51
|
Dentice M, Luongo C, Elefante A, Romino R, Ambrosio R, Vitale M, Rossi G, Fenzi G, Salvatore D. Transcription factor Nkx-2.5 induces sodium/iodide symporter gene expression and participates in retinoic acid- and lactation-induced transcription in mammary cells. Mol Cell Biol 2004; 24:7863-77. [PMID: 15340050 PMCID: PMC515029 DOI: 10.1128/mcb.24.18.7863-7877.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sodium/iodide symporter (NIS) is a plasma membrane protein that mediates active iodide transport in thyroid and mammary cells. It is a prerequisite for radioiodide treatment of thyroid cancer and a promising diagnostic and therapeutic tool for breast cancer. We investigated the molecular mechanisms governing NIS expression in mammary cells. Here we report that Nkx-2.5, a cardiac homeobox transcription factor that is also expressed in the thyroid primordium, is a potent inducer of the NIS promoter. By binding to two specific promoter sites (N2 and W), Nkx-2.5 induced the rNIS promoter (about 50-fold over the basal level). Interestingly, coincident with NIS expression, Nkx-2.5 mRNA and protein were present in lactating, but not virgin, mammary glands in two human breast cancer samples and in all-trans retinoic acid (tRA)-stimulated MCF-7 breast cancer cells. A cotransfected dominant-negative Nkx-2.5 mutant abolished tRA-induced endogenous NIS induction, which shows that Nkx-2.5 activity is critical for this process. Remarkably, in MCF-7 cells, Nkx-2.5 overexpression alone was sufficient to induce NIS and iodide uptake. In conclusion, Nkx-2.5 is a novel relevant transcriptional regulator of mammary NIS and could thus be exploited to manipulate NIS expression in breast cancer treatment strategies.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression
- HeLa Cells
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/metabolism
- Humans
- Lactation/genetics
- Lactation/metabolism
- Mutagenesis, Site-Directed
- Pregnancy
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Rats
- Symporters/genetics
- Thyroid Gland/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Monica Dentice
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Brown CO, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 2003; 279:10659-69. [PMID: 14662776 DOI: 10.1074/jbc.m301648200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian homologue of Drosophila tinman, Nkx2-5, plays an early role in regulating cardiac genes and morphogenesis. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family of signaling molecules, are involved in numerous developmental processes. BMP signaling is crucial in the regulation of Nkx2-5 expression and specification of the cardiac lineage. Constitutively active BMP type I receptor or the downstream pathway components and DNA-binding transcription factors, Smad1/4 directly activated Nkx2-5 gene transcription. We identified and characterized a novel upstream Nkx2-5 enhancer, composed of clustered repeats of Smad and GATA DNA binding sites. This composite Nkx2-5 enhancer was a direct target of BMP signaling via cooperative interactions between the downstream transducers Smad1/4 and GATA-4. In mammalian two hybrid assays, Smad factors recruited the hybrid gene GATA4-VP16 to strongly drive transcription of a reporter gene containing multimerized Smad binding sites These cofactors interacted through the second zinc finger and adjacent basic domain of GATA-4 and the N-terminal domain of Smads. Smad4 and GATA4 were also found to bind in vivo with the Nkx2-5 composite enhancer, as revealed by chromatin immunoprecipitation analysis of differentiated P19 cells. Finally, transgenic mice containing the Smad/GATA composite enhancer recapitulated early murine Nkx2-5 cardiac expression and deletion of this enhancer within a 10-kb transgene pBS-Nkx2-5 LacZ significantly reduced expression in the cardiac crescent. Thus, integration of GATA transcription factors with BMP signaling, through co-association with Smads factors, may initiate early Nkx2-5 expression; suggesting a vital role for the combination of these factors in the specification of cardiac progenitors.
Collapse
Affiliation(s)
- Carl O Brown
- Department of Molecular and Cellular Biology, The Center for Cardiovascular Development, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
The heart develops from two bilateral heart fields that are formed during early gastrulation. In recent years, signaling pathways that specify cardiac mesoderm have been extensively analyzed. In addition, a battery of transcription factors that regulate different aspects of cardiac morphogenesis and cytodifferentiation have been identified and characterized in model organisms. At the anterior pole, a secondary heart field is formed, which in its molecular make-up, appears to be similar to the primary heart field. The cardiac outflow tract and the right ventricle to a large extent are derivatives of this anterior heart field. Cardiac mesoderm receives positional information by which it is patterned along the three body axes. The molecular control of left-right axis development has received particular attention, and the underlying regulatory network begins to emerge. Cardiac chamber development involves the activation of a transcription program that is different from the one present in the primary heart field and regulates cardiac morphogenesis in a region-specific manner. This review also attempts to identify areas in which additional research is needed to fully understand early cardiac development.
Collapse
Affiliation(s)
- Thomas Brand
- Department of Cell and Molecular Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
54
|
Chi X, Zhang SX, Yu W, DeMayo FJ, Rosenberg SM, Schwartz RJ. Expression of Nkx2-5-GFP bacterial artificial chromosome transgenic mice closely resembles endogenous Nkx2-5 gene activity. Genesis 2003; 35:220-6. [PMID: 12717733 DOI: 10.1002/gene.10181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse Nkx2-5 gene is essential for early heart development and it is regulated by a complex array of regulatory modules. In order to establish an efficient in vivo system for mapping the Nkx2-5 genomic locus for regulatory regions, we developed improved homologous recombination technology for use in Escherichia coli and then knocked an IRES-hrGFP reporter gene into Nkx2-5 gene in a 120 kb Nkx2-5 bacterial artificial chromosome (BAC) clone. We employed the recombination genes redalpha and redbeta under the pBAD promoter, which was specifically induced by the addition of L-arabinose. Recombination was selected for by our universal targeting cassette which conferred kanamycin resistance in bacterial cells and neomycin resistance in mammalian cells. Transgenic mouse lines generated from this modified BAC clone closely resembled the endogenous Nkx2-5 expression in the heart, pylorus sphincter, and spleen, but expression was not detected in the tongue. Nkx2-5 BAC-GFP expression was copy number-dependent and locus site-independent. BAC transgenics using the GFP reporter offers an efficient model system to study gene expression and regulation.
Collapse
Affiliation(s)
- Xuan Chi
- Graduate Program in Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
55
|
Brand T, Andrée B, Schlange T. Molecular characterization of early cardiac development. Results Probl Cell Differ 2003; 38:215-38. [PMID: 12132397 DOI: 10.1007/978-3-540-45686-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Thomas Brand
- Institute of Biochemistry and Biotechnology, Department of Cell and Molecular Biology, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
56
|
Firulli AB, Thattaliyath BD. Transcription factors in cardiogenesis: the combinations that unlock the mysteries of the heart. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:1-62. [PMID: 11893163 DOI: 10.1016/s0074-7696(02)14002-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart formation is one of the first signs of organogenesis within the developing embryo and this process is conserved from flies to man. Completing the genetic roadmap of the molecular mechanisms that control the cell specification and differentiation of cells that form the developing heart has been an exciting and fast-moving area of research in the fields of molecular and developmental biology. At the core of these studies is an interest in the transcription factors that are responsible for initiation of a pluripotent cell to become programmed to the cardiac lineage and the subsequent transcription factors that implement the instructions set up by the cells commitment decision. To gain a better understanding of these pathways, cardiac-expressed transcription factors have been identified, cloned, overexpressed, and mutated to try to determine function. Although results vary depending on the gene in question, it is clear that there is a striking evolutionary conservation of the cardiogenic program among species. As we move up the evolutionary ladder toward man, we encounter cases of functional redundancy and combinatorial interactions that reflect the complex networks of gene expression that orchestrate heart development. This review focuses on what is known about the transcription factors implicated in heart formation and the role they play in this intricate genetic program.
Collapse
Affiliation(s)
- Anthony B Firulli
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | | |
Collapse
|
57
|
Abstract
The heart is the first organ to form during embryogenesis and its circulatory function is critical from early on for the viability of the mammalian embryo. Developmental abnormalities of the heart have also been widely recognized as the underlying cause of many congenital heart malformations. Hence, the developmental mechanisms that orchestrate the formation and morphogenesis of this organ have received much attention among classical and molecular embryologists. Due to the evolutionary conservation of many of these processes, major insights have been gained from the studies of a number of vertebrate and invertebrate models, including mouse, chick, amphibians, zebrafish, and Drosophila. In all of these systems, the heart precursors are generated within bilateral fields in the lateral mesoderm and then converge toward the midline to form a beating linear heart tube. The specification of heart precursors is a result of multiple tissue and cell-cell interactions that involve temporally and spatially integrated programs of inductive signaling events. In the present review, we focus on the molecular and developmental functions of signaling processes during early cardiogenesis that have been defined in both vertebrate and invertebrate models. We discuss the current knowledge on the mechanisms through which signals induce the expression of cardiogenic transcription factors and the relationships between signaling pathways and transcriptional regulators that cooperate to control cardiac induction and the formation of a linear heart tube.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, NY 10029, USA
| | | |
Collapse
|
58
|
Shirai M, Osugi T, Koga H, Kaji Y, Takimoto E, Komuro I, Hara J, Miwa T, Yamauchi-Takihara K, Takihara Y. The Polycomb-group gene Rae28 sustains Nkx2.5/Csx expression and is essential for cardiac morphogenesis. J Clin Invest 2002. [DOI: 10.1172/jci0214839] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
59
|
Huang F, Wagner M, Siddiqui MAQ. Structure, expression, and functional characterization of the mouse CLP-1 gene. Gene 2002; 292:245-59. [PMID: 12119119 DOI: 10.1016/s0378-1119(02)00596-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mouse CLP-1, a potential cardiac transcriptional regulatory factor, is encoded by a single copy gene lacking introns that is expressed into two mRNAs via alternative polyadenylation. Both mRNAs encode the same 41 kDa protein, a novel protein that is 85.3% homologous with a human homologue called HIS1. Mouse CLP-1 is widely expressed in a number of tissues as well as in early development and is localized to the nucleus. The CLP-1 gene promoter is active in different cell types and sequence analysis shows a number of potential binding sites for cardiogenic transcription factors such as Nkx2.5 and GATA-4, indicating a potential role in development. CLP-1 appears to "squelch" the cardiac MLC-2v promoter in a concentration-dependent manner in cardiac but not other cell types, suggesting that CLP-1 may be interacting with a cardiac-specific factor to regulate cardiac MLC-2v expression. The overall expression pattern of CLP-1 is similar to that of LCR-F1 and Oct-1, two widely expressed transcription factors that also play specific roles in the transcription of cell-specific genes. CLP-1 may be a transcriptional mediator capable of interacting with and potentiating cell-specific transcription factors.
Collapse
MESH Headings
- Acetamides/pharmacology
- Amino Acid Sequence
- Animals
- Bacteria/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cell Line
- Cells, Cultured
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myosin Light Chains/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Rats
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Facan Huang
- Department of Anatomy and Cell Biology, Center for Cardiovascular and Muscle Research, Box 5, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
60
|
Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002; 246:14-28. [PMID: 12027431 DOI: 10.1006/dbio.2002.0666] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of the heart is dependent on an intricate cascade of developmental decisions. Analysis of the molecules and mechanisms involved in the specification of cardiac cell fates, differentiation and diversification of cardiac muscle cells, and morphogenesis and patterning of different cardiac cell types has revealed an evolutionarily conserved network of signaling pathways and transcription factors that underlies these processes. The regulatory network that controls the formation of the primitive heart in fruit flies has been elaborated upon to form the complex multichambered heart of mammals. We compare and contrast the mechanisms involved in heart formation in fruit flies and mammals in the context of a network of transcriptional interactions and point to unresolved questions for the future.
Collapse
Affiliation(s)
- Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque 87131-1091, USA.
| | | |
Collapse
|
61
|
Lien CL, McAnally J, Richardson JA, Olson EN. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol 2002; 244:257-66. [PMID: 11944935 DOI: 10.1006/dbio.2002.0603] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart formation in vertebrates and fruit flies requires signaling by bone morphogenetic proteins (BMPs) to cardiogenic mesodermal precursor cells. The vertebrate homeobox gene Nkx2-5 and its Drosophila ortholog, tinman, are the earliest known markers for the cardiac lineage. Transcriptional activation of tinman expression in the cardiac lineage is dependent on a mesoderm-specific enhancer that binds Smad proteins, which activate transcription in response to BMP signaling, and Tinman, which maintains its own expression through an autoregulatory loop. Here, we show that an evolutionarily conserved, cardiac-specific enhancer of the mouse Nkx2-5 gene contains multiple Smad binding sites, as well as a binding site for Nkx2-5. A single Smad site is required for enhancer activity at early and late stages of heart development in vivo, whereas the Nkx2-5 site is not required for enhancer activity. These findings demonstrate that Nkx2-5, like tinman, is a direct target for transcriptional activation by Smad proteins; however, the independence of this Nkx2-5 enhancer of Nkx2-5 binding suggests a fundamental difference in the transcriptional circuitry for activation of Nkx2-5 and tinman expression during cardiogenesis in vertebrates and fruit flies.
Collapse
Affiliation(s)
- Ching-Ling Lien
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
62
|
Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE. Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev Biol 2002; 244:243-56. [PMID: 11944934 DOI: 10.1006/dbio.2002.0604] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.
Collapse
Affiliation(s)
- Christine M Liberatore
- Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
63
|
Kuchenthal CA, Chen W, Okkema PG. Multiple enhancers contribute to expression of the NK-2 homeobox gene ceh-22 in C. elegans pharyngeal muscle. Genesis 2001; 31:156-66. [PMID: 11783006 DOI: 10.1002/gene.10018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression in the pharyngeal muscles of C. elegans is regulated in part by the NK-2 family homeodomain factor CEH-22, which is structurally and functionally related to Drosophila Tinman and the vertebrate Nkx2-5 factors. ceh-22 is expressed exclusively in the pharyngeal muscles and is the earliest gene known to be expressed in this tissue. Here we characterize the ceh-22 promoter region in transgenic C. elegans. A 1.9-kb fragment upstream of ceh-22 is sufficient to regulate reporter gene expression in a pattern identical to the endogenous gene. Within this promoter we identified two transcriptional enhancers and characterized their cell type and temporal specificity. The distal enhancer becomes active in the pharynx near the time that ceh-22 expression initiates; however, it becomes active more broadly later in development. The proximal enhancer becomes active after the onset of ceh-22 expression, but it is active specifically in the ceh-22-expressing pharyngeal muscles. We suggest these enhancers respond to distinct signals that initiate and maintain ceh-22 gene expression. Proximal enhancer activity requires a short segment containing a CEH-22 responsive element, suggesting that CEH-22 autoregulates its own expression.
Collapse
Affiliation(s)
- C A Kuchenthal
- Department of Biological Sciences and the Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
64
|
Abstract
Development of the embryonic vertebrate heart requires the precise coordination of pattern formation and cell movement. Taking advantage of the availability of zebrafish mutations that disrupt cardiogenesis, several groups have identified key regulators of specific aspects of cardiac patterning and morphogenesis. Several genes, including gata5, fgf8, bmp2b, one-eyed pinhead, and hand2, have been shown to be relevant to the patterning events that regulate myocardial differentiation. Studies of mutants with morphogenetic defects have indicated at least six genes that are essential for cardiac fusion and heart tube assembly, including casanova, bonnie and clyde, gata5, one-eyed pinhead, hand2, miles apart, and heart and soul. Furthermore, analysis of the jekyll gene has indicated its important role during the morphogenesis of the atrioventricular valve. Altogether, these data provide a substantial foundation for future investigations of cardiac patterning, cardiac morphogenesis, and the relationship between these processes.
Collapse
Affiliation(s)
- D Yelon
- Developmental Genetics Program, Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
65
|
Nemer G, Nemer M. Regulation of heart development and function through combinatorial interactions of transcription factors. Ann Med 2001; 33:604-10. [PMID: 11817655 DOI: 10.3109/07853890109002106] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular mechanisms controlling cardiac-specific gene transcription requires the dissection of the cis-elements that govern the complex spatio-temporal expression of these genes. The four-chambered vertebrate heart is formed during the late phases of fetal development following a series of complex morphogenetic events that require the functional presence of different proteins. The gradient-like expression of some genes, as well as the chamber-specific expression of others, is tightly regulated by combinatorial interactions of several transcription factors and their cofactors. Chamber- and stage-specific cardiac myocyte cultures have been invaluable for identifying transcription factor binding sites involved in basal, chamber-specific, and inducible expression of many cardiac promoters; these studies, which were largely confirmed in vivo in transgenic mouse models, led to the isolation of key regulators of heart development. In addition, the use of pluripotent embryonic stem cells helped elucidate the early molecular events controlling cardiomyocyte differentiation. Together, these studies point to a major role for GATA transcription factors and their interacting partners in transcriptional control of heart development. In addition, members of the T-box family of transcription factors and homeodomain containing proteins, together with chamber-restricted transcriptional repressors and co-repressors play critical roles in heart septation and chamber specification. These fine-tuned cooperative interactions between different classes of proteins are at the basis of normal cardiac function, and alteration in their expression level or function leads to cardiac pathologies.
Collapse
Affiliation(s)
- G Nemer
- Department of Pharmacology, University of Montréal, Québec, Canada
| | | |
Collapse
|
66
|
Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis 2001; 31:176-80. [PMID: 11783008 DOI: 10.1002/gene.10022] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nkx2-5, one of the earliest cardiac-specific markers in vertebrate embryos, was used as a genetic locus to knock in the Cre recombinase gene by homologous recombination. Offspring resulting from heterozygous Nkx2-5/Cre mice mated to ROSA26 (R26R) reporter mice provided a model system for following Nkx2-5 gene activity by beta-galactosidase (beta-gal) activity. beta-gal activity was initially observed in the early cardiac crescent, cardiomyocytes of the looping heart tube, and in the epithelium of the first pharyngeal arch. In later stage embryos (10.5-13.5 days postcoitum, dpc), beta-gal activity was observed in the stomach and spleen, the dorsum of the tongue, and in the condensing primordium of the tooth. The Nkx2-5/Cre mouse model should provide a useful genetic resource to elucidate the role of loxP manipulated genetic targets in cardiogenesis and other developmental processes.
Collapse
Affiliation(s)
- K A Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
67
|
Davis DL, Edwards AV, Juraszek AL, Phelps A, Wessels A, Burch JB. A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev 2001; 108:105-19. [PMID: 11578865 DOI: 10.1016/s0925-4773(01)00500-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transcriptional programs that specify the distinct components of the cardiac conduction system are poorly understood, in part due to a paucity of definitive molecular markers. In the present study we show that a cGATA-6 gene enhancer can be used to selectively express transgenes in the atrioventricular (AV) conduction system as it becomes manifest in the developing multichambered mouse heart. Furthermore, our analysis of staged cGATA-6/lacZ embryos revealed that the activity of this heart-region-specific enhancer can be traced back essentially to the outset of the cardiogenic program. We provide evidence that this enhancer reads medial/lateral and anterior/posterior positional information before the heart tube forms and we show that the activity of this enhancer becomes restricted at the heart looping stage to AV myocardial cells that induce endocardial cushion formation. We infer that a deeply-rooted heart-region-specific transcriptional program serves to coordinate AV valve placement and AV conduction system formation. Lastly, we show that cGATA-6/Cre mice can be used to delete floxed genes in the respective subsets of specialized heart cells.
Collapse
Affiliation(s)
- D L Davis
- Department of Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
68
|
Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 2001; 276:28586-97. [PMID: 11382772 DOI: 10.1074/jbc.m103166200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of glycogen synthase kinase 3beta (GSK3beta) is critical for transcription of atrial natriuretic factor (ANF) by beta-adrenergic receptors in cardiac myocytes. We examined the mechanism by which GSK3beta regulates ANF transcription. Stimulation of beta-adrenergic receptors induced nuclear accumulation of GATA4, whereas beta-adrenergic ANF transcription was suppressed by dominant negative GATA4, suggesting that GATA4 plays an important role in beta-adrenergic ANF transcription. Interestingly, GATA4-mediated transcription was markedly attenuated by GSK3beta. GSK3beta physically associates with GATA4 and phosphorylates GATA4 in vitro. Overexpression of GSK3beta suppressed both basal and beta-adrenergic increases in nuclear expression of GATA4, whereas inhibition of GSK3beta by LiCl caused nuclear accumulation of GATA4, suggesting that GSK3beta negatively regulates nuclear expression of GATA4. The nuclear exportin Crm1 reduced nuclear expression of GATA4, and the reduction was enhanced by GSK3beta but not by kinase-inactive GSK3beta. Leptomycin B, an inhibitor for Crm1, increased basal nuclear GATA4 and suppressed GSK3beta-induced decreases in nuclear GATA4. These results suggest that GSK3beta negatively regulates nuclear expression of GATA4 by stimulating Crm1-dependent nuclear export. Inhibition of GSK3beta by beta-adrenergic stimulation abrogates GSK3beta-induced nuclear export of GATA4, causing nuclear accumulation of GATA4, which may represent an important signaling mechanism mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- C Morisco
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
69
|
Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel-Duby R, Williams RS. Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation 2001; 103:2731-8. [PMID: 11390345 DOI: 10.1161/01.cir.103.22.2731] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A deficiency of muscle LIM protein results in dilated cardiomyopathy, but the function of other LIM proteins in the heart has not been assessed previously. We have characterized the expression and function of FHL2, a heart-specific member of the LIM domain gene family. METHODS AND RESULTS Expression of FHL2 mRNA and protein was examined by Northern blot, in situ hybridization, and Western blot analyses of fetal and adult mice. FHL2 transcripts are present at embryonic day (E) 7.5 within the cardiac crescent in a pattern that resembles that of Nkx2.5 mRNA. During later stages of cardiac development and in adult animals, FHL2 expression is localized to the myocardium and absent from endocardium, cardiac cushion, outflow tract, or coronary vasculature. The gene encoding FHL2 was disrupted by homologous recombination, and knockout mice devoid of FHL2 were found to undergo normal cardiovascular development. In the absence of FHL2, however, cardiac hypertrophy resulting from chronic infusion of isoproterenol is exaggerated (59% versus 20% increase in heart weight/body weight in FHL null versus wild-type mice; P<0.01). CONCLUSIONS FHL2 is an early marker of cardiogenic cells and a cardiac-specific LIM protein in the adult. FHL2 is not required for normal cardiac development but modifies the hypertrophic response to beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Y Kong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Building a vertebrate heart is a complex task and involves several tissues, including the myocardium, endocardium, neural crest, and epicardium. Interactions between these tissues result in the changes in function and morphology (and also in the extracellular matrix, which serves as a substrate for morphological change) that are requisite for development of the heart. Some of the signaling pathways that mediate these changes have now been identified and several investigators are now filling in the missing pieces in these pathways in hopes of ultimately understanding the molecular mechanisms that govern healthy heart development. In addition, transcription factors that regulate various aspects of heart development have been identified. Transcription factors of the GATA and Nkx2 families are of particular importance for early specification of the heart field and for regulating expression of genes that encode proteins of the contractile apparatus. This chapter highlights some of the most significant discoveries made in the rapidly expanding field of heart development.
Collapse
Affiliation(s)
- M J Farrell
- Developmental Biology Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
71
|
McFadden DG, Charité J, Richardson JA, Srivastava D, Firulli AB, Olson EN. A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 2000; 127:5331-41. [PMID: 11076755 DOI: 10.1242/dev.127.24.5331] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heart formation in vertebrates is believed to occur in a segmental fashion, with discreet populations of cardiac progenitors giving rise to different chambers of the heart. However, the mechanisms involved in specification of different chamber lineages are unclear. The basic helix-loop-helix transcription factor dHAND is expressed in cardiac precursors throughout the cardiac crescent and the linear heart tube, before becoming restricted to the right ventricular chamber at the onset of looping morphogenesis. dHAND is also expressed in the branchial arch neural crest, which contributes to craniofacial structures and the aortic arch arteries. Using a series of dHAND-lacZ reporter genes in transgenic mice, we show that cardiac and neural crest expression of dHAND are controlled by separate upstream enhancers and we describe a composite cardiac-specific enhancer that directs lacZ expression in a pattern that mimics that of the endogenous dHAND gene throughout heart development. Deletion analysis reduced this enhancer to a 1.5 kb region and identified subregions responsible for expression in the right ventricle and cardiac outflow tract. Comparison of mouse regulatory elements required for right ventricular expression to the human dHAND upstream sequence revealed two conserved consensus sites for binding of GATA transcription factors. Mutation of these sites abolished transgene expression in the right ventricle, identifying dHAND as a direct transcriptional target of GATA factors during right ventricle development. Since GATA factors are not chamber-restricted, these findings suggest the existence of positive and/or negative coregulators that cooperate with GATA factors to control right ventricular-specific gene expression in the developing heart.
Collapse
Affiliation(s)
- D G McFadden
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
72
|
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275:39061-72. [PMID: 10993896 DOI: 10.1074/jbc.m006532200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An evolutionarily conserved vertebrate homologue of the Drosophila NK-3 homeodomain gene bagpipe, Nkx3-1, is expressed in vascular and visceral mesoderm-derived muscle tissues and may influence smooth muscle cell differentiation. Nkx3-1 was evaluated for mediating smooth muscle gamma-actin (SMGA) gene activity, a specific marker of smooth muscle differentiation. Expression of mNkx3-1 in heterologous CV-1 fibroblasts was unable to elicit SMGA promoter activity but required the coexpression of serum response factor (SRF) to activate robust SMGA transcription. A novel complex element containing a juxtaposed Nkx-binding site (NKE) and an SRF-binding element (SRE) in the proximal promoter region was found to be necessary for the Nkx3-1/SRF coactivation of SMGA transcription. Furthermore, Nkx3-1 and SRF associate through protein-protein interactions and the homeodomain region of Nkx3-1 facilitated SRF binding to the complex NKE.SRE. Mutagenesis of Nkx3-1 revealed an inhibitory domain within its C-terminal segment. In addition, mNkx3-1/SRF cooperative activity required an intact Nkx3-1 homeodomain along with the MADS box of SRF, which contains DNA binding and dimerization structural domains, and the contiguous C-terminal SRF activation domain. Thus, SMGA is a novel target for Nkx3-1, and the activity of Nkx3-1 on the SMGA promoter is dependent upon SRF.
Collapse
Affiliation(s)
- J A Carson
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
73
|
Sparrow DB, Cai C, Kotecha S, Latinkic B, Cooper B, Towers N, Evans SM, Mohun TJ. Regulation of the tinman homologues in Xenopus embryos. Dev Biol 2000; 227:65-79. [PMID: 11076677 DOI: 10.1006/dbio.2000.9891] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vertebrate homologues of the Drosophila tinman transcription factor have been implicated in the processes of specification and differentiation of cardiac mesoderm. In Xenopus three members of this family have been isolated to date. Here we show that the XNkx2-3, Xnkx2-5, and XNkx2-10 genes are expressed in increasingly distinctive patterns in endodermal and mesodermal germ layers through early development, suggesting that their protein products (either individually or in different combinations) perform distinct functions. Using amphibian transgenesis, we find that the expression pattern of one of these genes, XNkx2-5, can be reproduced using transgenes containing only 4.3 kb of promoter sequence. Sequence analysis reveals remarkable conservation between the distalmost 300 bp of the Xenopus promoter and a portion of the AR2 element upstream of the mouse and human Nkx2-5 genes. Interestingly, only the 3' half of this evolutionarily conserved sequence element is required for correct transgene expression in frog embryos. Mutation of conserved GATA sites or a motif resembling the dpp-response element in the Drosophila tinman tinD enhancer dramatically reduces the levels of transgene expression. Finally we show that, despite its activity in Xenopus embryos, in transgenic mice the Xenopus Nkx2-5 promoter is able to drive reporter gene expression only in a limited subset of cells expressing the endogenous gene. This intriguing result suggests that despite evolutionary conservation of some cis-regulatory sequences, the regulatory controls on Nkx2-5 expression have diverged between mammals and amphibians.
Collapse
Affiliation(s)
- D B Sparrow
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Liberatore CM, Searcy-Schrick RD, Yutzey KE. Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 2000; 223:169-80. [PMID: 10864469 DOI: 10.1006/dbio.2000.9748] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The T-box gene tbx5 is expressed in the developing heart, forelimb, eye, and liver in vertebrate embryos during critical stages of morphogenesis and patterning. In humans, mutations in the TBX5 gene have been associated with Holt-Oram syndrome, which is characterized by developmental anomalies in the heart and forelimbs. In chicken and mouse embryos, tbx5 expression is initiated at the earliest stages of heart formation throughout the heart primordia and is colocalized with other cardiac transcription factors such as nkx-2.5 and GATA4. As the heart differentiates, tbx5 expression is restricted to the posterior sinoatrial segments of the heart, consistent with the timing of atrial chamber determination. The correlation between tbx5 expression and atrial lineage determination was examined in retinoic acid (RA)-treated chicken embryos. tbx5 expression is maintained throughout the hearts of RA-treated embryos under conditions that also expand atrial-specific gene expression. The downstream effects of persistent tbx5 expression in the ventricles were examined directly in transgenic mice. Embryos that express tbx5 driven by a beta-myosin heavy chain promoter throughout the primitive heart tube were generated. Loss of ventricular-specific gene expression and retardation of ventricular chamber morphogenesis were observed in these embryos. These studies provide direct evidence for an essential role for tbx5 in early heart morphogenesis and chamber-specific gene expression.
Collapse
Affiliation(s)
- C M Liberatore
- Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
75
|
Shiojima I, Oka T, Hiroi Y, Nagai R, Yazaki Y, Komuro I. Transcriptional regulation of human cardiac homeobox gene CSX1. Biochem Biophys Res Commun 2000; 272:749-57. [PMID: 10860827 DOI: 10.1006/bbrc.2000.2861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac homeobox gene Csx/Nkx-2.5 is essential for normal heart development and morphogenesis and is the earliest marker for cardiogenesis. To elucidate the regulatory mechanisms of Csx/Nkx-2.5 expression, we have isolated and characterized the upstream regulatory region of human Csx/Nkx-2.5 (CSX1). Transfection of the reporter gene containing a 965-bp CSX1 5' flanking region indicated that this region confers cardiomyocyte-predominant expression of CSX1. Deletion and mutational analyses revealed two positive cis-regulatory elements in this region that are essential for CSX1 expression in cardiomyocytes. Electrophoretic mobility shift assay revealed that nuclear proteins prepared from cardiac myocytes bound to these elements in a sequence-specific manner. The identification of cis-regulatory sequences of the Csx/Nkx-2.5 gene will facilitate further analysis for the upstream regulatory factors that control the expression of Csx/Nkx-2.5 and the process of vertebrate heart development.
Collapse
Affiliation(s)
- I Shiojima
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Takimoto E, Mizuno T, Terasaki F, Shimoyama M, Honda H, Shiojima I, Hiroi Y, Oka T, Hayashi D, Hirai H, Kudoh S, Toko H, Kawamura K, Nagai R, Yazaki Y, Komuro I. Up-regulation of natriuretic peptides in the ventricle of Csx/Nkx2-5 transgenic mice. Biochem Biophys Res Commun 2000; 270:1074-9. [PMID: 10772952 DOI: 10.1006/bbrc.2000.2561] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cardiac homeobox-containing gene Csx/Nkx2-5, which is essential for cardiac development, is abundantly expressed in the adult heart as well as in the heart primordia. Targeted disruption of this gene results in embryonic lethality due to abnormal heart morphogenesis. To elucidate the role of Csx/Nkx2-5 in the adult heart, we generated transgenic mice which overexpress human Csx/Nkx2-5. The transgene was expressed abundantly in the heart and the skeletal muscle. mRNA levels of several cardiac genes including natriuretic peptides, CARP, MLC2v, and endogenous Csx/Nkx2-5 were increased in the ventricle of the transgenic mice. Electron microscopic analysis revealed that the ventricular myocardium of the transgenic mice had many secretory granules, which disappeared after administration of vasopressin. These results suggest that Csx/Nkx2-5 regulates many cardiac genes and induces formation of secretory granules in the adult ventricle.
Collapse
Affiliation(s)
- E Takimoto
- Department of Cardiovascular Medicine, Department of Hematology and Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Li C, Cai J, Pan Q, Minoo P. Two functionally distinct forms of NKX2.1 protein are expressed in the pulmonary epithelium. Biochem Biophys Res Commun 2000; 270:462-8. [PMID: 10753648 DOI: 10.1006/bbrc.2000.2443] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homeodomain transcriptional factor NKX2.1 is critical for normal morphogenesis of the lung, thyroid, and the brain. In the lung, NKX2. 1 binds to and activates the expression of pulmonary differentiation-specific genes SP-A, SP-B, and SP-C. The Nkx2.1 gene is comprised of three exons separated by two introns. In both thyroid and lung, the predominant Nkx2.1 transcript includes exons II and III and is translated into a 371 amino acid protein. A minor transcript also exists which includes all three exons. This transcript encodes a 401 amino acid isoform of NKX2.1. The 30 amino acid extension is highly conserved amongst various mammalian species. In the current study, we demonstrate that the two NKX2.1 isoforms are functionally distinct and their corresponding transcripts are expressed differentially during mouse embryonic lung development. The results demonstrate that the longer isoform of NKX2.1 exhibits reduced activity in transactivating an SP-C target promoter when compared to the truncated major NKX2.1 protein. Site directed mutagenesis of the 30 amino acid peptide extension suggests that this fragment alters the activity of 5E likely by steric interference.
Collapse
Affiliation(s)
- C Li
- Department of Pediatrics, Women's & Children's Hospital, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
78
|
Molkentin JD, Antos C, Mercer B, Taigen T, Miano JM, Olson EN. Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev Biol 2000; 217:301-9. [PMID: 10625555 DOI: 10.1006/dbio.1999.9544] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zinc finger transcription factors GATA4, -5, and -6 and the homeodomain protein Nkx2.5 are expressed in the developing heart and have been shown to activate a variety of cardiac-specific genes. To begin to define the regulatory relationships between these cardiac transcription factors and to understand the mechanisms that control their expression during cardiogenesis, we analyzed the mouse GATA6 gene for regulatory elements sufficient to direct cardiac expression during embryogenesis. Using beta-galactosidase fusion constructs in transgenic mice, a 4.3-kb 5' regulatory region that directed transcription specifically in the cardiac lineage, beginning at the cardiac crescent stage, was identified. Thereafter, transgene expression became compartmentalized to the outflow tract, a portion of the right ventricle, and a limited region of the common atrial chamber of the embryonic heart. Further dissection of this regulatory region identified a 1.8-kb cardiac-specific enhancer that recapitulated the expression pattern of the larger region when fused to a heterologous promoter and a smaller 500-bp subregion that retained cardiac expression, but was quantitatively weaker. The GATA6 cardiac enhancer contained a binding site for Nkx2.5 that was essential for cardiac-specific expression in transgenic mice. These studies demonstrate that GATA6 is a direct target gene for Nkx2.5 in the developing heart and reveal a mutually reinforcing regulatory network of Nkx2.5 and GATA transcription factors during cardiogenesis.
Collapse
Affiliation(s)
- J D Molkentin
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Davis DL, Wessels A, Burch JB. An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development. Dev Biol 2000; 217:310-22. [PMID: 10625556 DOI: 10.1006/dbio.1999.9561] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionarily conserved GATA-6 transcription factor is an early and persistent marker of heart development in diverse vertebrate species. We previously found evidence for a functionally conserved heart-specific enhancer upstream of the chicken GATA-6 (cGATA-6) gene and in the present study we used transgenic mouse assays to further characterize this regulatory module. We show that this enhancer is activated in committed precursor cells within the cardiac crescent and that it remains active in essentially all cardiogenic cells through the linear heart stage. Although this enhancer can account for cGATA-6 gene expression early in the cardiogenic program, it is not able to maintain expression throughout the heart later in development. In particular, the enhancer is sequentially downregulated along the posterior to anterior axis, with activity becoming confined to outflow tract myocardium. Enhancers with similar properties have been shown to regulate the early heart-restricted expression of the mouse Nkx2.5 transcription factor gene. Whereas these Nkx2.5 enhancers are GATA-dependent, we show that the cGATA-6 enhancer is Nkx-dependent. We speculate that these enhancers are silenced to allow GATA-6 and Nkx2.5 gene expression to be governed by region-specific enhancers in the multichambered heart.
Collapse
Affiliation(s)
- D L Davis
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | | | | |
Collapse
|
80
|
MacNeill C, French R, Evans T, Wessels A, Burch JB. Modular regulation of cGATA-5 gene expression in the developing heart and gut. Dev Biol 2000; 217:62-76. [PMID: 10625536 DOI: 10.1006/dbio.1999.9539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The evolutionarily conserved GATA-5 transcription factor is an early and persistent marker of heart and gut development in diverse vertebrate species. To search for control regions that might regulate the chicken GATA-5 (cGATA-5) gene, we assayed a set of cGATA-5/lacZ constructs in transgenic mice and found evidence for two functionally conserved control regions that regulate different facets of cGATA-5 gene expression. The more distal control region is activated in embryonic endoderm at the head-fold stage, whereas the other control region contains a regulatory module that is activated in a restricted region of endoderm following closure of the gut tube. Remarkably, the latter control region also contains a complex regulatory module that is activated in the cardiac crescent at the head-fold stage and subsequently functions in several mesodermal components of the developing heart, including the outer (epicardial) layer. We discuss these results in terms of possible contributions of epicardial-derived cells to the formation of heart valves, conduction tissue, and compact myocardium. These transgenes thus reveal, and provide a means to further analyze, transcriptional programs for several facets of heart morphogenesis and gut development.
Collapse
Affiliation(s)
- C MacNeill
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
81
|
Venkatesh TV, Park M, Ocorr K, Nemaceck J, Golden K, Wemple M, Bodmer R. Cardiac enhancer activity of the homeobox genetinman depends on CREB consensus binding sites inDrosophila. Genesis 2000. [DOI: 10.1002/(sici)1526-968x(200001)26:1<55::aid-gene8>3.0.co;2-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Yamada M, Szendro PI, Prokscha A, Schwartz RJ, Eichele G. Evidence for a role of Smad6 in chick cardiac development. Dev Biol 1999; 215:48-61. [PMID: 10525349 DOI: 10.1006/dbio.1999.9419] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are obligatory growth factors for early embryogenesis and heart formation. SMAD proteins transduce signals of the TGF-beta superfamily. We isolated chicken Smad6 (cSmad6), a member of inhibitory SMADs, and found its expression to be remarkably restricted to the developing heart, eyes, and limbs. cSmad6 expression was detected in the cardiogenic region of stage 5 embryos and overlapped Nkx2-5 and bmp-2, -4, and -7 expression. Throughout development, cSmad6 was expressed strongly in the heart, primarily in the myocardium, endocardium, and endocardial cushion tissue. Myocardial expression of cSmad6 was stronger in the forming septum, where highly localized expression of bmp-2 and -4 was also observed. Ectopically applied BMP-2 protein induced the expression of cSmad6, a putative negative regulator of BMP-signaling pathway, in anterior medial mesoendoderm of stage 4-5 embryos. In addition, blocking of BMP signaling using Noggin downregulated cSmad6 in cardiogenic tissue. cSmad1, one of the positive mediators of BMP signaling, was also expressed in cardiogenic region, but was not BMP-2 inducible. Our data suggest that cSmad6 has a role in orchestrating BMP-mediated cardiac development. We propose the possible mechanism of action of cSmad6 as modulating BMP signal by keeping a balance between constitutively expressed pathway-specific cSmad1 and ligand-induced inhibitory cSmad6 in the developing heart.
Collapse
Affiliation(s)
- M Yamada
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | |
Collapse
|
83
|
Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 1999; 126:4223-34. [PMID: 10477291 DOI: 10.1242/dev.126.19.4223] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although accumulating evidence suggests that the heart develops in a segmental fashion, the molecular mechanisms that control regional specification of cardiomyocytes in the developing heart remain largely unknown. In this study, we have used the mouse cardiac-restricted ankyrin repeat protein (CARP) gene as a model system to study these mechanisms. The CARP gene encodes a nuclear co-regulator for cardiac gene expression, which lies downstream of the cardiac homeobox gene, Nkx 2.5, and is an early marker of the cardiac muscle cell lineage. We have demonstrated that the expression of the gene is developmentally down regulated and dramatically induced as part of the embryonic gene program during cardiac hypertrophy. Using a lacZ/knock-in mouse and three lines of transgenic mouse harboring various CARP promoter/lacZ reporters, we have identified distinct 5′ cis regulatory elements of the gene that can direct heart segment-specific transgene expression, such as atrial versus ventricular and left versus right. Most interestingly, a 213 base pair sequence element of the gene was found to confer conotruncal segment-specific transgene expression. Using the transgene as a conotruncal segment-specific marker, we were able to document the developmental fate of a subset of cardiomyocytes in the conotruncus during cardiogenesis. In addition, we have identified an essential GATA-4 binding site in the proximal upstream regulatory region of the gene and cooperative transcriptional regulation mediated by Nkx2.5 and GATA-4. We have shown that this cooperative regulation is dependent on binding of GATA-4 to its cognate DNA sequence in the promoter, which suggests that Nkx2.5 controls CARP expression, at least in part, through GATA-4.
Collapse
Affiliation(s)
- H Kuo
- UCSD-Salk Program in Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0613, USA
| | | | | | | | | | | |
Collapse
|