51
|
Zhou Q, Yu L, Friedrich M, Pignoni F. Distinct regulation of atonal in a visual organ of Drosophila: Organ-specific enhancer and lack of autoregulation in the larval eye. Dev Biol 2016; 421:67-76. [PMID: 27693434 DOI: 10.1016/j.ydbio.2016.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 09/28/2016] [Indexed: 01/23/2023]
Abstract
Drosophila has three types of visual organs, the larval eyes or Bolwig's organs (BO), the ocelli (OC) and the compound eyes (CE). In all, the bHLH protein Atonal (Ato) functions as the proneural factor for photoreceptors and effects the transition from progenitor cells to differentiating neurons. In this work, we investigate the regulation of ato expression in the BO primordium (BOP). Surprisingly, we find that ato transcription in the BOP is entirely independent of the shared regulatory DNA for the developing CE and OC. The core enhancer for BOP expression, atoBO, lies ~6kb upstream of the ato gene, in contrast to the downstream location of CE and OC regulatory elements. Moreover, maintenance of ato expression in the neuronal precursors through autoregulation-a common and ancient feature of ato expression that is well-documented in eyes, ocelli and chordotonal organs-does not occur in the BO. We also show that the atoBO enhancer contains two binding sites for the transcription factor Sine oculis (So), a core component of the progenitor specification network in all three visual organs. These binding sites function in vivo and are specifically bound by So in vitro. Taken together, our findings reveal that the control of ato transcription in the evolutionarily derived BO has diverged considerably from ato regulation in the more ancestral compound eyes and ocelli, to the extent of acquiring what appears to be a distinct and evolutionarily novel cis-regulatory module.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Linlin Yu
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA; Departments of Neuroscience & Physiology and Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
52
|
The Promoter and Multiple Enhancers of the pou4f3 Gene Regulate Expression in Inner Ear Hair Cells. Mol Neurobiol 2016; 54:5414-5426. [PMID: 27592349 DOI: 10.1007/s12035-016-0060-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Few enhancers that target gene expression to inner ear hair cells (HCs) have been identified. Using transgenic analysis of enhanced green fluorescent protein (eGFP) reporter constructs and bioinformatics, we evaluated the control of pou4f3 gene expression, since it is expressed only in HCs within the inner ear and continues to be expressed throughout life. An 8.5-kb genomic DNA fragment 5' to the start codon, containing three regions of high cross-species homology, drove expression in all embryonic and neonatal HCs, and adult vestibular and inner HCs, but not adult outer HCs. Transgenes with 0.4, 0.8, 2.5, or 6.5 kb of 5' DNA did not produce HC expression. However, addition of the region from 6.5 to 7.2 kb produced expression in vestibular HCs and neonatal basal turn outer HCs, which also implicated the region from 7.2 to 8.5 kb in inner and apical outer HC expression. Deletion of the region from 0.4 to 5.5 kb 5' from the 8.5-kb construct did not affect HC expression, further indicating lack of HC regulatory elements. When the region from 1 to 0.4 kb was replaced with the minimal promoter of the Ela1 gene, HC expression was maintained but at a drastically reduced level. Bioinformatics identified regions of highly conserved sequence outside of the 8.5 kb, which contained POU4F3-, GFI1-, and LHX3-binding sites. These regions may be involved in maintaining POU4F3 expression in adult outer HCs. Our results identify separate enhancers at various locations that direct expression to different HC types at different ages and determine that 0.4 kb of upstream sequence determines expression level. These data will assist in the identification of mutations in noncoding, regulatory regions of this deafness gene.
Collapse
|
53
|
Riddiford N, Schlosser G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 2016; 5. [PMID: 27576864 PMCID: PMC5035141 DOI: 10.7554/elife.17666] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.
Collapse
Affiliation(s)
- Nick Riddiford
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| |
Collapse
|
54
|
Stox1 as a novel transcriptional suppressor of Math1 during cerebellar granule neurogenesis and medulloblastoma formation. Cell Death Differ 2016; 23:2042-2053. [PMID: 27564589 DOI: 10.1038/cdd.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
Cerebellar granule neuronal progenitors (GNPs) are the precursors of cerebellar granule cells (CGCs) and are believed to be the cell of origin for medulloblastoma (MB), yet the molecular mechanisms governing GNP neurogenesis are poorly elucidated. Here, we demonstrate that storkhead box 1 (Stox1), a forkhead transcriptional factor, has a pivotal role in cerebellar granule neurogenesis and MB suppression. Expression of Stox1 is upregulated along with GNP differentiation and repressed by activation of sonic hedgehog (SHH) signaling. Stox1 exerts its neurogenic and oncosuppressing effect via direct transcriptional repression of Math1, a basic helix-loop-helix transcription activator essential for CGC genesis. This study illustrates a SHH-Stox1-Math1 regulatory axis in normal cerebellar development and MB formation.
Collapse
|
55
|
Abdolazimi Y, Stojanova Z, Segil N. Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter. Development 2016; 143:841-50. [PMID: 26932672 DOI: 10.1242/dev.129320] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression.
Collapse
Affiliation(s)
- Yassan Abdolazimi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA GMCB Graduate Program, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Zlatka Stojanova
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine of the University of Southern California, 1450 San Pablo St., Suite 5100, Los Angeles, CA 90033, USA
| |
Collapse
|
56
|
Puligilla C, Kelley MW. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Dev Neurobiol 2016; 77:3-13. [PMID: 27203669 DOI: 10.1002/dneu.22401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell-types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down-regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2-mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3-13, 2017.
Collapse
Affiliation(s)
- Chandrakala Puligilla
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20982
| |
Collapse
|
57
|
Kempfle JS, Turban JL, Edge ASB. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 2016; 6:23293. [PMID: 26988140 PMCID: PMC4796895 DOI: 10.1038/srep23293] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3′ enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jack L Turban
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard &MIT, Cambridge, MA 02139, USA
| |
Collapse
|
58
|
Stojanova ZP, Kwan T, Segil N. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development 2016; 142:3529-36. [PMID: 26487780 DOI: 10.1242/dev.126763] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that surround hair cells, leading to functional recovery. Investigation of crucial transcriptional events in the developing organ of Corti, including those involving Atoh1, has been hampered by limited accessibility to purified populations of the small number of cells present in the inner ear. We used µChIP and qPCR assays of FACS-purified cells to track changes in the epigenetic status of the Atoh1 locus during sensory epithelia development in the mouse. Dynamic changes in the histone modifications H3K4me3/H3K27me3, H3K9ac and H3K9me3 reveal a progression from poised, to active, to repressive marks, correlating with the onset of Atoh1 expression and its subsequent silencing during the perinatal (P1 to P6) period. Inhibition of acetylation blocked the increase in Atoh1 mRNA in nascent hair cells, as well as ongoing hair cell differentiation during embryonic organ of Corti development ex vivo. These results reveal an epigenetic mechanism of Atoh1 regulation underlying hair cell differentiation and subsequent maturation. Interestingly, the H3K4me3/H3K27me3 bivalent chromatin structure observed in progenitors persists at the Atoh1 locus in perinatal supporting cells, suggesting an explanation for the latent capacity of these cells to transdifferentiate into hair cells, and highlighting their potential as therapeutic targets in hair cell regeneration.
Collapse
Affiliation(s)
- Zlatka P Stojanova
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Tao Kwan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo St., Los Angeles, CA 90033, USA Caruso Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Suite 5100, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
59
|
Origin of a Non-Clarke's Column Division of the Dorsal Spinocerebellar Tract and the Role of Caudal Proprioceptive Neurons in Motor Function. Cell Rep 2015; 13:1258-1271. [PMID: 26527010 DOI: 10.1016/j.celrep.2015.09.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.
Collapse
|
60
|
SoxC transcription factors are essential for the development of the inner ear. Proc Natl Acad Sci U S A 2015; 112:14066-71. [PMID: 26504244 DOI: 10.1073/pnas.1517371112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hair cells, the mechanosensory receptors of the inner ear, underlie the senses of hearing and balance. Adult mammals cannot adequately replenish lost hair cells, whose loss often results in deafness or balance disorders. To determine the molecular basis of this deficiency, we investigated the development of a murine vestibular organ, the utricle. Here we show that two members of the SoxC family of transcription factors, Sox4 and Sox11, are down-regulated after the epoch of hair cell development. Conditional ablation of SoxC genes in vivo results in stunted sensory organs of the inner ear and loss of hair cells. Enhanced expression of SoxC genes in vitro conversely restores supporting cell proliferation and the production of new hair cells in adult sensory epithelia. These results imply that SoxC genes govern hair cell production and thus advance these genes as targets for the restoration of hearing and balance.
Collapse
|
61
|
Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, Itohara S. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 2015; 350:957-61. [PMID: 26494173 DOI: 10.1126/science.aad1023] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022]
Abstract
Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.
Collapse
Affiliation(s)
- Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8575, Japan. Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8575, Japan
| | - Kosuke Yasuda
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Reiko Ando
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, F-69373 Lyon, France
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan.
| |
Collapse
|
62
|
Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YYI, Gershon TR. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development 2015; 142:3921-32. [PMID: 26450969 DOI: 10.1242/dev.124271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023]
Abstract
Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.
Collapse
Affiliation(s)
- Scott E Williams
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shiyi Li
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alyssa Stewart
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sean O'Neill
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Veleta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Esteban A Oyarzabal
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph R Merrill
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
63
|
Hara S, Kaneyama T, Inamata Y, Onodera R, Shirasaki R. Interstitial branch formation within the red nucleus by deep cerebellar nuclei-derived commissural axons during target recognition. J Comp Neurol 2015; 524:999-1014. [DOI: 10.1002/cne.23888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/29/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Hara
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Takeshi Kaneyama
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Yasuyuki Inamata
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Ryota Onodera
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Ryuichi Shirasaki
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
64
|
Jahan I, Pan N, Kersigo J, Fritzsch B. Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development. Development 2015. [PMID: 26209643 DOI: 10.1242/dev.123091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atoh1, a basic helix-loop-helix (bHLH) transcription factor (TF), is essential for the differentiation of hair cells (HCs), mechanotransducers that convert sound into auditory signals in the mammalian organ of Corti (OC). Previous work demonstrated that replacing mouse Atoh1 with the fly ortholog atonal rescues HC differentiation, indicating functional replacement by other bHLH genes. However, replacing Atoh1 with Neurog1 resulted in reduced HC differentiation compared with transient Atoh1 expression in a 'self-terminating' Atoh1 conditional null mouse (Atoh1-Cre; Atoh1(f/f)). We now show that combining Neurog1 in one allele with removal of floxed Atoh1 in a self-terminating conditional mutant (Atoh1-Cre; Atoh1(f/kiNeurog1)) mouse results in significantly more differentiated inner HCs and outer HCs that have a prolonged longevity of 9 months compared with Atoh1 self-terminating littermates. Stereocilia bundles are partially disorganized, disoriented and not HC type specific. Replacement of Atoh1 with Neurog1 maintains limited expression of Pou4f3 and Barhl1 and rescues HCs quantitatively, but not qualitatively. OC patterning and supporting cell differentiation are also partially disrupted. Diffusible factors involved in patterning are reduced (Fgf8) and factors involved in cell-cell interactions are affected (Jag1, Hes5). Despite the presence of many HCs with stereocilia these mice are deaf, possibly owing to HC and OC patterning defects. This study provides a novel approach to disrupt OC development through modulating the HC-specific intracellular TF network. The resulting disorganized OC indicates that normally differentiated HCs act as 'self-organizers' for OC development and that Atoh1 plays a crucial role to initiate HC stereocilia differentiation independently of HC viability.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Ning Pan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Kersigo
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
65
|
Ostrowski SM, Wright MC, Bolock AM, Geng X, Maricich SM. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Development 2015; 142:2533-44. [PMID: 26138479 DOI: 10.1242/dev.123141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Margaret C Wright
- Center for Neurosciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexa M Bolock
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuehui Geng
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
66
|
Ryan AF, Ikeda R, Masuda M. The regulation of gene expression in hair cells. Hear Res 2015; 329:33-40. [PMID: 25616095 DOI: 10.1016/j.heares.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
No genes have been discovered for which expression is limited only to inner ear hair cells. This is hardly surprising, since the number of mammalian genes is estimated to be 20-25,000, and each gene typically performs many tasks in various locations. Many genes are expressed in inner ear sensory cells and not in other cells of the labyrinth. However, these genes are also expressed in other locations, often in other sensory or neuronal cell types. How gene transcription is directed specifically to hair cells is unclear. Key transcription factors that act during development can specify cell phenotypes, and the hair cell is no exception. The transcription factor ATOH1 is well known for its ability to transform nonsensory cells of the developing inner ear into hair cells. And yet, ATOH1 also specifies different sensory cells at other locations, neuronal phenotypes in the brain, and epithelial cells in the gut. How it specifies hair cells in the inner ear, but alternate cell types in other locations, is not known. Studies of regulatory DNA and transcription factors are revealing mechanisms that direct gene expression to hair cells, and that determine the hair cell identity. The purpose of this review is to summarize what is known about such gene regulation in this key auditory and vestibular cell type.
Collapse
Affiliation(s)
- Allen F Ryan
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Departments of Neurosciences, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ryoukichi Ikeda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Masatsugu Masuda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
67
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
68
|
Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 2014; 4:6885. [PMID: 25363458 PMCID: PMC4217099 DOI: 10.1038/srep06885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022] Open
Abstract
Atoh1 is a basic helix-loop-helix transcription factor that controls differentiation of hair cells (HCs) in the inner ear and its enhancer region has been used to create several HC-specific mouse lines. We generated a transgenic tetracycline-inducible mouse line (called Atoh1-rtTA) using the Atoh1 enhancer to drive expression of the reverse tetracycline transactivator (rtTA) protein and human placental alkaline phosphatase. Presence of the transgene was confirmed by alkaline phosphatase staining and rtTA activity was measured using two tetracycline operator (TetO) reporter alleles with doxycycline administered between postnatal days 0–3. This characterization of five founder lines demonstrated that Atoh1-rtTA is expressed in the majority of cochlear and utricular HCs. Although the tetracycline-inducible system is thought to produce transient changes in gene expression, reporter positive HCs were still observed at 6 weeks of age. To confirm that Atoh1-rtTA activity was specific to Atoh1-expressing cells, we also analyzed the cerebellum and found rtTA-driven reporter expression in cerebellar granule neuron precursor cells. The Atoh1-rtTA mouse line provides a powerful tool for the field and can be used in combination with other existing Cre recombinase mouse lines to manipulate expression of multiple genes at different times in the same animal.
Collapse
|
69
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
70
|
Maurer KA, Riesenberg AN, Brown NL. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014; 141:3243-54. [PMID: 25100656 DOI: 10.1242/dev.106245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch signaling regulates basic helix-loop-helix (bHLH) factors as an evolutionarily conserved module, but the tissue-specific mechanisms are incompletely elucidated. In the mouse retina, bHLH genes Atoh7 and Neurog2 have distinct functions, with Atoh7 regulating retinal competence and Neurog2 required for progression of neurogenesis. These transcription factors are extensively co-expressed, suggesting similar regulation. We directly compared Atoh7 and Neurog2 regulation at the earliest stages of retinal neurogenesis in a broad spectrum of Notch pathway mutants. Notch1 and Rbpj normally block Atoh7 and Neurog2 expression. However, the combined activities of Notch1, Notch3 and Rbpj regulate Neurog2 patterning in the distal retina. Downstream of the Notch complex, we found the Hes1 repressor mediates Atoh7 suppression, but Hes1, Hes3 and Hes5 do not regulate Neurog2 expression. We also tested Notch-mediated regulation of Jag1 and Pax6 in the distal retina, to establish the appropriate context for Neurog2 patterning. We found that Notch1;Notch3 and Rbpj block co-expression of Jag1 and Neurog2, while specifically stimulating Pax6 within an adjacent domain. Our data suggest that Notch signaling controls the overall tempo of retinogenesis, by integrating cell fate specification, the wave of neurogenesis and the developmental status of cells ahead of this wave.
Collapse
Affiliation(s)
- Kate A Maurer
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
71
|
Hadas Y, Etlin A, Falk H, Avraham O, Kobiler O, Panet A, Lev-Tov A, Klar A. A 'tool box' for deciphering neuronal circuits in the developing chick spinal cord. Nucleic Acids Res 2014; 42:e148. [PMID: 25147209 PMCID: PMC4231727 DOI: 10.1093/nar/gku750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering 'tool box' for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.
Collapse
Affiliation(s)
- Yoav Hadas
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Alex Etlin
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Haya Falk
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Oshri Avraham
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| | - Avihu Klar
- Department of Medical Neurobiology, IMRIC, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
72
|
In ovo electroporation of miRNA-based-plasmids to investigate gene function in the developing neural tube. Methods Mol Biol 2014; 1101:353-68. [PMID: 24233790 DOI: 10.1007/978-1-62703-721-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
When studying gene function in vivo during development, gene expression has to be controlled in a precise temporal and spatial manner. Technologies based on RNA interference (RNAi) are well suited for such studies, as they allow for the efficient silencing of a gene of interest. In contrast to challenging and laborious approaches in mammalian systems, the use of RNAi in combination with oviparous animal models allows temporal control of gene silencing in a fast and precise manner. We have developed approaches using RNAi in the chicken embryo to analyze gene function during neural tube development. Here we describe the construction of plasmids that direct the expression of one or two artificial microRNAs (miRNAs) to knock down expression of endogenous protein/s of interest upon electroporation into the spinal cord. The miRNA cassette is directly linked to a fluorescent protein reporter, for the direct visualization of transfected cells. The transcripts are under the control of different promoters/enhancers which drive expression in genetically defined cell subpopulations in the neural tube. Mixing multiple RNAi vectors allows combinatorial knockdowns of two or more genes in different cell types of the spinal cord, thus permitting the analysis of complex cellular and molecular interactions in a fast and precise manner. The technique that we describe can easily be applied to other cell types in the neural tube, or even adapted to other organisms in developmental studies.
Collapse
|
73
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
74
|
Sagal J, Zhan X, Xu J, Tilghman J, Karuppagounder SS, Chen L, Dawson VL, Dawson TM, Laterra J, Ying M. Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med 2014; 3:888-98. [PMID: 24904172 DOI: 10.5966/sctm.2013-0213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD.
Collapse
Affiliation(s)
- Jonathan Sagal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Xiping Zhan
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Jinchong Xu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Jessica Tilghman
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Senthilkumar S Karuppagounder
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Li Chen
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Valina L Dawson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Ted M Dawson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA; Department of Physiology and Biophysics, Howard University, Washington, D.C., USA; Department of Neurology, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neuroscience, Department of Physiology, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
75
|
Duval N, Daubas P, Bourcier de Carbon C, St Cloment C, Tinevez JY, Lopes M, Ribes V, Robert B. Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord. Development 2014; 141:1726-36. [PMID: 24715462 DOI: 10.1242/dev.099002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dorsal spinal neurogenesis is orchestrated by the combined action of signals secreted from the roof plate organizer and a downstream transcriptional cascade. Within this cascade, Msx1 and Msx2, two homeodomain transcription factors (TFs), are induced earlier than bHLH neuralizing TFs. Whereas bHLH TFs have been shown to specify neuronal cell fate, the function of Msx genes remains poorly defined. We describe dramatic alterations of neuronal patterning in Msx1/Msx2 double-mutant mouse embryos. The most dorsal spinal progenitor pool fails to express the bHLH neuralizing TF Atoh1, which results in a lack of Lhx2-positive and Barhl2-positive dI1 interneurons. Neurog1 and Ascl1 expression territories are dorsalized, leading to ectopic dorsal differentiation of dI2 and dI3 interneurons. In proportion, the amount of Neurog1-expressing progenitors appears unaffected, whereas the number of Ascl1-positive cells is increased. These defects occur while BMP signaling is still active in the Msx1/Msx2 mutant embryos. Cell lineage analysis and co-immunolabeling demonstrate that Atoh1-positive cells derive from progenitors expressing both Msx1 and Msx2. In vitro, Msx1 and Msx2 proteins activate Atoh1 transcription by specifically interacting with several homeodomain binding sites in the Atoh1 3' enhancer. In vivo, Msx1 and Msx2 are required for Atoh1 3' enhancer activity and ChIP experiments confirm Msx1 binding to this regulatory sequence. These data support a novel function of Msx1 and Msx2 as transcriptional activators. Our study provides new insights into the transcriptional control of spinal cord patterning by BMP signaling, with Msx1 and Msx2 acting upstream of Atoh1.
Collapse
Affiliation(s)
- Nathalie Duval
- Institut Pasteur, Morphogenesis Molecular Genetics, CNRS URA 2578, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abelló G, Ibañes M, Neves J, Giraldez F. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 2014; 141:2313-24. [PMID: 24821984 DOI: 10.1242/dev.108100] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated after Notch activation. In the chicken otocyst, expression of Jag1 and the Notch target Hey1 correlates well with lateral induction, whereas both Jag1 and Dl1 are expressed during lateral inhibition, as are Notch targets Hey1 and Hes5. Here, we show that Jag1 drives lower levels of Notch activity than Dl1, which results in the differential expression of Hey1 and Hes5. In addition, Jag1 interferes with the ability of Dl1 to elicit high levels of Notch activity. Modeling the sensory epithelium when the two ligands are expressed together shows that ligand regulation, differential signaling strength and ligand competition are crucial to allow the two modes of operation and for establishing the alternate pattern of hair cells and supporting cells. Jag1, while driving lateral induction on its own, facilitates patterning by lateral inhibition in the presence of Dl1. This novel behavior emerges from Jag1 acting as a competitive inhibitor of Dl1 for Notch signaling. Both modeling and experiments show that hair cell patterning is very robust. The model suggests that autoactivation of proneural factor Atoh1, upstream of Dl1, is a fundamental component for robustness. The results stress the importance of the levels of Notch signaling and ligand competition for Notch function.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Pau Formosa-Jordan
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan C Luna-Escalante
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Marta Ibañes
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| |
Collapse
|
77
|
Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 2014; 141:389-98. [PMID: 24381197 PMCID: PMC3879817 DOI: 10.1242/dev.099119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhombic lip gives rise to neuronal populations that contribute to cerebellar, proprioceptive and interoceptive networks. Cell production depends on the expression of the basic helix-loop-helix (bHLH) transcription factor Atoh1. In rhombomere 1, Atoh1-positive cells give rise to both cerebellar neurons and extra-cerebellar nuclei in ventral hindbrain. The origin of this cellular diversity has previously been attributed to temporal signals rather than spatial patterning. Here, we show that in both chick and mouse the cerebellar Atoh1 precursor pool is partitioned into initially cryptic spatial domains that reflect the activity of two different organisers: an isthmic Atoh1 domain, which gives rise to isthmic nuclei, and the rhombic lip, which generates deep cerebellar nuclei and granule cells. We use a combination of in vitro explant culture, genetic fate mapping and gene overexpression and knockdown to explore the role of isthmic signalling in patterning these domains. We show that an FGF-dependent isthmic Atoh1 domain is the origin of distinct populations of Lhx9-positive neurons in the extra-cerebellar isthmic nuclei. In the cerebellum, ectopic FGF induces proliferation while blockade reduces the length of the cerebellar rhombic lip. FGF signalling is not required for the specification of cerebellar cell types from the rhombic lip and its upregulation inhibits their production. This suggests that although the isthmus regulates the size of the cerebellar anlage, the downregulation of isthmic FGF signals is required for induction of rhombic lip-derived cerebellar neurons.
Collapse
Affiliation(s)
- Mary J Green
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
78
|
Lepelletier L, de Monvel JB, Buisson J, Desdouets C, Petit C. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium. Biophys J 2014; 105:48-58. [PMID: 23823223 DOI: 10.1016/j.bpj.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them.
Collapse
Affiliation(s)
- Léa Lepelletier
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
79
|
Onset of atonal expression in Drosophila retinal progenitors involves redundant and synergistic contributions of Ey/Pax6 and So binding sites within two distant enhancers. Dev Biol 2013; 386:152-64. [PMID: 24247006 DOI: 10.1016/j.ydbio.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Proneural transcription factors drive the generation of specialized neurons during nervous system development, and their dynamic expression pattern is critical to their function. The activation of the proneural gene atonal (ato) in the Drosophila eye disc epithelium represents a critical step in the transition from retinal progenitor cell to developing photoreceptor neuron. We show here that the onset of ato transcription depends on two distant enhancers that function differently in subsets of retinal progenitor cells. A detailed analysis of the crosstalk between these enhancers identifies a critical role for three binding sites for the Retinal Determination factors Eyeless (Ey) and Sine oculis (So). We show how these sites interact to induce ato expression in distinct regions of the eye field and confirm them to be occupied by endogenous Ey and So proteins in vivo. Our study suggests that Ey and So operate differently through the same 3' cis-regulatory sites in distinct populations of retinal progenitors.
Collapse
|
80
|
Parker MA, Cheng YF, Kinouchi H, Bieber R, Edge ASB. An independent construct for conditional expression of atonal homolog-1. Hum Gene Ther Methods 2013; 25:1-13. [PMID: 24066662 DOI: 10.1089/hgtb.2013.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mammalian homolog of the basic helix-loop-helix transcription factor atonal-1 (Atoh1 or Math1) is required for development of cochlear hair cells that function as the mechanosensory cells required for audition. Forced expression of Atoh1 in cochlear-supporting cells may provide a way to regenerate hair cells and provide for a therapy for hearing loss. Additionally, Atoh1 is an inhibitor of proliferation and has further clinical applications in anticancer therapies. The goal of these experiments was to improve the method for Atoh1 expression by engineering a genetic construct that may be used in future translational applications. To address the poor control of Atoh1 expression in standard gene expression systems where Atoh1 is expressed constitutively at abnormally elevated levels, our aim was to engineer an inducible system whereby Atoh1 was upregulated by an inducer and downregulated once the inducer was removed. A further aim was to engineer a single genetic construct that allowed for conditional expression of Atoh1 independent of secondary regulatory elements. Here we describe a stand-alone genetic construct that utilizes the tamoxifen sensitivity of a mutated estrogen receptor (ER) ligand-binding domain for the conditional expression of Atoh1. The Atoh1-ER-DsRed construct is translated into an ATOH1-ER-DSRED fusion protein that remains sequestered in the cytoplasm and therefore rendered inactive because it cannot enter the nucleus to activate Atoh1 signaling pathways. However, application of 4-hydroxytamoxifen results in translocation of the fusion protein to the nucleus, where it binds to the Atoh1 enhancer, upregulates transcription and translation of endogenous ATOH1 and activates downstream Atoh1 signaling such as upregulation of the hair cell protein MYOSIN 7A. Removal of tamoxifen reverses the upregulation of endogenous Atoh1 signaling. This construct serves as an independent genetic construct that allows for the conditional upregulation and downregulation of Atoh1, and may prove useful for manipulating Atoh1 expression in vivo.
Collapse
Affiliation(s)
- Mark A Parker
- 1 Department of Otolaryngology Head & Neck Surgery, Tufts University School of Medicine , Boston, MA 02111
| | | | | | | | | |
Collapse
|
81
|
Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Wanaka A, Yoshikawa M. Induction of inner ear hair cell-like cells from Math1-transfected mouse ES cells. Cell Death Dis 2013; 4:e700. [PMID: 23828563 PMCID: PMC3730404 DOI: 10.1038/cddis.2013.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022]
Abstract
Math1, a basic helix-loop-helix transcription factor homolog of the Drosophila atonal gene, is considered to be a key factor for induction of sensory hair cells (HCs) during development of the organ of Corti or cochlea. Although embryonic stem (ES) cells are able to produce HC-like cells, the role of Math1 in induction of those cells has not been thoroughly elucidated. In the present study, we introduced Math1 into ES cells in order to achieve efficient generation of HC-like cells. ES cells carrying Tet-inducible Math1, Math1-ES cells, were generated using a Tet-On gene expression system. Embryoid bodies (EBs) formed in the absence of doxycycline (Dox) for 4 days were allowed to grow for an additional 14 days in the dishes in the presence of 400 μg/ml of Dox. At the end of those 14-day cultures, approximately 10% of the cells in EB outgrowths expressed the HC-related markers myosin6, myosin7a, calretinin, α9AchR, and Brn3c (also known as Pou4f3) and showed formation of stereocilia-like structures, whereas few cells in EB outgrowths grown without Dox showed those markers. Reporter assays of Math1-ES cells using a Brn3c-promoter plasmid demonstrated positive regulation of Brn3c by Math1. Furthermore, such HC-related marker-positive cells derived from Math1-ES cells were found to be incorporated in the developing inner ear after transplantation into chick embryos. Math1-ES cells are considered to be an efficient source of ES-derived HC-like cells, and Math1 may be an important factor for induction of HC-like cells from differentiating ES cells.
Collapse
Affiliation(s)
- Y Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | |
Collapse
|
82
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
83
|
Bilaterally symmetric populations of chicken dI1 (commissural) axons cross the floor plate independently of each other. PLoS One 2013; 8:e62977. [PMID: 23646165 PMCID: PMC3639936 DOI: 10.1371/journal.pone.0062977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/28/2013] [Indexed: 12/19/2022] Open
Abstract
Axons use temporal and directional guidance cues at intermediate targets to set the rate and direction of growth towards their synaptic targets. Our recent studies have shown that disrupting the temporal guidance process, by unilaterally accelerating the rate at which spinal dI1 (commissural) axons grow, resulted in turning errors both in the ventral spinal cord and after crossing the floor plate. Here we investigate a mechanistic explanation for these defects: the accelerated dI1 axons arrive in the ventral spinal cord before necessary fasciculation cues from incoming dI1 axons from the opposite side of the spinal cord. The identification of such an interaction would support a model of selective fasciculation whereby the pioneering dI1 axons serve as guides for the processes of the bilaterally symmetrical population of dI1 neurons. To test this model, we first developed the ability to “double” in ovo electroporate the embryonic chicken spinal cord to independently manipulate the rate of growth of the two bilateral populations of dI1 axons. Second, we examined the requirement for a putative bilateral interaction by unilaterally ablating the dI1 population in cultured explants of chicken embryonic spinal cord. Surprisingly, we find no evidence for a bilateral dI1 axon interaction, rather dI1 axons appear to project independently of each other.
Collapse
|
84
|
Role of p63 and the Notch pathway in cochlea development and sensorineural deafness. Proc Natl Acad Sci U S A 2013; 110:7300-5. [PMID: 23589895 DOI: 10.1073/pnas.1214498110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ectodermal dysplasias are a group of inherited autosomal dominant syndromes associated with heterozygous mutations in the Tumor Protein p63 (TRP63) gene. Here we show that, in addition to their epidermal pathology, a proportion of these patients have distinct levels of deafness. Accordingly, p63 null mouse embryos show marked cochlea abnormalities, and the transactivating isoform of p63 (TAp63) protein is normally found in the organ of Corti. TAp63 transactivates hairy and enhancer of split 5 (Hes5) and atonal homolog 1 (Atoh1), components of the Notch pathway, known to be involved in cochlear neuroepithelial development. Strikingly, p63 null mice show morphological defects of the organ of Corti, with supernumerary hair cells, as also reported for Hes5 null mice. This phenotype is related to loss of a differentiation property of TAp63 and not to loss of its proapoptotic function, because cochleas in mice lacking the critical Bcl-2 homology domain (BH-3) inducers of p53- and p63-mediated apoptosis--Puma, Noxa, or both--are normal. Collectively, these data demonstrate that TAp63, acting via the Notch pathway, is crucial for the development of the organ of Corti, providing a molecular explanation for the sensorineural deafness in ectodermal dysplasia patients with TRP63 mutations.
Collapse
|
85
|
Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 2013; 376:86-98. [PMID: 23318633 PMCID: PMC3652277 DOI: 10.1016/j.ydbio.2013.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/17/2012] [Accepted: 01/05/2013] [Indexed: 12/22/2022]
Abstract
The organ of Corti, located within the mammalian cochlea, contains a precise mosaic of hair cells (HC) and supporting cells (SC), the patterning of which is critical for auditory function. Progenitors of HCs and SCs are found in the same post-mitotic region of the cochlear duct during early stages of cochlear development, and both HCs and SCs are absent in mice lacking the transcription factor Atoh1. Based on existing data, Atoh1 is thought to be the earliest determinant of HC fate, and to have a cell-autonomous role in HC differentiation, but the lineage of Atoh1-positive cells within the cochlear duct remains unclear. To address this issue, we used an inducible Atoh1(Cre⁎PR) allele to permanently mark Atoh1-expressing cells at different developmental time points. We found that up to 30% of cells from the Atoh1-lineage develop as SCs, and that the number of Atoh1-positive SCs decreases both spatially and temporally in a pattern consistent with ongoing commitment. Modulation of Notch signaling, necessary for formation of the HC-SC mosaic, changes the percentage of cells from the Atoh1-lineage that develop as either HCs or SCs. The HC-SC ratio is also affected by morphogenesis of the cochlea, as inhibiting the outgrowth of the cochlear duct increases the number of Atoh1-lineage cells that develop as SCs. Our results demonstrate that the Atoh1-lineage is established early in cochlear development, but also show that expression of Atoh1 does not absolutely result in commitment to a HC fate.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Laura Sillers
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Thomas M. Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F. Rose
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
86
|
Jarman AP, Groves AK. The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 2013; 24:438-47. [PMID: 23548731 DOI: 10.1016/j.semcdb.2013.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022]
Abstract
Mechanosensation is an evolutionarily ancient sensory modality seen in all main animal groups. Mechanosensation can be mediated by sensory neurons or by dedicated receptor cells that form synapses with sensory neurons. Evidence over the last 15-20 years suggests that both classes of mechanosensory cells can be specified by the atonal class of basic helix-loop-helix transcription factors. In this review we discuss recent work addressing how atonal factors specify mechanosensitive cells in vertebrates and invertebrates, and how the redeployment of these factors underlies the regeneration of mechanosensitive cells in some vertebrate groups.
Collapse
Affiliation(s)
- Andrew P Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
87
|
Zhang X, Yang Y, Zhu R, Bai J, Tian Y, Li X, Peng Z, He Y, Chen L, Fang D, Chen W, Zou Q, Mao X, Wang R. H. pylori induces the expression of Hath1 in gastric epithelial cells via interleukin-8/STAT3 phosphorylation while suppressing Hes1. J Cell Biochem 2013; 113:3740-51. [PMID: 22786753 DOI: 10.1002/jcb.24248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic gastritis associated with Helicobacter pylori is a leading cause of gastric intestinal metaplasia (IM), which arises from abnormal cell differentiation of the epithelium in the gastric mucosa. However, the mechanisms involved in H. pylori-mediated IM remain elusive. The aim of our study was to explore the effects and the underlying mechanisms of H. pylori on the abnormal expression of Hath1 and Sox2 and to reveal its relationship to the development of gastric IM. We found that Hath1 and Sox2 were overexpressed in gastric IM tissue. Hath1 expression was up-regulated, whereas Sox2 expression, which was independent of the CagA virulence factor, was down-regulated in gastric epithelial cells and coincided with increased IL-6 and IL-8 levels in the culture media. Stimulation with H. pylori-related cytokine IL-8, but not IL-6 or IL-1β, was induced by Hath1 expression in the gastric epithelial cells. Although IL-8 and IL-6 levels correlated with STAT3 (signal transducer and activator of transcription) phosphorylation before and after H. pylori eradication in the gastric mucosa, only the blocking of IL-8-induced STAT3 activation using AG490 or STAT3-targeting RNA interference altered Hath1 expression. Additionally, we found that H. pylori down-regulated Hes1, which is a direct downstream target gene of Notch signaling and a repressor of Hath1 expression. These findings suggest that H. pylori induced inflammation up-regulate Hath1 expression via interleukin-8/STAT3 (IL-8) phosphorylation while suppressing Hes1, which provides a novel molecular connection between a H. pylori infection and intestinal metaplasia.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, Southwest Hospital, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Neves J, Vachkov I, Giraldez F. Sox2 regulation of hair cell development: incoherence makes sense. Hear Res 2013; 297:20-9. [DOI: 10.1016/j.heares.2012.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/17/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023]
|
89
|
Yamauchi K, Varadarajan SG, Li JE, Butler SJ. Type Ib BMP receptors mediate the rate of commissural axon extension through inhibition of cofilin activity. Development 2013; 140:333-42. [PMID: 23250207 PMCID: PMC3597210 DOI: 10.1242/dev.089524] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2012] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) have unexpectedly diverse activities establishing different aspects of dorsal neural circuitry in the developing spinal cord. Our recent studies have shown that, in addition to spatially orienting dorsal commissural (dI1) axons, BMPs supply 'temporal' information to commissural axons to specify their rate of growth. This information ensures that commissural axons reach subsequent signals at particular times during development. However, it remains unresolved how commissural neurons specifically decode this activity of BMPs to result in their extending axons at a specific speed through the dorsal spinal cord. We have addressed this question by examining whether either of the type I BMP receptors (Bmpr), BmprIa and BmprIb, have a role controlling the rate of commissural axon growth. BmprIa and BmprIb exhibit a common function specifying the identity of dorsal cell fate in the spinal cord, whereas BmprIb alone mediates the ability of BMPs to orient axons. Here, we show that BmprIb, and not BmprIa, is additionally required to control the rate of commissural axon extension. We have also determined the intracellular effector by which BmprIb regulates commissural axon growth. We show that BmprIb has a novel role modulating the activity of the actin-severing protein cofilin. These studies reveal the mechanistic differences used by distinct components of the canonical Bmpr complex to mediate the diverse activities of the BMPs.
Collapse
Affiliation(s)
- Ken Yamauchi
- Neuroscience Graduate Program, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Supraja G. Varadarajan
- Graduate Studies in the Biological Sciences – Neurobiology, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph E. Li
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha J. Butler
- Neuroscience Graduate Program, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, HNB 201, 3641 Watt Way, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
90
|
Schimmang T. Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming. Hear Res 2012; 297:84-90. [PMID: 23159917 DOI: 10.1016/j.heares.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) participate during various processes throughout inner ear development such as induction, morphogenesis and determination of cell fate and differentiation. The analysis of mouse mutants has been essential to define the requirement of different members of TF families during these processes. Next to their roles during normal development TFs have also been tested for their capacity to induce differentiation or reprogram cells upon misexpression. Recently the capacity of TFs to transdifferentiate easily accessible cells such as fibroblasts to highly specialized cell types has opened a new pathway for regenerative therapies. In this review the influence of TFs acting during different phases and processes of inner ear development will be summarized. A special focus will be given to TFs with a potential to reprogram or transdifferentiate cells to sensory cell types of the inner ear such as hair cells or neurons and thus may form part of future protocols directed to generate replacement cells in a clinical context.
Collapse
Affiliation(s)
- Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, E-47003 Valladolid, Spain.
| |
Collapse
|
91
|
Wong EYM, Ahmed M, Xu PX. EYA1-SIX1 complex in neurosensory cell fate induction in the mammalian inner ear. Hear Res 2012; 297:13-9. [PMID: 23104013 DOI: 10.1016/j.heares.2012.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/14/2012] [Accepted: 09/30/2012] [Indexed: 11/17/2022]
Abstract
The phosphatase-transactivator EYA1 interacts with the homeodomain protein SIX1 to form transcriptional activation complexes, which play essential roles in regulating cell proliferation, survival and induction of sensory and neuronal differentiation programs during inner ear development. Mutations of the Eya1 and Six1 genes cause profound developmental auditory defects in mice and humans. The molecular mechanisms and developmental processes controlled by the EYA1 and SIX1 complex in inner ear development and neurosensory fate induction are the focus of this review.
Collapse
Affiliation(s)
- Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
92
|
TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 2012; 372:68-80. [PMID: 22985730 DOI: 10.1016/j.ydbio.2012.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) can regulate different sets of genes to determine specific cell types by means of combinatorial codes. We previously identified closely-spaced TF binding motifs located 8.2-8.5 kb 5' to the ATG of the murine Pou4f3 gene, a gene required for late hair cell (HC) differentiation and survival. These motifs, 100% conserved among four mammalian species, include a cluster of E-boxes preferred by TCF3/ATOH1 heterodimers as well as motifs for GATA factors and SP1. We hypothesized that these factors might interact to regulate the Pou4f3 gene and possibly induce a HC phenotype in non-sensory cells of the cochlea. Cochlear sensory epithelium explants were prepared from postnatal day 1.5 transgenic mice in which expression of GFP is driven by 8.5 kb of Pou4f3 5' genomic DNA (Pou4f3/GFP). Electroporation was used to transfect cells of the greater epithelial ridge with multiple plasmids encoding human ATOH1 (hATOH1), hTCF3 (also known as E2A or TEF2), hGATA3, and hSP1. hATOH1 or hTCF3 alone induced Pou4f3/GFP cells but hGATA3 and hSP1 did not. hATOH1 but not hTCF3 induced conversion of greater epithelial ridge cells into Pou4f3/GFP and myosin VIIa double-positive cells. Transfection of hATOH1 in combination with hTCF3 or hGATA3 induced 2-3X more Pou4f3/GFP cells, and similarly enhanced Pou4f3/GFP and myosin VIIa double-positive cells, when compared to hATOH1 alone. Triple or quadruple TF combinations were generally not more effective than double TF combinations except in the middle turn, where co-transfection of hATOH1, hE2A, and hGATA3 was more effective than hATOH1 plus either hTCF3 or hGATA3. The results demonstrate that TFs can cooperate in regulation of the Pou4f3 gene and in the induction of at least one other element of a HC phenotype. Our data further indicate that combinations of TFs can be more effective than individual TFs in the inner ear.
Collapse
|
93
|
Lewis RM, Hume CR, Stone JS. Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hear Res 2012; 289:74-85. [PMID: 22543087 PMCID: PMC3371146 DOI: 10.1016/j.heares.2012.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022]
Abstract
Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1 is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities.
Collapse
Affiliation(s)
- Rebecca M. Lewis
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Clifford R. Hume
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Jennifer S. Stone
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Otolaryngology e Head and Neck Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
94
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
95
|
Hazen VM, Andrews MG, Umans L, Crenshaw EB, Zwijsen A, Butler SJ. BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Dev Biol 2012; 367:216-27. [PMID: 22609550 DOI: 10.1016/j.ydbio.2012.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/21/2012] [Accepted: 05/09/2012] [Indexed: 01/19/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) have multiple activities in the developing spinal cord: they specify the identity of the dorsal-most neuronal populations and then direct the trajectories of dorsal interneuron (dI) 1 commissural axons. How are these activities decoded by dorsal neurons to result in different cellular outcomes? Our previous studies have shown that the diverse functions of the BMPs are mediated by the canonical family of BMP receptors and then regulated by specific inhibitory (I) Smads, which block the activity of a complex of Smad second messengers. However, the extent to which this complex translates the different activities of the BMPs in the spinal cord has remained unresolved. Here, we demonstrate that the receptor-activated (R) Smads, Smad1 and Smad5 play distinct roles mediating the abilities of the BMPs to direct cell fate specification and axon outgrowth. Smad1 and Smad5 occupy spatially distinct compartments within the spinal cord, with Smad5 primarily associated with neural progenitors and Smad1 with differentiated neurons. Consistent with this expression profile, loss of function experiments in mouse embryos reveal that Smad5 is required for the acquisition of dorsal spinal neuron identities whereas Smad1 is critical for the regulation of dI1 axon outgrowth. Thus the R-Smads, like the I-Smads, have discrete roles mediating BMP-dependent cellular processes during spinal interneuron development.
Collapse
Affiliation(s)
- V M Hazen
- Department of Biological Sciences, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089, USA
| | | | | | | | | | | |
Collapse
|
96
|
Brzezinski JA, Prasov L, Glaser T. Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol 2012; 365:395-413. [PMID: 22445509 PMCID: PMC3337348 DOI: 10.1016/j.ydbio.2012.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is transiently expressed during early retinal histogenesis and is necessary for retinal ganglion cell (RGC) development. Using nucleoside pulse-chase experiments and clonal analysis, we determined that progenitor cells activate Math5 during or after the terminal division, with progressively later onset as histogenesis proceeds. We have traced the lineage of Math5+ cells using mouse BAC transgenes that express Cre recombinase under strict regulatory control. Quantitative analysis showed that Math5+ progenitors express equivalent levels of Math5 and contribute to every major cell type in the adult retina, but are heavily skewed toward early fates. The Math5>Cre transgene labels 3% of cells in adult retina, including 55% of RGCs. Only 11% of Math5+ progenitors develop into RGCs; the majority become photoreceptors. The fate bias of the Math5 cohort, inferred from the ratio of cone and rod births, changes over time, in parallel with the remaining neurogenic population. Comparable results were obtained using Math5 mutant mice, except that ganglion cells were essentially absent, and late fates were overrepresented within the lineage. We identified Math5-independent RGC precursors in the earliest born (embryonic day 11) retinal cohort, but these precursors require Math5-expressing cells for differentiation. Math5 thus acts permissively to establish RGC competence within a subset of progenitors, but is not sufficient for fate specification. It does not autonomously promote or suppress the determination of non-RGC fates. These data are consistent with progressive and temporal restriction models for retinal neurogenesis, in which environmental factors influence the final histotypic choice.
Collapse
Affiliation(s)
- Joseph A. Brzezinski
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lev Prasov
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tom Glaser
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
97
|
Ahmed M, Wong EYM, Sun J, Xu J, Wang F, Xu PX. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 2012; 22:377-90. [PMID: 22340499 DOI: 10.1016/j.devcel.2011.12.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/04/2011] [Accepted: 12/14/2011] [Indexed: 12/24/2022]
Abstract
Inner-ear hair cell differentiation requires Atoh1 function, while Eya1, Six1, and Sox2 are coexpressed in sensory progenitors and mutations in these genes cause sensorineural hearing loss. However, how these genes are linked functionally and the transcriptional networks controlling hair cell induction remain unclear. Here, we show (1) that Eya1/Six1 are necessary for hair cell development, and their coexpression in mouse cochlear explants is sufficient to induce hair cell fate in the nonsensory epithelium expressing low-level Sox2 by activating not only Atoh1-dependent but also Atoh1-independent pathways and (2) that both pathways induce Pou4f3 to promote hair cell differentiation. Sox2 cooperates with Eya1/Six1 to synergistically activate Atoh1 transcription via direct binding to the conserved Sox- and Six-binding sites in Atoh1 enhancers, and these proteins physically interact. Our findings demonstrate that direct and cooperative interactions between the Sox2, Six1, and Eya1 proteins coordinate Atoh1 expression to specify hair cell fate.
Collapse
Affiliation(s)
- Mohi Ahmed
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
98
|
Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 2012; 13:281-93. [PMID: 22370966 DOI: 10.1007/s10162-012-0317-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/06/2012] [Indexed: 01/07/2023] Open
Abstract
Atoh1 (also known as Math1, Hath1, and Cath1 in mouse, human, and chicken, respectively) is a proneural basic helix-loop-helix (bHLH) transcription factor that is required in a variety of developmental contexts. Atoh1 is involved in differentiation of neurons, secretory cells in the gut, and mechanoreceptors including auditory hair cells. Together with the two closely related bHLH genes, Neurog1 and NeuroD1, Atoh1 regulates neurosensory development in the ear as well as neurogenesis in the cerebellum. Atoh1 activity in the cochlea is both necessary and sufficient to drive auditory hair cell differentiation, in keeping with its known role as a regulator of various genes that are markers of terminal differentiation. Atoh1 is known in other fields as an oncogene and a tumor suppressor involved in regulation of cell cycle control and apoptosis. Aberrant Atoh1 activity in adult tissue is implicated in cancer progression, specifically in medullablastoma and adenomatous polyposis carcinoma. We demonstrate through protein sequence comparison that Atoh1 contains conserved phosphorylation sites outside the bHLH domain, which may allow regulation through post-translational modification. With such diverse roles, tight regulation of Atoh1 at both the transcriptional and protein level is essential.
Collapse
|
99
|
Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJH, Witt H, Croul S, Bouffet E, Fults DW, Eberhart CG, Garzia L, Van Meter T, Zagzag D, Jabado N, Schwartzentruber J, Majewski J, Scheetz TE, Pfister SM, Korshunov A, Li XN, Scherer SW, Cho YJ, Akagi K, MacDonald TJ, Koster J, McCabe MG, Sarver AL, Collins VP, Weiss WA, Largaespada DA, Collier LS, Taylor MD. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 2012; 482:529-33. [PMID: 22343890 PMCID: PMC3288636 DOI: 10.1038/nature10825] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Abstract
Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.
Collapse
Affiliation(s)
- Xiaochong Wu
- Arthur and Sonia Labatt Brain Tumour Research Center, Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B. Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One 2012; 7:e30853. [PMID: 22292060 PMCID: PMC3265522 DOI: 10.1371/journal.pone.0030853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete ‘flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons.
Collapse
Affiliation(s)
- Israt Jahan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Ning Pan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Jennifer Kersigo
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Lilian E. Calisto
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Ken A. Morris
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Benjamin Kopecky
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Jeremy S. Duncan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Kirk W. Beisel
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|