51
|
Costaguta G, Duncan MC, Fernández GE, Huang GH, Payne GS. Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol Biol Cell 2006; 17:3907-20. [PMID: 16790491 PMCID: PMC1624859 DOI: 10.1091/mbc.e06-05-0410] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1-deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and alpha-factor maturation defects were observed when ent5Delta but not ent3Delta was introduced together with deletions of the GGA genes. In AP-1-deficient cells, ent3Delta and to a lesser extent ent5Delta caused minor alpha-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1-mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic.
Collapse
Affiliation(s)
- Giancarlo Costaguta
- *Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; and
| | - Mara C. Duncan
- *Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; and
| | - G. Esteban Fernández
- *Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; and
| | - Grace H. Huang
- Department of Biostatistics, School of Public Health, UCLA, Los Angeles, CA 90095
| | - Gregory S. Payne
- *Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; and
| |
Collapse
|
52
|
Schmidt U, Briese S, Leicht K, Schürmann A, Joost HG, Al-Hasani H. Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the β2-adaptin subunit of the AP-2 adaptor complex. J Cell Sci 2006; 119:2321-31. [PMID: 16723738 DOI: 10.1242/jcs.02943] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glucose transporter GLUT8 cycles between intracellular vesicles and the plasma membrane. Like the insulin-responsive glucose transporter GLUT4, GLUT8 is primarily located in intracellular compartments under basal conditions. Whereas translocation of GLUT4 to the plasma membrane is stimulated by insulin, the distribution of GLUT8 is not affected by insulin treatment in adipose cells. However, blocking endocytosis by co-expression of a dominant-negative dynamin GTPase (K44A) or mutation of the N-terminal dileucine (LL12/13) motif in GLUT8 leads to accumulation of the glucose transporter at the cell surface in a variety of different cell types. Yeast two-hybrid analyses and GST pulldown assays reveal that the LL signal constitutes a binding site for the β2-adaptin subunit of the heterotetrameric AP-2 adaptor complex, implicating this motif in targeting of GLUT8 to clathrin-coated vesicles. Moreover, yeast two-hybrid assays provide evidence that the binding site for the LL motif maps to the appendage domain of β2-adaptin. To analyze the biological significance of the LL/β2 interaction, we utilized RNA interference to specifically knockdown AP-2. Our results show that RNAi-mediated targeting of the μ2 subunit leads to cellular depletion of AP-2, but not AP-1 adaptor complexes in HeLa cells. As a consequence, GLUT8 accumulates at the plasma membrane at comparable levels to those observed in K44A-transfected cells. Conversely, the intracellular localization of mutant GLUT8-LL/AA is restored by replacing the LL motif in GLUT8 with the transferrin receptor-derived μ2-adaptin binding motif YTRF, indicating that for endocytosis both AP-2 binding motifs can substitute for each other. Thus, our data demonstrate that recruitment of GLUT8 to the endocytic machinery occurs via direct interaction of the dileucine motif with β2-adaptin, and that endocytosis might be the main site at which GLUT8 is likely to be regulated.
Collapse
Affiliation(s)
- Ulrike Schmidt
- German Institute of Human Nutrition, Potsdam, Nuthetal, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Fernández GE, Payne GS. Laa1p, a conserved AP-1 accessory protein important for AP-1 localization in yeast. Mol Biol Cell 2006; 17:3304-17. [PMID: 16687571 PMCID: PMC1483057 DOI: 10.1091/mbc.e06-02-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent alpha-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes.
Collapse
Affiliation(s)
- G. Esteban Fernández
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory S. Payne
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
54
|
Natsume W, Tanabe K, Kon S, Yoshida N, Watanabe T, Torii T, Satake M. SMAP2, a novel ARF GTPase-activating protein, interacts with clathrin and clathrin assembly protein and functions on the AP-1-positive early endosome/trans-Golgi network. Mol Biol Cell 2006; 17:2592-603. [PMID: 16571680 PMCID: PMC1475504 DOI: 10.1091/mbc.e05-10-0909] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We recently reported that SMAP1, a GTPase-activating protein (GAP) for Arf6, directly interacts with clathrin and regulates the clathrin-dependent endocytosis of transferrin receptors from the plasma membrane. Here, we identified a SMAP1 homologue that we named SMAP2. Like SMAP1, SMAP2 exhibits GAP activity and interacts with clathrin heavy chain (CHC). Furthermore, we show that SMAP2 interacts with the clathrin assembly protein CALM. Unlike SMAP1, however, SMAP2 appears to be a regulator of Arf1 in vivo, because cells transfected with a GAP-negative SMAP2 mutant were resistant to brefeldin A. SMAP2 colocalized with the adaptor proteins for clathrin AP-1 and EpsinR on the early endosomes/trans-Golgi-network (TGN). Moreover, overexpression of SMAP2 delayed the accumulation of TGN38/46 molecule on the TGN. This suggests that SMAP2 functions in the retrograde, early endosome-to-TGN pathway in a clathrin- and AP-1-dependent manner. Thus, the SMAP gene family constitutes an important ArfGAP subfamily, with each SMAP member exerting both common and distinct functions in vesicle trafficking.
Collapse
Affiliation(s)
- Waka Natsume
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kenji Tanabe
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Naomi Yoshida
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Toshio Watanabe
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tetsuo Torii
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
55
|
Girard M, Poupon V, Blondeau F, McPherson PS. The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 2005; 280:40135-43. [PMID: 16179350 DOI: 10.1074/jbc.m505036200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through a proteomic analysis of clathrin-coated vesicles from rat liver we identified the mammalian homolog of receptor-mediated endocytosis 8 (RME-8), a DnaJ domain-containing protein originally identified in a screen for endocytic defects in Caenorhabditis elegans. Mammalian RME-8 has a broad tissue distribution, and affinity selection assays reveal the ubiquitous chaperone Hsc70, which regulates protein conformation at diverse membrane sites as the major binding partner for its DnaJ domain. RME-8 is tightly associated with microsomal membranes and co-localizes with markers of the endosomal system. Small interfering RNA-mediated knock down of RME-8 has no influence on transferrin endocytosis but causes a reduction in epidermal growth factor internalization. Interestingly, and consistent with a localization to endosomes, knock down of RME-8 also leads to alterations in the trafficking of the cation-independent mannose 6-phosphate receptor and improper sorting of the lysosomal hydrolase cathepsin D. Our data demonstrate that RME-8 functions in intracellular trafficking and provides the first evidence of a functional role for a DnaJ domain-bearing co-chaperone on endosomes.
Collapse
Affiliation(s)
- Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | | | | | | |
Collapse
|
56
|
Kawasaki M, Shiba T, Shiba Y, Yamaguchi Y, Matsugaki N, Igarashi N, Suzuki M, Kato R, Kato K, Nakayama K, Wakatsuki S. Molecular mechanism of ubiquitin recognition by GGA3 GAT domain. Genes Cells 2005; 10:639-54. [PMID: 15966896 DOI: 10.1111/j.1365-2443.2005.00865.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GGA (Golgi-localizing, gamma-adaptin ear domain homology, ARF-binding) proteins, which constitute a family of clathrin coat adaptor proteins, have recently been shown to be involved in the ubiquitin-dependent sorting of receptors, through the interaction between the C-terminal three-helix-bundle of the GAT (GGA and Tom1) domain (C-GAT) and ubiquitin. We report here the crystal structure of human GGA3 C-GAT in complex with ubiquitin. A hydrophobic patch on C-GAT helices alpha1 and alpha2 forms a binding site for the hydrophobic Ile44 surface of ubiquitin. Two distinct orientations of ubiquitin Arg42 determine the shape and the charge distribution of ubiquitin Ile44 surface, leading to two different binding modes. Biochemical and NMR data strongly suggest another hydrophobic binding site on C-GAT helices alpha2 and alpha3, opposite to the first binding site, also binds ubiquitin although weakly. The double-sided ubiquitin binding provides the GAT domain with higher efficiency in recognizing ubiquitinated receptors for lysosomal receptor degradation.
Collapse
Affiliation(s)
- Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wahle T, Prager K, Raffler N, Haass C, Famulok M, Walter J. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 2005; 29:453-61. [PMID: 15886016 DOI: 10.1016/j.mcn.2005.03.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/11/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022] Open
Abstract
Golgi-localized, gamma ear-containing, ADP ribosylation factor-binding (GGA) proteins have been shown to be implicated in the sorting of cargo proteins from the trans-Golgi network (TGN) to endosomal compartments. GGAs directly bind to DXXLL motifs in the cytoplasmic domains of cargo proteins. The Alzheimer-associated beta-secretase BACE1 also interacts with GGA proteins, but the functional relevance of this interaction was unknown. Here, we show that GGA1 regulates the retrograde transport of internalized BACE1 from endosomal compartments to the TGN by direct interaction in a phosphorylation-dependent manner. While phosphorylated BACE1 is efficiently transported from endosomes to the TGN, non-phosphorylated BACE1 enters a direct recycling route to the cell surface. Our data indicate that GGA proteins are not only involved in the sorting at the TGN but also mediate the retrograde transport of cargo proteins from endosomes to the TGN.
Collapse
Affiliation(s)
- Tina Wahle
- Department of Neurology, Laboratory of Molecular Cell Biology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, Balch WE. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell 2005; 16:3847-64. [PMID: 15944222 PMCID: PMC1182321 DOI: 10.1091/mbc.e05-01-0062] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rab GTPases and SNARE fusion proteins direct cargo trafficking through the exocytic and endocytic pathways of eukaryotic cells. We have used steady state mRNA expression profiling and computational hierarchical clustering methods to generate a global overview of the distribution of Rabs, SNAREs, and coat machinery components, as well as their respective adaptors, effectors, and regulators in 79 human and 61 mouse nonredundant tissues. We now show that this systems biology approach can be used to define building blocks for membrane trafficking based on Rab-centric protein activity hubs. These Rab-regulated hubs provide a framework for an integrated coding system, the membrome network, which regulates the dynamics of the specialized membrane architecture of differentiated cells. The distribution of Rab-regulated hubs illustrates a number of facets that guides the overall organization of subcellular compartments of cells and tissues through the activity of dynamic protein interaction networks. An interactive website for exploring datasets comprising components of the Rab-regulated hubs that define the membrome of different cell and organ systems in both human and mouse is available at http://www.membrome.org/.
Collapse
Affiliation(s)
- Cemal Gurkan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
59
|
Burman JL, Wasiak S, Ritter B, de Heuvel E, McPherson PS. Aftiphilin is a component of the clathrin machinery in neurons. FEBS Lett 2005; 579:2177-84. [PMID: 15811338 DOI: 10.1016/j.febslet.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/20/2022]
Abstract
Aftiphilin was identified through a database search for proteins containing binding motifs for the gamma-ear domain of clathrin adaptor protein 1 (AP-1). Here, we demonstrate that aftiphilin is expressed predominantly in brain where it is enriched on clathrin-coated vesicles. In addition to eight gamma-ear-binding motifs, aftiphilin contains two WXXF-acidic motifs that mediate binding to the alpha-ear of clathrin adaptor protein 2 (AP-2) and three FXXFXXF/L motifs that mediate binding to the alpha- and beta2-ear. We demonstrate that aftiphilin uses these motifs for interactions with AP-1 and AP-2 and that it immunoprecipitates these APs but not AP-3 or AP-4 from brain extracts. Aftiphilin demonstrates a brefeldin A sensitive localization to the trans-Golgi network in hippocampal neurons where it co-localizes with AP-1. Aftiphilin is also found at synapses where it co-localizes with synaptophysin and AP-2. Our data suggest a role for aftiphilin in clathrin-mediated trafficking in neurons.
Collapse
Affiliation(s)
- Jonathon L Burman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | | | |
Collapse
|
60
|
Neubrand VE, Will RD, Möbius W, Poustka A, Wiemann S, Schu P, Dotti CG, Pepperkok R, Simpson JC. Gamma-BAR, a novel AP-1-interacting protein involved in post-Golgi trafficking. EMBO J 2005; 24:1122-33. [PMID: 15775984 PMCID: PMC556403 DOI: 10.1038/sj.emboj.7600600] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 02/04/2005] [Indexed: 01/31/2023] Open
Abstract
A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A. Knockdown of 2c18 reduces the steady-state levels of gamma1-adaptin on membranes. Overexpression or downregulation of 2c18 leads to an increased secretion of the lysosomal hydrolase cathepsin D, which is sorted by the mannose-6-phosphate receptor at the TGN, which itself involves AP-1 function for trafficking between the TGN and endosomes. This suggests that the direct interaction of 2c18 and gamma1-adaptin is crucial for membrane association and thus the function of the AP-1 complex in living cells. We propose to name this protein gamma-BAR.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rainer D Will
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Wiebke Möbius
- Max Planck Institute for Experimental Medicine, Neurogenetics, Göttingen, Germany
| | - Annemarie Poustka
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Stefan Wiemann
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Peter Schu
- Zentrum fuer Biochemie und Molekulare Zellbiologie, Department Biochemie II, Universitaet Göttingen, Goettingen, Germany
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Unversita degli Studi di Torino, AO San Luigi Gonzaga, Orbassano (Torino), Italy
| | - Rainer Pepperkok
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387 8332; Fax: +49 6221 387 8306; E-mail:
| | - Jeremy C Simpson
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
61
|
Lauvrak SU, Torgersen ML, Sandvig K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 2005; 117:2321-31. [PMID: 15126632 DOI: 10.1242/jcs.01081] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that Shiga toxin, despite being bound to a glycolipid receptor, can be efficiently endocytosed from clathrin-coated pits. However, clathrin-independent endocytosis is also responsible for a proportion of the toxin uptake in some cells. After endocytosis the toxin can be transported in retrograde fashion to the Golgi apparatus and the endoplasmic reticulum, and then to the cytosol, where it exerts its toxic effect by inactivating ribosomes. In order to investigate the role of dynamin and clathrin in endosome-to-Golgi transport of Shiga toxin, we have used HeLa dyn(K44A) and BHK antisense clathrin heavy chain (CHC) cells that, in an inducible manner, express mutant dynamin or CHC antisense RNA, respectively. In these cell lines, one can study the role of dynamin and clathrin on endosome-to-Golgi transport because they, as shown here, still internalize Shiga toxin when dynamin- and clathrin-dependent endocytosis is blocked. Butyric acid has been shown to sensitize A431 cells to Shiga toxin by increasing the proportion of cell-associated toxin that is transported to the Golgi apparatus and the endoplasmic reticulum. Here, we find that, in HeLa and BHK cells also, butyric acid also increased toxin transport to the Golgi apparatus and sensitized the cells to Shiga toxin. We have therefore studied the role of dynamin and clathrin in both untreated and butyric-acid-treated cells by measuring the sulfation of a modified Shiga B fragment. Our results indicate that endosome-to-Golgi transport of Shiga toxin is dependent on functional dynamin in both untreated cells and in cells treated with butyric acid. Interestingly, the regulation of Shiga toxin transport in untreated and butyric-acid-treated cells differs when it comes to the role of clathrin, because only cells that are sensitized to Shiga toxin with butyric acid need functional clathrin for endosome-to-Golgi transport.
Collapse
Affiliation(s)
- Silje U Lauvrak
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|
62
|
Johnston HD, Foote C, Santeford A, Nothwehr SF. Golgi-to-late endosome trafficking of the yeast pheromone processing enzyme Ste13p is regulated by a phosphorylation site in its cytosolic domain. Mol Biol Cell 2005; 16:1456-68. [PMID: 15647379 PMCID: PMC551507 DOI: 10.1091/mbc.e04-07-0642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study addressed whether phosphorylation regulates trafficking of yeast membrane proteins that cycle between the trans-Golgi network (TGN) and endosomal system. The TGN membrane proteins A-ALP, a model protein containing the Ste13p cytosolic domain fused to alkaline phosphatase (ALP), and Kex2p were found to be phosphorylated in vivo. Mutation of the S13 residue on the cytosolic domain of A-ALP to Ala was found to block trafficking to the prevacuolar compartment (PVC), whereas a S13D mutation generated to mimic phosphorylation accelerated trafficking into the PVC. The S13 residue was shown by mass spectrometry to be phosphorylated. The rate of endoplasmic reticulum-to-Golgi transport of newly synthesized A(S13A)-ALP was indistinguishable from wild-type, indicating that the lack of transport of A(S13A)-ALP to the PVC was instead due to differences in Golgi/endosomal trafficking. The A(S13A)-ALP protein exhibited a TGN-like localization similar to that of wild-type A-ALP. Similarly, the S13A mutation in endogenous Ste13p did not reduce the extent of or longevity of its localization to the TGN as shown by alpha-factor processing assays. These results indicate that S13 phosphorylation is required for TGN-to-PVC trafficking of A-ALP and imply that phosphorylation of S13 may regulate recognition of A-ALP by vesicular trafficking machinery.
Collapse
Affiliation(s)
- Holly D Johnston
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | | | | | | |
Collapse
|
63
|
Pagano A, Crottet P, Prescianotto-Baschong C, Spiess M. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5. Mol Biol Cell 2004; 15:4990-5000. [PMID: 15331762 PMCID: PMC524758 DOI: 10.1091/mbc.e04-04-0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/11/2022] Open
Abstract
The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.
Collapse
Affiliation(s)
- Adriana Pagano
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
64
|
Ritter B, Denisov AY, Philie J, Deprez C, Tung EC, Gehring K, McPherson PS. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J 2004; 23:3701-10. [PMID: 15359277 PMCID: PMC522786 DOI: 10.1038/sj.emboj.7600378] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/29/2004] [Indexed: 11/08/2022] Open
Abstract
The adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2. Using nuclear magnetic resonance and mutational studies, we identified WXXF-based motifs as major ligands for a site on the alpha-ear previously shown to bind the DPW-bearing proteins epsin 1/2. We also defined the determinants that allow for specific binding of the alpha-ear motif to AP-2 as compared to those that allow a highly related WXXF-based motif to bind to the ear domains of AP-1/GGAs. Intriguingly, placement of acidic residues around the WXXF cores is critical for binding specificity. These studies provide a structural basis for the specific recruitment of accessory proteins to appropriate sites of clathrin-coated vesicle formation.
Collapse
Affiliation(s)
- Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexei Yu Denisov
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Jacynthe Philie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Christophe Deprez
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Elaine C Tung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Kalle Gehring
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- CBET Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, Canada, H3A 2B4. Tel.: +1 514 398 7355; Fax: +1 514 398 8106; E-mail:
| |
Collapse
|
65
|
Abstract
Proteins that make, consume, and bind to phosphoinositides are important for constitutive membrane traffic. Different phosphoinositides are concentrated in different parts of the central vacuolar pathway, with phosphatidylinositol 4-phosphate predominate on Golgi, phosphatidylinositol 4,5-bisphosphate predominate at the plasma membrane, phosphatidylinositol 3-phosphate the major phosphoinositide on early endosomes, and phosphatidylinositol 3,5-bisphosphate found on late endocytic organelles. This spatial segregation may be the mechanism by which the direction of membrane traffic is controlled. Phosphoinositides increase the affinity of membranes for peripheral membrane proteins that function for sorting protein cargo or for the docking and fusion of transport vesicles. This implies that constitutive membrane traffic may be regulated by the mechanisms that control the activity of the enzymes that produce and consume phosphoinositides. Although the lipid kinases and phosphatases that function in constitutive membrane traffic are beginning to be identified, their regulation is poorly understood.
Collapse
Affiliation(s)
- Michael G Roth
- Dept. of Biochemistry, Univ. of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
66
|
Abstract
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
67
|
Hirosako K, Imasato H, Hirota Y, Kuronita T, Masuyama N, Nishioka M, Umeda A, Fujita H, Himeno M, Tanaka Y. 3-Methyladenine specifically inhibits retrograde transport of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor from the early endosome to the TGN. Biochem Biophys Res Commun 2004; 316:845-52. [PMID: 15033478 DOI: 10.1016/j.bbrc.2004.02.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 11/23/2022]
Abstract
3-Methyladenine (3-MA), a well-known inhibitor of autophagic sequestration, can also prevent class III phosphatidylinositide (PI) 3-kinase activity, which is required for many processes in endosomal membrane trafficking. Although much is known about the effects of other PI 3-kinase inhibitors, such as wortmannin and LY294002, on endosomal membrane trafficking, little is known about those of 3-MA. Here we show that the treatment of cells with 3-MA results in a specific redistribution of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (MPR300) from the trans-Golgi network (TGN) to early/recycling endosomal compartments containing internalized transferrin. Importantly, in contrast to wortmannin and LY294002, 3-MA did not cause the enlargement of late endosomal/lysosomal compartments. The results suggest that the effect of 3-MA is restricted to the retrieval of MPR300 from early/recycling endosomes.
Collapse
Affiliation(s)
- Kaori Hirosako
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 2004; 279:24435-43. [PMID: 15047686 DOI: 10.1074/jbc.m400059200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tom1 (target of Myb1) is a protein of unknown function. Tom1 and its relative Tom1L1 have an N-terminal VHS (Vps27p/Hrs/Stam) domain followed by a GAT (GGA and Tom1) domain, both of which are also found in the GGA (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor-binding protein) family of proteins. Although the VHS and GAT domains of GGA proteins bind to transmembrane cargo proteins and the small GTPase ADP-ribosylation factor, respectively, the VHS and GAT domains of Tom1 are unable to interact with these proteins. In this study, we show that the GAT domains of Tom1 and Tom1L1 interact with ubiquitin and Tollip (Toll-interacting protein). Ubiquitin bound the GAT domains of Tom1, Tom1L1, and GGA proteins, whereas Tollip interacted specifically with Tom1 and Tom1L1. Ubiquitin and Tollip bound to an overlapping region of the Tom1-GAT domain in a mutually exclusive manner. Tom1 was predominantly cytosolic when expressed in cells. On the other hand, Tollip was localized on early endosomes and recruited Tom1 and ubiquitinated proteins. These observations suggest that Tollip and Tom1 form a complex and regulate endosomal trafficking of ubiquitinated proteins.
Collapse
Affiliation(s)
- Yohei Katoh
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Jeffries TR, Dove SK, Michell RH, Parker PJ. PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 2004; 15:2652-63. [PMID: 15020712 PMCID: PMC420090 DOI: 10.1091/mbc.e03-10-0732] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
WIPI49 is a member of a previously undescribed family of WD40-repeat proteins that we demonstrate binds 3-phosphorylated phosphoinositides. Immunofluorescent imaging indicates that WIPI49 is localized to both trans-Golgi and endosomal membranes, organelles between which it traffics in a microtubule-dependent manner. Live cell imaging establishes that WIPI49 traffics through the same set of endosomal membranes as that followed by the mannose-6-phosphate receptor (MPR), and consistent with this, WIPI49 is enriched in clathrin-coated vesicles. Ectopic expression of wild-type WIPI49 disrupts the proper functioning of this MPR pathway, whereas expression of a double point mutant (R221,222AWIPI49) unable to bind phosphoinositides does not disrupt this pathway. Finally, suppression of WIPI49 expression through RNAi, demonstrates that its presence is required for normal endosomal organization and distribution of the CI-MPR. We conclude that WIPI49 is a novel regulatory component of the endosomal and MPR pathway and that this role is dependent upon the PI-binding properties of its WD40 domain.
Collapse
Affiliation(s)
- Tim R Jeffries
- Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
70
|
Pizzirusso M, Chang A. Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1-7, to the endosomal/vacuolar system in yeast. Mol Biol Cell 2004; 15:2401-9. [PMID: 15020711 PMCID: PMC404032 DOI: 10.1091/mbc.e03-10-0727] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pma1-7 is a mutant plasma membrane ATPase that is impaired in targeting to the cell surface at 37 degrees C and is delivered instead to the endosomal/vacuolar pathway for degradation. We have proposed that Pma1-7 is a substrate for a Golgibased quality control mechanism. By contrast with wild-type Pma1, Pma1-7 is ubiquitinated. Ubiquitination and endosomal targeting of Pma1-7 is dependent on the Rsp5-Bul1-Bul2 ubiquitin ligase protein complex but not the transmembrane ubiquitin ligase Tul1. Analysis of Pma1-7 ubiquitination in mutants blocked in protein transport at various steps of the secretory pathway suggests that ubiquitination occurs after ER exit but before endosomal entry. In the absence of ubiquitination in rsp5-1 cells, Pma1-7 is delivered to the cell surface and remains stable. Nevertheless, Pma1-7 remains impaired in association with detergent-insoluble glycolipid-enriched complexes in rsp5-1 cells, suggesting that ubiquitination is not the cause of Pma1-7 exclusion from rafts. In vps1 cells in which protein transport into the endosomal pathway is blocked, Pma1-7 is routed to the cell surface. On arrival at the plasma membrane in vps1 cells, Pma1-7 remains stable and its ubiquitination disappears, suggesting deubiquitination activity at the cell surface. We suggest that Pma1-7 sorting and fate are regulated by ubiquitination.
Collapse
Affiliation(s)
- Maddalena Pizzirusso
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
71
|
Chidambaram S, Müllers N, Wiederhold K, Haucke V, von Mollard GF. Specific Interaction between SNAREs and Epsin N-terminal Homology (ENTH) Domains of Epsin-related Proteins in trans-Golgi Network to Endosome Transport. J Biol Chem 2004; 279:4175-9. [PMID: 14630930 DOI: 10.1074/jbc.m308667200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.
Collapse
Affiliation(s)
- Subbulakshmi Chidambaram
- Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II, Universität Göttingen, Heinrich-Düker Weg 12, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
72
|
Shiba Y, Katoh Y, Shiba T, Yoshino K, Takatsu H, Kobayashi H, Shin HW, Wakatsuki S, Nakayama K. GAT (GGA and Tom1) Domain Responsible for Ubiquitin Binding and Ubiquitination. J Biol Chem 2004; 279:7105-11. [PMID: 14660606 DOI: 10.1074/jbc.m311702200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins) are a family of monomeric adaptor proteins involved in membrane trafficking from the trans-Golgi network to endosomes. The GAT (GGA and Tom1) domains of GGAs have previously been shown to interact with GTP-bound ARF and to be crucial for membrane recruitment of GGAs. Here we show that the C-terminal subdomain of the GAT domain, which is distinct from the N-terminal GAT subdomain responsible for ARF binding, can bind ubiquitin. The binding is mediated by interactions between residues on one side of the alpha3 helix of the GAT domain and those on the so-called Ile-44 surface patch of ubiquitin. The binding of the GAT domain to ubiquitin can be enhanced by the presence of a GTP-bound form of ARF. Furthermore, GGA itself is ubiquitinated in a manner dependent on the GAT-ubiquitin interaction. These results delineate the molecular basis for the interaction between ubiquitin and GAT and suggest that GGA-mediated trafficking is regulated by the ubiquitin system as endosomal trafficking mediated by other ubiquitin-binding proteins.
Collapse
Affiliation(s)
- Yoko Shiba
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS. ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci 2004; 117:9-18. [PMID: 14657269 DOI: 10.1242/jcs.00928] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. Structural analyses and ligand-binding studies have shown that a set of proteins previously designated as harboring an ENTH domain in fact contain a highly similar, yet unique module referred to as an AP180 N-terminal homology (ANTH) domain. ENTH and ANTH (E/ANTH) domains bind both inositol phospholipids and proteins and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. E/ANTH-bearing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the trans-Golgi network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding.
Collapse
Affiliation(s)
- Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
74
|
Wasiak S, Denisov AY, Han Z, Leventis PA, de Heuvel E, Boulianne GL, Kay BK, Gehring K, McPherson PS. Characterization of a γ-adaptin ear-binding motif in enthoprotin. FEBS Lett 2003; 555:437-42. [PMID: 14675752 DOI: 10.1016/s0014-5793(03)01299-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction. NMR studies of the gamma-ear in complex with a synthetic peptide from enthoprotin provide structural details of the binding site for TGN accessory proteins within the gamma-ear.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, Canada H3A 2B4.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Lin SX, Mallet WG, Huang AY, Maxfield FR. Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 2003; 15:721-33. [PMID: 14595110 PMCID: PMC329388 DOI: 10.1091/mbc.e03-07-0497] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the distribution of the cation-independent mannose 6-phosphate receptor (CI-MPR) has been well studied, its intracellular itinerary and trafficking kinetics remain uncertain. In this report, we describe the endocytic trafficking and steady-state localization of a chimeric form of the CI-MPR containing the ecto-domain of the bovine CI-MPR and the murine transmembrane and cytoplasmic domains expressed in a CHO cell line. Detailed confocal microscopy analysis revealed that internalized chimeric CI-MPR overlaps almost completely with the endogenous CI-MPR but only partially with individual markers for the trans-Golgi network or other endosomal compartments. After endocytosis, the chimeric receptor first enters sorting endosomes, and it then accumulates in the endocytic recycling compartment. A large fraction of the receptors return to the plasma membrane, but some are delivered to the trans-Golgi network and/or late endosomes. Over the course of an hour, the endocytosed receptors achieve their steady-state distribution. Importantly, the receptor does not start to colocalize with late endosomal markers until after it has passed through the endocytic recycling compartment. In CHO cells, only a small fraction of the receptor is ever detected in endosomes bearing substrates destined for lysosomes (kinetically defined late endosomes). These data demonstrate that CI-MPR takes a complex route that involves multiple sorting steps in both early and late endosomes.
Collapse
Affiliation(s)
- Sharron X Lin
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
76
|
Moreno RD. Differential expression of lysosomal associated membrane protein (LAMP-1) during mammalian spermiogenesis. Mol Reprod Dev 2003; 66:202-9. [PMID: 12950108 DOI: 10.1002/mrd.10342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Unit of Reproduction and Development, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile.
| |
Collapse
|
77
|
Abstract
Clathrin-coated vesicles (CCVs) play important roles in nutrient uptake, downregulation of signaling receptors, pathogen invasion and biogenesis of endosomes and lysosomes. Although detailed models for endocytic CCV formation have emerged, the process of CCV formation at the Golgi and endosomes has been less clear. Key to endocytic CCV formation are proteins containing related phosphoinositide-binding ENTH and ANTH domains. Now, recent studies have identified novel ENTH/ANTH proteins that participate in CCV-mediated traffic between the trans-Golgi Network (TGN) and endosomes and have defined a molecular basis for interaction with AP-1 and GGA adaptors in clathrin coats of the TGN/endosomes. Thus, ENTH/ANTH domain proteins appear to be universal elements in nucleation of clathrin coats.
Collapse
Affiliation(s)
- Mara C Duncan
- Department of Biological Chemistry UCLA School of Medicine Los Angeles, CA 90095, USA
| | | |
Collapse
|
78
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|
79
|
Plattner H, Kissmehl R. Molecular Aspects of Membrane Trafficking in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:185-216. [PMID: 14711119 DOI: 10.1016/s0074-7696(03)32005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
80
|
Nakayama K, Wakatsuki S. The Structure and Function of GGAs, the Traffic Controllers at the TGN Sorting Crossroads. Cell Struct Funct 2003; 28:431-42. [PMID: 14745135 DOI: 10.1247/csf.28.431] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding proteins) are a family of monomeric clathrin adaptor proteins that are conserved from yeasts to humans. Data published during the past four years have provided detailed pictures of the localization, domain organization and structure-function relationships of GGAs. GGAs possess four conserved functional domains, each of which interacts with cargo proteins including mannose 6-phosphate receptors, the small GTPase ARF, clathrin, or accessory proteins including Rabaptin-5 and gamma-synergin. Together with or independent of the adaptor protein complex AP-1, GGAs regulate selective transport of cargo proteins, such as mannose 6-phosphate receptors, from the trans-Golgi network to endosomes mediated by clathrin-coated vesicles.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|