(s)
- Adriane Joo
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Roger Long
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Courtney Alexander
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Wenhan Chang
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States; Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
66
|
Bosone C, Andreu A, Echevarria D. GAP junctional communication in brain secondary organizers. Dev Growth Differ 2016; 58:446-55. [PMID: 27273333 PMCID: PMC11520981 DOI: 10.1111/dgd.12297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer.
Collapse
Affiliation(s)
- Camilla Bosone
- Instituto de Neurociencias, Universidad Miguel Hernández & Consejo Superior de Investigaciones Científicas, 03550, Sant Joan d'Alacant, Spain
| | - Abraham Andreu
- Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, University Pierre and Marie Curie, Paris, France
| | - Diego Echevarria
- Instituto de Neurociencias, Universidad Miguel Hernández & Consejo Superior de Investigaciones Científicas, 03550, Sant Joan d'Alacant, Spain
| |
Collapse
|
67
|
Thongrong S, Hausott B, Marvaldi L, Agostinho AS, Zangrandi L, Burtscher J, Fogli B, Schwarzer C, Klimaschewski L. Sprouty2 and -4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage. Hippocampus 2016; 26:658-67. [PMID: 26540287 PMCID: PMC4949526 DOI: 10.1002/hipo.22549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 01/13/2023]
Abstract
Sprouty (Spry) proteins play a key role as negative feedback inhibitors of the Ras/Raf/MAPK/ERK pathway downstream of various receptor tyrosine kinases. Among the four Sprouty isoforms, Spry2 and Spry4 are expressed in the hippocampus. In this study, possible effects of Spry2 and Spry4 hypomorphism on neurodegeneration and seizure thresholds in a mouse model of epileptogenesis was analyzed. The Spry2/4 hypomorphs exhibited stronger ERK activation which was limited to the CA3 pyramidal cell layer and to the hilar region. The seizure threshold of Spry2/4(+/-) mice was significantly reduced at naive state but no difference to wildtype mice was observed 1 month following KA treatment. Histomorphological analysis revealed that dentate granule cell dispersion (GCD) was diminished in Spry2/4(+/-) mice in the subchronic phase after KA injection. Neuronal degeneration was reduced in CA1 and CA3 principal neuron layers as well as in scattered neurons of the contralateral CA1 and hilar regions. Moreover, Spry2/4 reduction resulted in enhanced survival of somatostatin and neuropeptide Y expressing interneurons. GFAP staining intensity and number of reactive astrocytes markedly increased in lesioned areas of Spry2/4(+/-) mice as compared with wildtype mice. Taken together, although the seizure threshold is reduced in naive Spry2/4(+/-) mice, neurodegeneration and GCD is mitigated following KA induced hippocampal lesions, identifying Spry proteins as possible pharmacological targets in brain injuries resulting in neurodegeneration. The present data are consistent with the established functions of the ERK pathway in astrocyte proliferation as well as protection from neuronal cell death and suggest a novel role of Spry proteins in the migration of differentiated neurons.
Collapse
Affiliation(s)
- Sitthisak Thongrong
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Medical University, Innsbruck, 6020, Innsbruck, Austria
| | - Barbara Hausott
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Medical University, Innsbruck, 6020, Innsbruck, Austria
| | - Letizia Marvaldi
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Medical University, Innsbruck, 6020, Innsbruck, Austria
| | | | - Luca Zangrandi
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Johannes Burtscher
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Barbara Fogli
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Medical University, Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Medical University, Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
68
|
An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell 2016; 37:85-97. [PMID: 27046834 PMCID: PMC4825408 DOI: 10.1016/j.devcel.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
The steady-state airway epithelium has a low rate of stem cell turnover but can nevertheless mount a rapid proliferative response following injury. This suggests a mechanism to restrain proliferation at steady state. One such mechanism has been identified in skeletal muscle in which pro-proliferative FGFR1 signaling is antagonized by SPRY1 to maintain satellite cell quiescence. Surprisingly, we found that deletion of Fgfr1 or Spry2 in basal cells of the adult mouse trachea caused an increase in steady-state proliferation. We show that in airway basal cells, SPRY2 is post-translationally modified in response to FGFR1 signaling. This allows SPRY2 to inhibit intracellular signaling downstream of other receptor tyrosine kinases and restrain basal cell proliferation. An FGFR1-SPRY2 signaling axis has previously been characterized in cell lines in vitro. We now demonstrate an in vivo biological function of this interaction and thus identify an active signaling mechanism that maintains quiescence in the airway epithelium.
Collapse
|
69
|
Booker BM, Friedrich T, Mason MK, VanderMeer JE, Zhao J, Eckalbar WL, Logan M, Illing N, Pollard KS, Ahituv N. Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus. PLoS Genet 2016; 12:e1005738. [PMID: 27019019 PMCID: PMC4809552 DOI: 10.1371/journal.pgen.1005738] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.
Collapse
Affiliation(s)
- Betty M. Booker
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Tara Friedrich
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Gladstone Institutes, San Francisco, California, United States of America
| | - Mandy K. Mason
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Julia E. VanderMeer
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Walter L. Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Malcolm Logan
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guys Campus, London, United Kingdom
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Gladstone Institutes, San Francisco, California, United States of America
- Division of Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (KSP); (NA)
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (KSP); (NA)
| |
Collapse
|
70
|
Moazedi-Fuerst FC, Gruber G, Stradner MH, Guidolin D, Jones JC, Bodo K, Wagner K, Peischler D, Krischan V, Weber J, Sadoghi P, Glehr M, Leithner A, Graninger WB. Effect of Laminin-A4 inhibition on cluster formation of human osteoarthritic chondrocytes. J Orthop Res 2016; 34:419-26. [PMID: 26295200 PMCID: PMC5727909 DOI: 10.1002/jor.23036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/14/2015] [Indexed: 02/04/2023]
Abstract
Formation of chondrocyte clusters is not only a morphological sign of osteoarthritis but it is also observed in cell culture. Active locomotion of chondrocytes is controlled by integrins in vitro. Integrins bind to Laminin-A4 (LAMA4), a protein that is highly expressed in vivo in clusters of hypertrophic chondrocytes. We tested if LAMA4 is relevant for cluster formation. Human chondrocytes were cultured in a 2D matrigel model and treated with different concentrations of a monoclonal inhibitory anti-LAMA4-antibody. Migration and cluster formation was analysed using live cell imaging technique. Full genome gene expression analysis was performed to assess the effect of LAMA4 inhibition. The data set were screened for genes relevant to cell motility. F-actin staining was performed to document cytoskeletal changes. Anti-LAMA4 treatment significantly reduced the rate of cluster formation in human chondrocytes. Cells changed their surface morphology and exhibited fewer protrusions. Expression of genes associated with cellular motility and migration was affected by anti-LAMA4 treatment. LAMA4-integrin signalling affects chondrocyte morphology and gene expression in vitro, thereby contributing to cluster formation in human osteoarthritic chondrocytes.
Collapse
Affiliation(s)
| | - Gerald Gruber
- Department of Orthopaedic Surgery, Medical University Graz
| | | | - Diego Guidolin
- Department of Molecular Medicine, Section of Anatomy, University of Padua
| | - Jonathan C. Jones
- Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago
| | - Koppany Bodo
- Department of Pathology, Medical University Graz
| | - Karin Wagner
- Center of Medical Research, Corefacility Molecular biology, Medical University Graz
| | | | - Verena Krischan
- Division of Rheumatology and Immunology, Medical University Graz
| | - Jennifer Weber
- Division of Rheumatology and Immunology, Medical University Graz
| | | | - Mathias Glehr
- Department of Orthopaedic Surgery, Medical University Graz
| | | | | |
Collapse
|
71
|
siRNA mediated down-regulation of Sprouty2/4 diminishes ischemic brain injury. Neurosci Lett 2016; 612:48-51. [PMID: 26655476 DOI: 10.1016/j.neulet.2015.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
Abstract
Down-regulation of Sprouty proteins promotes axon regeneration in lesioned nerves and prevents neurodegeneration following excitotoxic brain injury. In this study, siRNAs directed against Sprouty2 and -4 were stereotactically injected along with the vasoconstrictive peptide endothelin-1 to create cortical infarcts in the adult rat brain. A single injection of Sprouty2/4 siRNAs (25μM each) significantly decreased Spry2 and Spry4 mRNA levels two days later and diminished the size of the injury area in the subchronic phase following vasoconstriction. Reducing Spry2/4 genetically in mice is neuroprotective and stimulates injury-induced astrogliosis which limits neuronal cell death and lesion size. The present results are consistent with the established functions of negative feedback inhibitors of receptor tyrosine kinase signaling pathways in neuronal survival and glial proliferation and suggest a novel role for Spry2/4 as possible pharmacological targets in stroke patients.
Collapse
|
72
|
Sprouty 2: a novel attenuator of B-cell receptor and MAPK-Erk signaling in CLL. Blood 2016; 127:2310-21. [PMID: 26809508 DOI: 10.1182/blood-2015-09-669317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Clinical heterogeneity is a major barrier to effective treatment of chronic lymphocytic leukemia (CLL). Emerging evidence suggests that constitutive activation of various signaling pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-Erk) signaling plays a role in the heterogeneous clinical outcome of CLL patients. In this study, we have investigated the role of Sprouty (SPRY)2 as a negative regulator of receptor and nonreceptor tyrosine kinase signaling in the pathogenesis of CLL. We show that SPRY2 expression is significantly decreased in CLL cells, particularly from poor-prognosis patients compared with those from good-prognosis patients. Overexpression of SPRY2 in CLL cells from poor-prognosis patients increased their apoptosis. Conversely, downregulation of SPRY2 in CLL cells from good-prognosis patients resulted in increased proliferation. Furthermore, CLL cells with low SPRY2 expression grew more rapidly in a xenograft model of CLL. Strikingly, B-cell-specific transgenic overexpression of spry2 in mice led to a decrease in the frequency of B1 cells, the precursors of CLL cells in rodents. Mechanistically, we show that SPRY2 attenuates the B-cell receptor (BCR) and MAPK-Erk signaling by binding to and antagonizing the activities of RAF1, BRAF, and spleen tyrosine kinase (SYK) in normal B cells and CLL cells. We also show that SPRY2 is targeted by microRNA-21, which in turn leads to increased activity of Syk and Erk in CLL cells. Taken together, these results establish SPRY2 as a critical negative regulator of BCR-mediated MAPK-Erk signaling in CLL, thereby providing one of the molecular mechanisms to explain the clinical heterogeneity of CLL.
Collapse
|
73
|
Sprouty4 mediates amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells. Tumour Biol 2016; 37:9197-207. [DOI: 10.1007/s13277-016-4790-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022] Open
|
74
|
Morales AV, Espeso-Gil S, Ocaña I, Nieto-Lopez F, Calleja E, Bovolenta P, Lewandoski M, Diez Del Corral R. FGF signaling enhances a sonic hedgehog negative feedback loop at the initiation of spinal cord ventral patterning. Dev Neurobiol 2015; 76:956-71. [PMID: 26600420 DOI: 10.1002/dneu.22368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022]
Abstract
A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016.
Collapse
Affiliation(s)
- Aixa V Morales
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Sergio Espeso-Gil
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Inmaculada Ocaña
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain
| | - Francisco Nieto-Lopez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Elena Calleja
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| | - Paola Bovolenta
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain.,CIBER de Enfermedades Raras, Spain.,Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-UAM, Cantoblanco, 28049, Spain
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Ruth Diez Del Corral
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, 28002, Spain
| |
Collapse
|
75
|
Seki R, Kitajima K, Matsubara H, Suzuki T, Saito D, Yokoyama H, Tamura K. AP-2β is a transcriptional regulator for determination of digit length in tetrapods. Dev Biol 2015; 407:75-89. [DOI: 10.1016/j.ydbio.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
|
76
|
Hines EA, Sun X. Tissue crosstalk in lung development. J Cell Biochem 2015; 115:1469-77. [PMID: 24644090 DOI: 10.1002/jcb.24811] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
Lung development follows a stereotypic program orchestrated by key interactions among epithelial and mesenchymal tissues. Deviations from this developmental program can lead to pulmonary diseases including bronchopulmonary dysplasia and pulmonary hypertension. Significant efforts have been made to examine the cellular and molecular basis of the tissue interactions underlying these stereotypic developmental processes. Genetically engineered mouse models, lung organ culture, and advanced imaging techniques are a few of the tools that have expanded our understanding of the tissue interactions that drive lung development. Intimate crosstalk has been identified between the epithelium and mesenchyme, distinct mesenchymal tissues, and individual epithelial cells types. For interactions such as the epithelial-mesenchymal crosstalk regulating lung specification and branching morphogenesis, the key molecular players, FGF, BMP, WNT, and SHH, are well established. Additionally, VEGF regulation underlies the epithelial-endothelial crosstalk that coordinates airway branching with angiogenesis. Recent work also discovered a novel role for SHH in the epithelial-to-mesenchymal (EMT) transition of the mesothelium. In contrast, the molecular basis for the crosstalk between upper airway cartilage and smooth muscle is not yet known. In this review we examine current evidence of the tissue interactions and molecular crosstalk that underlie the stereotypic patterning of the developing lung and mediate injury repair.
Collapse
Affiliation(s)
- Elizabeth A Hines
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706
| | | |
Collapse
|
77
|
Li ASW, Marikawa Y. An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Mol Reprod Dev 2015; 82:1015-36. [PMID: 26387793 DOI: 10.1002/mrd.22585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Certain chemical agents act as teratogens, causing birth defects and fetal deaths when pregnant women are exposed to them. The establishment of in vitro models that recapitulate crucial embryonic events is therefore vital to facilitate screening of potential teratogens. Previously, we created a three-dimensional culture method for mouse P19C5 embryonal carcinoma stem cells that, when cultured as embryoid bodies, display elongation morphogenesis resembling gastrulation, which is the critical event resulting in the germ layers and major body axes. Determination of how well this in vitro morphogenesis represents in vivo gastrulation is essential to assess its applicability as well as to identify limitations of the model for detecting teratogenic agents. Here, we investigated the morphological and molecular characteristics of P19C5 morphogenesis using pharmacological agents that are known to cause abnormal patterning in the embryo in vivo by inhibiting major developmental signaling--e.g., involving Wnt, Nodal, Bone morphogenic protein (Bmp), Fibroblast growth factor (Fgf), Retinoic acid, Notch, and Hedgehog pathways. Inhibitors of Wnt, Nodal, Bmp, Fgf, and Retinoic acid signaling caused distinct changes in P19C5 morphogenesis that were quantifiable using morphometric parameters. These five inhibitors, plus the Notch inhibitor, also altered temporal expression profiles of developmental regulator genes in a manner consistent with the in vivo roles of the corresponding signaling pathways. In contrast, the Hedgehog inhibitor did not have any impact on the process, suggesting an absence of active Hedgehog signaling in these embryoid bodies. These results indicate that the P19C5 in vitro gastrulation model is a promising tool to screen for teratogenic agents that interfere with many of the key developmental signals.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| |
Collapse
|
78
|
Shin EH, Zhao G, Wang Q, Lovicu FJ. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling. Dev Biol 2015; 406:129-46. [PMID: 26375880 DOI: 10.1016/j.ydbio.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022]
Abstract
Sprouty proteins function as negative regulators of the receptor tyrosine kinase (RTK)-mediated Ras/Raf/MAPK pathway in many varied physiological and developmental processes, inhibiting growth factor-induced cellular proliferation, migration and differentiation. Like other negative regulators, Sprouty proteins are expressed in various organs during development, including the eye; ubiquitously expressed in the optic vesicle, lens pit, optic cup and lens vesicle. Given the synexpression of different antagonists (e.g, Sprouty, Sef, Spred) in the developing lens, to gain a better understanding of their specific role, in particular, their ability to regulate ocular growth factor signaling in lens cells, we characterized transgenic mice overexpressing Sprouty1 or Sprouty2 in the eye. Overexpression of Sprouty in the lens resulted in reduced lens and eye size during ocular morphogenesis, influenced by changes to the lens epithelium, aberrant fiber cell differentiation and compromised de novo maintenance of the lens capsule. Here we demonstrate an important inhibitory role for Sprouty in the regulation of lens cell proliferation and fiber differentiation in situ, potentially through its ability to modulate FGF- (and even EGF-) mediated MAPK/ERK1/2 signaling in lens cells. Whilst growth factor regulation of lens cell proliferation and fiber differentiation are required for orchestrating lens morphogenesis and growth, in turn, antagonists such as Sprouty are just as important for regulating the intracellular signaling pathways driving lens cellular processes.
Collapse
Affiliation(s)
- Eun Hae Shin
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Qian Wang
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
79
|
Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, Li L, Dong L, Guo L, Wang S. Autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell Death Dis 2015; 6:e1859. [PMID: 26291313 PMCID: PMC4558514 DOI: 10.1038/cddis.2015.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
The origin of rhabdomyosarcoma (RMS) remains controversial. However, specific microRNAs (miRNAs) are downregulated in RMS and it is possible that re-expression of these miRNAs may lead to differentiation. Transforming growth factor-β1 (TGF-β1) is known to block differentiation of RMS. We therefore analyzed miRNA microarrays of RMS cell lines with or without TGF-β1 knockdown and identified a novel anti-oncogene miR-411-5p. Re-expression of miR-411-5p inhibited RMS cell proliferation in vitro and tumorigenicity in vivo. Using a luciferase reporting system and sequence analysis, the potential target of miR-411-5p was identified as sprouty homolog 4 (SPRY4), which inhibits protein kinase Cα-mediated activation of mitogen-activated protein kinases (MAPKs), especially p38MAPK phosphorylation. These results revealed an inverse correlation between TGF-β1/SPRY4 and miR-411-5p levels. SPRY4 small interfering RNA and miR-411-5p both activated p38MAPK phosphorylation and also promoted apoptosis and myogenic differentiation, indicated by increased caspase-3, myosin heavy chain, and myosin expression. SPRY4 and miR-411 mRNA levels correlated with TGF-β1 expression levels in RMS tissues, which was confirmed by immunohistochemical staining for TGF-β1, SPRY4, and phosphorylated p38MAPK proteins. Overall, these results indicate that miR-411-5p acts as an RMS differentiation-inducing miRNA prompting p38MAPK activation via directly downregulating SPRY4. These results establish an autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK in RMS, which governs the switch between proliferation and differentiation.
Collapse
Affiliation(s)
- M Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - F Huang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - D Yu
- Department of Plastic Surgery, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Y Zhang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - H Xu
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Zhang
- Department of Surgery, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Li
- Department of Osteology, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - L Dong
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - L Guo
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - S Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
80
|
Abstract
Expression of the long noncoding RNA (lncRNA) SPRY4-IT1 is low in normal human melanocytes but high in melanoma cells. siRNA knockdown of SPRY4-IT1 blocks melanoma cell invasion and proliferation, and increases apoptosis. To investigate its function further, we affinity purified SPRY4-IT1 from melanoma cells and used mass spectrometry to identify the protein lipin 2, an enzyme that converts phosphatidate to diacylglycerol (DAG), as a major binding partner. SPRY4-IT1 knockdown increases the accumulation of lipin2 protein and upregulate the expression of diacylglycerol O-acyltransferase 2 (DGAT2) an enzyme involved in the conversion of DAG to triacylglycerol (TAG). When SPRY4-IT1 knockdown and control melanoma cells were subjected to shotgun lipidomics, an MS-based assay that permits the quantification of changes in the cellular lipid profile, we found that SPRY4-IT1 knockdown induced significant changes in a number of lipid species, including increased acyl carnitine, fatty acyl chains, and triacylglycerol (TAG). Together, these results suggest the possibility that SPRY4-IT1 knockdown may induce apoptosis via lipin 2-mediated alterations in lipid metabolism leading to cellular lipotoxicity.
Collapse
|
81
|
Lewandowski JP, Du F, Zhang S, Powell MB, Falkenstein KN, Ji H, Vokes SA. Spatiotemporal regulation of GLI target genes in the mammalian limb bud. Dev Biol 2015; 406:92-103. [PMID: 26238476 DOI: 10.1016/j.ydbio.2015.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
GLI proteins convert Sonic hedgehog (Shh) signaling into a transcriptional output in a tissue-specific fashion. The Shh pathway has been extensively studied in the limb bud, where it helps regulate growth through a SHH-FGF feedback loop. However, the transcriptional response is still poorly understood. We addressed this by determining the gene expression patterns of approximately 200 candidate GLI-target genes and identified three discrete SHH-responsive expression domains. GLI-target genes expressed in the three domains are predominately regulated by derepression of GLI3 but have different temporal requirements for SHH. The GLI binding regions associated with these genes harbor both distinct and common DNA motifs. Given the potential for interaction between the SHH and FGF pathways, we also measured the response of GLI-target genes to inhibition of FGF signaling and found the majority were either unaffected or upregulated. These results provide the first characterization of the spatiotemporal response of a large group of GLI-target genes and lay the foundation for a systems-level understanding of the gene regulatory networks underlying SHH-mediated limb patterning.
Collapse
Affiliation(s)
- Jordan P Lewandowski
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Fang Du
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Shilu Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Marian B Powell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Kristin N Falkenstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|
82
|
Hoch RV, Lindtner S, Price JD, Rubenstein JLR. OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 2015; 12:482-94. [PMID: 26166575 DOI: 10.1016/j.celrep.2015.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022] Open
Abstract
The Otx2 homeodomain transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after neurulation (approximately embryonic day 9.0). We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used chromatin immunoprecipitation sequencing to identify enhancer elements, the OTX2 binding motif, and de-regulated genes that are likely direct targets of OTX2 transcriptional regulation. We found that Otx2 was essential in septum specification, regulation of Fgf signaling in the rostral telencephalon, and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral, but not dorsal, identity, thus controlling the production of specific MGE derivatives.
Collapse
Affiliation(s)
- Renée V Hoch
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James D Price
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
83
|
Doriguzzi A, Haigl B, Gsur A, Sutterlüty-Fall H. The increased Sprouty4 expression in response to serum is transcriptionally controlled by Specific protein 1. Int J Biochem Cell Biol 2015; 64:220-8. [PMID: 25957915 DOI: 10.1016/j.biocel.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Abstract
Sprouty proteins control length and intensity of the intracellular signal transduction cascade activated by mitogens in the cellular environment. As part of a negative feedback loop, their expression is supposed to be elevated by the same factors. In this report, Sprouty4 expression in response to serum and the underlying regulatory mechanisms were investigated. We verified that Sprouty4 expression is activated by serum addition in all tested cells independent of their origin. Strict correlation between Sprouty4 protein levels and promoter activity indicates mainly transcriptional regulation of Sprouty4 serum-responsiveness. Induction of the mitogen-activated protein kinase pathway is required for Sprouty4 promoter activation in the presence of serum. Nonetheless, signal transduction via this pathway is not sufficient to fully induce the Sprouty4 promoter. Instead, deletion and mutation analysis identified two annotated Specific protein 1 binding sites as the critical cis-elements responsible for conferring the serum induction of the promoter. Corroborating, repressed Specific protein 1 activity or levels result in constitutive lowered transcriptional activity of the Sprouty4 promoter. These data demonstrate that Specific protein 1 plays a crucial role in the regulation of Sprouty4 in response to serum.
Collapse
Affiliation(s)
- Angelina Doriguzzi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Barbara Haigl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
84
|
Knosp WM, Knox SM, Lombaert IMA, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell 2015; 32:667-77. [PMID: 25805134 DOI: 10.1016/j.devcel.2015.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
Parasympathetic innervation is critical for submandibular gland (SMG) development and regeneration. Parasympathetic ganglia (PSG) are derived from Schwann cell precursors that migrate along nerves, differentiate into neurons, and coalesce within their target tissue to form ganglia. However, signals that initiate gangliogenesis after the precursors differentiate into neurons are unknown. We found that deleting negative regulators of FGF signaling, Sprouty1 and Sprouty2 (Spry1/2DKO), resulted in a striking loss of gangliogenesis, innervation, and keratin 5-positive (K5+) epithelial progenitors in the SMG. Here we identify Wnts produced by K5+ progenitors in the SMG as key mediators of gangliogenesis. Wnt signaling increases survival and proliferation of PSG neurons, and inhibiting Wnt signaling disrupts gangliogenesis and organ innervation. Activating Wnt signaling and reducing FGF gene dosage rescues gangliogenesis and innervation in both the Spry1/2DKO SMG and pancreas. Thus, K5+ progenitors produce Wnt signals to establish the PSG-epithelial communication required for organ innervation and progenitor cell maintenance.
Collapse
Affiliation(s)
- Wendy M Knosp
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | | | - Candace L Haddox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
85
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
86
|
Assinder SJ, Beniamen D, Lovicu FJ. Cosuppression of Sprouty and Sprouty-related negative regulators of FGF signalling in prostate cancer: a working hypothesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:827462. [PMID: 26075267 PMCID: PMC4449890 DOI: 10.1155/2015/827462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022]
Abstract
Deregulation of FGF receptor tyrosine kinase (RTK) signalling is common in prostate cancer. Normally, to moderate RTK signalling, induction of Sprouty (SPRY) and Sprouty-related (SPRED) antagonists occurs. Whilst decreased SPRY and SPRED has been described in some cancers, their role in prostate cancer is poorly understood. Therefore, we hypothesise that due to the need for tight regulation of RTK signalling, SPRY and SPRED negative regulators provide a degree of redundancy which ensures that a suppression of one or more family member does not lead to disease. Contrary to this, our analyses of prostates from 24-week-old Spry1- or Spry2-deficientmice, either hemizygous (+/-) or homozygous (-/-) for the null allele, revealed a significantly greater incidence of PIN compared to wild-type littermates. We further investigated redundancy of negative regulators in the clinical setting in a preliminary analysis of Gene Expression Omnibus and Oncomine human prostate cancer datasets. Consistent with our hypothesis, in two datasets analysed a significant cosuppression of SPRYs and SPREDs is evident. These findings demonstrate the importance of negative regulators of receptor tyrosine signalling, such as Spry, in the clinical setting, and highlight their importance for future pharmacopeia.
Collapse
Affiliation(s)
- Stephen J. Assinder
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniella Beniamen
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J. Lovicu
- Anatomy and Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
87
|
O'Shaughnessy KL, Dahn RD, Cohn MJ. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat Commun 2015; 6:6698. [PMID: 25868783 PMCID: PMC4403318 DOI: 10.1038/ncomms7698] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
The earliest known vertebrate copulatory organs are claspers, paired penis-like structures that are associated with evolution of internal fertilization and viviparity in Devonian placoderms. Today, only male chondrichthyans possess claspers, which extend from posterior pelvic fins and function as intromittent organs. Here we report that clasper development from pelvic fins of male skates is controlled by hormonal regulation of the Sonic hedgehog (Shh) pathway. We show that Shh signalling is necessary for male clasper development and is sufficient to induce clasper cartilages in females. Androgen receptor (AR) controls the male-specific pattern of Shh in pelvic fins by regulation of Hand2. We identify an androgen response element (ARE) in the Hand2 locus and present biochemical evidence that AR can directly bind the Hand2 ARE. Together, our results suggest that the genetic circuit for appendage development evolved an androgen regulatory input, which prolonged signalling activity and drove clasper skeletogenesis in male fins. Claspers are copulatory organs found in male cartilaginous fishes. Here, the authors show that androgen receptor signalling maintains the Shh pathway to promote clasper development in male skates and suggest the importance of hormonal regulation in the evolution of male copulatory organs.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA
| | | | - Martin J Cohn
- 1] Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA [2] Howard Hughes Medical Institute and Department of Biology, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA
| |
Collapse
|
88
|
Spry2 regulates signalling dynamics and terminal bud branching behaviour during lung development. Genet Res (Camb) 2015; 97:e5. [PMID: 25825238 DOI: 10.1017/s0016672315000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Development of mammalian lung involves reiterative outgrowth and branching of an epithelial tube into the surrounding mesenchymal bed. Each coordinated growth and branching cycle is driven by reciprocal signalling between epithelial and adjacent mesenchymal cells. This signalling network includes FGF, SHH, BMP4 and other pathways. We have characterized lung defects in 36Pub mice carrying a deletion that removes an antagonist of FGF signalling, Spry2. Spry2 deficient mice show an enlarged cystic structure located in the terminus of each lobes. Our study shows that Spry2 deficient lungs have reduced lung branching and the cystic structure forms in the early lung development stage. Furthermore, mice carrying a targeted disruption of Spry2 fail to complement the lung phenotype characterized in 36Pub mice. A Spry2-BAC transgene rescues the defect. Interestingly, cystic structure growth is accompanied by the reduced and spatially disorganized expression of Fgf10 and elevated expression of Shh and Bmp4. Altered signalling balance due to the loss of Spry2 causes a delayed branch cycle and cystic growth. Our data underscores the importance of restricting cellular responsiveness to signalling and highlights the interplay between morphogenesis events and spatial localization of gene expression.
Collapse
|
89
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
90
|
Andre P, Song H, Kim W, Kispert A, Yang Y. Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 2015; 142:1516-27. [PMID: 25813538 DOI: 10.1242/dev.119065] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movements and epithelial-mesenchymal transition (EMT) are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and Wnts regulate many aspects of gastrulation including CE and EMT. However, the Wnt ligands that regulate A-P axis elongation in mammalian development remain unknown. Wnt11 and Wnt5a regulate axis elongation in lower vertebrates, but only Wnt5a, not Wnt11, regulates mammalian PCP signaling and A-P axis elongation in development. Here, by generating Wnt5a; Wnt11 compound mutants, we show that Wnt11 and Wnt5a play redundant roles during mouse A-P axis elongation. Both genes regulate trunk notochord extension through PCP-controlled CE of notochord cells, establishing a role for Wnt11 in mammalian PCP. We show that Wnt5a and Wnt11 are required for proper patterning of the neural tube and somites by regulating notochord formation, and provide evidence that both genes are required for the generation and migration of axial and paraxial mesodermal precursor cells by regulating EMT. Axial and paraxial mesodermal precursors ectopically accumulate in the PS at late gastrula stages in Wnt5a(-/-); Wnt11(-/-) embryos and these cells ectopically express epithelial cell adhesion molecules. Our data suggest that Wnt5a and Wnt11 regulate EMT by inducing p38 (Mapk14) phosphorylation. Our findings provide new insights into the role of Wnt5a and Wnt11 in mouse early development and also in cancer metastasis, during which EMT plays a crucial role.
Collapse
Affiliation(s)
- Philipp Andre
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Hai Song
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Wantae Kim
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover D-30625, Germany
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
91
|
Abu-Elmagd M, Goljanek Whysall K, Wheeler G, Münsterberg A. Sprouty2 mediated tuning of signalling is essential for somite myogenesis. BMC Med Genomics 2015; 8 Suppl 1:S8. [PMID: 25783674 PMCID: PMC4315326 DOI: 10.1186/1755-8794-8-s1-s8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis.
Collapse
|
92
|
Fgf10 is required for specification of non-sensory regions of the cochlear epithelium. Dev Biol 2015; 400:59-71. [PMID: 25624266 DOI: 10.1016/j.ydbio.2015.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 11/20/2022]
Abstract
The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker׳s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10(-/+) embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10(-/-) embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner׳s membrane and a large portion of the outer sulcus-two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner׳s membrane as early as E12.5-E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner׳s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations.
Collapse
|
93
|
Lavado A, Ware M, Paré J, Cao X. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development 2014; 141:4182-93. [PMID: 25336744 DOI: 10.1242/dev.111260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Ware
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
94
|
So WK, Cheng JC, Fan Q, Wong AST, Huntsman DG, Gilks CB, Leung PCK. Loss of Sprouty2 in human high-grade serous ovarian carcinomas promotes EGF-induced E-cadherin down-regulation and cell invasion. FEBS Lett 2014; 589:302-9. [PMID: 25533808 DOI: 10.1016/j.febslet.2014.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022]
Abstract
Sprouty (SPRY) proteins are well-characterized factors that inhibit receptor tyrosine kinase signaling. Our Human Exonic Evidence-Based Oligonucleotide (HEEBO) microarray results showed that the mRNA levels of SPRY2, but not of SPRY1 or SPRY4, are down-regulated in high-grade serous ovarian carcinoma (HGSC) tissues and epithelial ovarian cancer (EOC) cell lines. Molecular inversion probe (MIP) copy number analysis showed the deletion of the SPRY2 locus in HGSC. Overexpression of SPRY2 reduced EGF-induced cell invasion by attenuating EGF-induced E-cadherin down-regulation. Moreover, a positive correlation between SPRY2 and E-cadherin protein levels was observed in HGSC tissues. This study reveals the loss of SPRY2 in HGSC and indicates an important tumor-suppressive role for SPRY2 in mediating the stimulatory effect of EGF on human EOC progression.
Collapse
Affiliation(s)
- Wai-Kin So
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
95
|
Craniosynostosis, psychomotor retardation, and facial dysmorphic features in a Spanish patient with a 4q27q28.3 deletion. Childs Nerv Syst 2014; 30:2157-61. [PMID: 24980605 DOI: 10.1007/s00381-014-2474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/16/2014] [Indexed: 01/25/2023]
Abstract
CASE REPORT We describe an unusual clinical case with an 11-Mb deletion at 4q27 (chr4: 123094652-134164491), craniosynostosis (CS), mild psychomotor retardation, and facial dysmorphic features. This deletion involves 18 genes; FGF2, NUDT6, and SPRY1 are primarily or secondarily implicated in human cranial bone and sagittal suture development and could play an important role in CS. CONCLUSIONS Clinicians should always contemplate genetic studies in patients with syndromic CS. Mutational targeted genetic testing is appropriate for patients with classical or specific CS syndrome. Nevertheless, array comparative genomic hybridization (array CGH) should be considered as a first-line test in nontypical syndromic CS phenotype. Cytogenetic studies are decisive for genetic counseling indeed.
Collapse
|
96
|
Lin CL, Chiang WF, Tung CL, Hsieh JL, Hsiao JR, Huang WT, Feng LY, Chang CH, Liu SY, Tsao CJ, Feng YH. Sprouty2 protein is downregulated in human squamous cell carcinoma of the head and neck and suppresses cell proliferation in vitro. Mol Med Rep 2014; 11:547-54. [PMID: 25333206 DOI: 10.3892/mmr.2014.2700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
Abstract
Sprouty2 is known for its tumor-suppressing effect in various human malignant diseases. In head and neck squamous cell carcinoma (HNSCC), the role of sprouty2 in tumorigenesis and clinical implication remains elusive. The aim of the present study was to investigate the expression of sprouty2 in patients with HNSCC and its function in vitro. Quantitative analysis of mRNA expression of sprouty2 was performed on frozen tumor samples from 42 patients with HNSCC and 19 with oral verrucous hyperplasia (OVH) with paired counterparts of normal mucosa. Downregulation of sprouty2 expression was demonstrated in 79% of HNSCC samples and in 58% of OVH samples compared with paired samples of normal mucosa. Enhanced expression of sprouty2 protein suppressed the growth of HNSCC cells and signaling of the phosphorylated AKT pathway. Following transfection of the sprouty2 plasmid, HNSCC cells were more sensitive to sorafenib, a tyrosine kinase inhibitor of Raf and vascular endothelial growth factor receptor. The present study suggested that sprouty2 expression was downregulated and behaved as a tumor suppressor in HNSCC. Sprouty2 expression in tumor cells enhanced sensitivity to sorafenib. Further studies are required to define the clinical impact of sprouty2 in patients with HNSCC.
Collapse
Affiliation(s)
- Chiang-Liang Lin
- Department of Hematology and Oncology, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Wei-Fan Chiang
- Department of Dentology, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Chao-Ling Tung
- Department of Hematology and Oncology, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C
| | - Jeng-Long Hsieh
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan, R.O.C
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70101, Taiwan, R.O.C
| | - Wen-Tsung Huang
- Department of Hematology and Oncology, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Li-Yia Feng
- National Kaohsiung University of Hospitality and Tourism, Kaohsiung 81271, Taiwan, R.O.C
| | - Chi-Hua Chang
- Department of Dentology, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Shyun-Yeu Liu
- Department of Dentistry, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C
| | - Chao-Jung Tsao
- Department of Hematology and Oncology, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Yin-Hsun Feng
- Department of Hematology and Oncology, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C
| |
Collapse
|
97
|
Firulli BA, Fuchs RK, Vincentz JW, Clouthier DE, Firulli AB. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis. Development 2014; 141:3050-61. [PMID: 25053435 DOI: 10.1242/dev.107680] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning.
Collapse
Affiliation(s)
- Beth A Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Robyn K Fuchs
- Department of Physical Therapy and the Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Science, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E 17th Avenue, Rm. 11-109, MS 8120, Aurora, CO 80045, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
98
|
Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, Zhao RCH. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem 2014; 114:1374-84. [PMID: 23239100 DOI: 10.1002/jcb.24479] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
The ERK-MAPK signaling pathway plays a pivotal role during mesenchymal stem cell (MSC) differentiation. Studies have demonstrated that ERK-MAPK promotes adipogenesis and osteogenesis through the phosphorylation of differentiation-associated transcription factors and that it is the only active signaling in all three lineages (adipogenic, chondrogenic, and osteogenic) during MSC differentiation. Recent studies pointed to the significant roles of microRNA-21 (miR-21) during several physiological and pathological processes, especially stem cell fate determination. The miR-21 expression pattern is also correlated with ERK-MAPK activity. Here, we found that miR-21 expression is elevated and associated with an increased differentiation potential in MSCs during adipogenesis and osteogenesis. The overexpression of miR-21 elevated the expression level of the differentiation-associated genes PPARγ and Cbfa-1 during MSC differentiation, whereas miR-21 knockdown reduced the expression level of both genes. The ERK-MAPK signaling pathway activity had an increasing tendency to respond to miR-21 upregulation and a decreasing tendency to respond to miR-21 down-regulation during the first 4 days of adipogenesis and osteogenesis. Our data indicate that miR-21 modulated ERK-MAPK signaling activity by repressing SPRY2 expression, a known regulator of the receptor tyrosine kinase (RTK) signaling pathway, to affect the duration and magnitude of ERK-MAPK activity. The ERK-MAPK signaling pathway was regulated by Sprouty2 (SPRY2) expression via a miR-21-mediated mechanism during MSC differentiation.
Collapse
Affiliation(s)
- Yang Mei
- Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
99
|
Olivera-Martinez I, Schurch N, Li RA, Song J, Halley PA, Das RM, Burt DW, Barton GJ, Storey KG. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo. Development 2014; 141:3266-76. [PMID: 25063452 PMCID: PMC4197544 DOI: 10.1242/dev.112623] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation.
Collapse
Affiliation(s)
- Isabel Olivera-Martinez
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nick Schurch
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Roman A Li
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Junfang Song
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pamela A Halley
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Raman M Das
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dave W Burt
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Geoffrey J Barton
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
100
|
Norrie JL, Lewandowski JP, Bouldin CM, Amarnath S, Li Q, Vokes MS, Ehrlich LIR, Harfe BD, Vokes SA. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly. Dev Biol 2014; 393:270-281. [PMID: 25034710 DOI: 10.1016/j.ydbio.2014.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/20/2023]
Abstract
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Jordan P Lewandowski
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Cortney M Bouldin
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Smita Amarnath
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Martha S Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, College of Medicine, UF Genetics Institute, 2033 Mowry Road, Gainesville, Florida 32610, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|