51
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|
52
|
Ma Y, Xie N, Li Y, Zhang B, Xie D, Zhang W, Li Q, Yu H, Zhang Q, Ni Y, Xie X. Teratozoospermia with amorphous sperm head associate with abnormal chromatin condensation in a Chinese family. Syst Biol Reprod Med 2018; 65:61-70. [PMID: 30452285 DOI: 10.1080/19396368.2018.1543481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Male infertility affects approximately 7% of the male population. In about 40% of affected patients, the etiology remains unknown. Here, we report the cases of two infertile brothers who have a uniquely prevalent sperm phenotype with completely amorphous sperm heads. To investigate the mechanisms of familial teratozoospermia with amorphous sperm heads, chromatin condensation was assessed by aniline blue staining, western blot, sperm chromatin structure assay and atomic force microscopy in both the two brothers and 40 control fertile donors. Our results showed an abnormal condensation of chromatin with amorphous headed sperm. We suggest that abnormal chromatin condensation which was induced by disturbances in the process of histone-protamine replacement may be a possible cause of familial teratozoospermia with amorphous head, and the elasticity of sperm nuclei could be a new index to assess sperm quality. Additionally, for the first time, the current study provided a new biomechanics strategy for evaluating pathological sperm contributes to our understanding of teratozoospermia.Abbreviations: SCSA: sperm chromatin structure assay; AFM: atomic force microscopy; ICSI: intracytoplasmic sperm injection; HDS: high DNA stainability; DFI: DNA fragmentation index; PBS: phosphate-buffered saline; DTT: dithiothreitol; FITC: fluorescein isothiocyanate; DAPI: 4',6-diamidino-2-pheneylindole; SSC: standard saline citrate.
Collapse
Affiliation(s)
- Ying Ma
- a Key Laboratory of Preclinical Study for New Drugs of Gansu Province , School of Basic Medical Sciences, Lanzhou University , Lanzhou , PR China
| | - Ning Xie
- b Lanzhou Municipal Center for Disease Control , Lanzhou , PR China
| | - Yi Li
- a Key Laboratory of Preclinical Study for New Drugs of Gansu Province , School of Basic Medical Sciences, Lanzhou University , Lanzhou , PR China.,c School of Stomatology Lanzhou University, Lanzhou University , Lanzhou PR China
| | - Baoping Zhang
- c School of Stomatology Lanzhou University, Lanzhou University , Lanzhou PR China.,d School of Civil Engineering and Mechanics , Lanzhou University , Lanzhou , PR China
| | - Dingxiong Xie
- e The First People's Hospital of Lanzhou City , Lanzhou , PR China
| | - Wei Zhang
- f The Reproductive Medicine Hospital of the First Hospital of Lanzhou University , Lanzhou University , Lanzhou , PR China
| | - Qiuguang Li
- g The Second People's Hospital of Lanzhou City , Lanzhou , PR China
| | - Hongmiao Yu
- a Key Laboratory of Preclinical Study for New Drugs of Gansu Province , School of Basic Medical Sciences, Lanzhou University , Lanzhou , PR China
| | - Qianjing Zhang
- h College of Life Sciences, University of Chinese Academy of Sciences , Beijing , PR China
| | - Yali Ni
- i The Institute of Reproductive Medicine Center , Gansu Provincial Maternity and Child-care Hospital , Lanzhou , PR China
| | - Xiaodong Xie
- a Key Laboratory of Preclinical Study for New Drugs of Gansu Province , School of Basic Medical Sciences, Lanzhou University , Lanzhou , PR China
| |
Collapse
|
53
|
Laleethambika N, Anila V, Manojkumar C, Muruganandam I, Giridharan B, Ravimanickam T, Balachandar V. Diabetes and Sperm DNA Damage: Efficacy of Antioxidants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42399-018-0012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
55
|
Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster. PLoS One 2018; 13:e0203622. [PMID: 30192860 PMCID: PMC6128621 DOI: 10.1371/journal.pone.0203622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Spermatogenesis in many species including Drosophila melanogaster is accompanied by major reorganisation of chromatin in post-meiotic stages, involving a nearly genome-wide displacement of histones by protamines, Mst77F and Protamine-like 99C. A proposed prerequisite for the histone-to-protamine transition is massive histone H4 hyper-acetylation prior to the switch. Here, we investigated the pattern of histone H3 lysine acetylation and general lysine crotonylation in D. melanogaster spermiogenesis to elucidate a possible role of these marks in chromatin reorganisation. Lysine crotonylation was strongest prior to remodelling and the deposition of this mark depended on the acetylation status of the spermatid chromatin. In contrast to H4 acetylation, individual H3 acetylation marks displayed surprisingly distinct patterns during the histone-to-protamine transition. We observed that Nejire, a histone acetyl transferase, is expressed during the time of histone-to-protamine transition. Nejire knock down led to strongly reduced fertility, which correlated with misshaped spermatid nuclei and a lack of mature sperm. protA and prtl99C transcript levels were reduced after knocking down Nejire. ProtB-eGFP, Mst77F-eGFP and Prtl99C-eGFP were synthesized at the late canoe stage, while histones were often not detectable. However, in some cysts histones persist in parallel to protamines. Therefore, we hypothesize that complete histone removal requires multiple histone modifications besides H3K18ac and H3K27ac. In summary, H3K18 and H3K27 acetylation during Drosophila spermatogenesis is dependent on Nejire or a yet uncharacterized acetyl transferase. We show that Nejire is required for male fertility since Nejire contributes to efficient transcription of protA and prtl99C, but not Mst77F, in spermatocytes, and to maturation of sperm.
Collapse
|
56
|
Grégoire MC, Leduc F, Morin MH, Cavé T, Arguin M, Richter M, Jacques PÉ, Boissonneault G. The DNA double-strand "breakome" of mouse spermatids. Cell Mol Life Sci 2018; 75:2859-2872. [PMID: 29417179 PMCID: PMC11105171 DOI: 10.1007/s00018-018-2769-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
De novo germline mutations arise preferentially in male owing to fundamental differences between spermatogenesis and oogenesis. Post-meiotic chromatin remodeling in spermatids results in the elimination of most of the nucleosomal supercoiling and is characterized by transient DNA fragmentation. Using three alternative methods, DNA from sorted populations of mouse spermatids was used to confirm that double-strand breaks (DSB) are created in elongating spermatids and repaired at later steps. Specific capture of DSB was used for whole-genome mapping of DSB hotspots (breakome) for each population of differentiating spermatids. Hotspots are observed preferentially within introns and repeated sequences hence are more prevalent in the Y chromosome. When hotspots arise within genes, those involved in neurodevelopmental pathways become preferentially targeted reaching a high level of significance. Given the non-templated DNA repair in haploid spermatids, transient DSBs formation may, therefore, represent an important component of the male mutation bias and the etiology of neurological disorders, adding to the genetic variation provided by meiosis.
Collapse
Affiliation(s)
- Marie-Chantal Grégoire
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin H Morin
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tiphanie Cavé
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélina Arguin
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
57
|
Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113:102-112. [DOI: 10.1016/j.theriogenology.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
|
58
|
Post-meiotic DNA double-strand breaks are conserved in fission yeast. Int J Biochem Cell Biol 2018; 98:24-28. [PMID: 29474927 DOI: 10.1016/j.biocel.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
In mammals, spermiogenesis is characterized by transient formation of DNA double-strand breaks (DSBs) in the whole population of haploid spermatids. DSB repair in such haploid context may represent a mutational transition. Using a combination of pulsed-field gel electrophoresis and specific labelling of DSBs at 3'OH DNA ends, we showed that post-meiotic, enzyme-induced DSBs are also observed in the synchronizable pat1-114 mutant of Shizosaccharomyces pombe as well as in a wild-type strain, while DNA repair is observed at later stages. This transient DNA fragmentation arises in the whole cell population and is seemingly independent of the caspase apoptotic pathway. Because histones are still present in spores, the transient DSBs do not require a major change in chromatin structure. These observations confirm the highly-conserved nature of the process in eukaryotes and provide a powerful model to study the underlying mechanism and its impact on the genetic landscape and adaptation.
Collapse
|
59
|
Kimura S, Loppin B. The Drosophila chromosomal protein Mst77F is processed to generate an essential component of mature sperm chromatin. Open Biol 2017; 6:rsob.160207. [PMID: 27810970 PMCID: PMC5133442 DOI: 10.1098/rsob.160207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
In most animals, the bulk of sperm DNA is packaged with sperm nuclear basic proteins (SNBPs), a diverse group of highly basic chromosomal proteins notably comprising mammalian protamines. The replacement of histones with SNBPs during spermiogenesis allows sperm DNA to reach an extreme level of compaction, but little is known about how SNBPs actually function in vivo. Mst77F is a Drosophila SNBP with unique DNA condensation properties in vitro, but its role during spermiogenesis remains unclear. Here, we show that Mst77F is required for the compaction of sperm DNA and the production of mature sperm, through its cooperation with protamine-like proteins Mst35Ba/b. We demonstrate that Mst77F is incorporated in spermatid chromatin as a precursor protein, which is subsequently processed through the proteolysis of its N-terminus. The cleavage of Mst77F is very similar to the processing of protamine P2 during human spermiogenesis and notably leaves the cysteine residues in the mature protein intact, suggesting that they participate in the formation of disulfide cross-links. Despite the rapid evolution of SNBPs, sperm chromatin condensation thus involves remarkably convergent mechanisms in distantly related animals.
Collapse
Affiliation(s)
- Shuhei Kimura
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
60
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
61
|
Gubala AM, Schmitz JF, Kearns MJ, Vinh TT, Bornberg-Bauer E, Wolfner MF, Findlay GD. The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo. Mol Biol Evol 2017; 34:1066-1082. [PMID: 28104747 DOI: 10.1093/molbev/msx057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.
Collapse
Affiliation(s)
- Anna M Gubala
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Jonathan F Schmitz
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Tery T Vinh
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
62
|
Abstract
Transcriptional activity is repressed due to the packaging of sperm chromatins during spermiogenesis. The detection of numerous transcripts in sperm, however, raises the question whether transcriptional events exist in sperm,
which has been the central focus of the recent studies. To summarize the transcriptional activity during spermiogenesis and in sperm, we reviewed the documents on transcript differences during spermiogenesis, in sperm with
differential motility, before and after capacitation and cryopreservation. This will lay a theoretical foundation for studying the mechanism(s) of gene expression in sperm, and would be invaluable in making better use of animal
sires and developing reproductive control technologies.
Collapse
Affiliation(s)
- Xiaoxia Ren
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Xiaoli Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Zhenling Wang
- Beijing Agricultural Vocation College, Beijing 102442, China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
63
|
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 2017. [PMID: 28621664 PMCID: PMC5482572 DOI: 10.7554/elife.26176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on observations of markers for DNA lesions, such as phosphorylated histone H2AX (γH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear. Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic separation of DSB-generated DNA fragments in the ciliate Tetrahymena thermophila. These PM-DSBs are accompanied by switching from a heterochromatic to euchromatic chromatin structure in the haploid pronucleus. Both a topoisomerase II paralog with exclusive pronuclear expression and Spo11 are prerequisites for PM-DSB induction. Reduced PM-DSB induction blocks euchromatin formation, characterized by histone H3K56 acetylation, leading to a failure in gametic nuclei production. We propose that PM-DSBs are responsible for histone replacement during the reprogramming of generative to undifferentiated progeny nuclei. DOI:http://dx.doi.org/10.7554/eLife.26176.001
Collapse
Affiliation(s)
- Takahiko Akematsu
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasuhiro Fukuda
- Department of Biodiversity Science, Tohoku University, Oosaki, Japan.,Division of Biological Resource Science, Tohoku University, Oosaki, Japan.,Graduate School of Agricultural Science, Tohoku University, Oosaki, Japan
| | - Jyoti Garg
- Department of Biology, York University, Toronto, Canada
| | | | | | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
The Drosophila DAXX-Like Protein (DLP) Cooperates with ASF1 for H3.3 Deposition and Heterochromatin Formation. Mol Cell Biol 2017; 37:MCB.00597-16. [PMID: 28320872 DOI: 10.1128/mcb.00597-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 01/22/2023] Open
Abstract
Histone variants are nonallelic isoforms of canonical histones, and they are deposited, in contrast to canonical histones, in a replication-independent (RI) manner. RI deposition of H3.3, a histone variant from the H3.3 family, is mediated in mammals by distinct pathways involving either the histone regulator A (HIRA) complex or the death-associated protein (DAXX)/α-thalassemia X-linked mental retardation protein (ATRX) complex. Here, we investigated the function of the Drosophila DAXX-like protein (DLP) by using both fly genetic approaches and protein biochemistry. DLP specifically interacts with H3.3 and shows a prominent localization on the base of the X chromosome, where it appears to act in concert with XNP, the Drosophila homolog of ATRX, in heterochromatin assembly and maintenance. The functional association between DLP and XNP is further supported by a series of experiments that illustrate genetic interactions and the DLP-XNP-dependent localization of specific chromosomal proteins. In addition, DLP both participates in the RI deposition of H3.3 and associates with anti-silencing factor 1 (ASF1). We suggest, in agreement with a recently proposed model, that DLP and ASF1 are part of a predeposition complex, which is recruited by XNP and is necessary to prevent DNA exposure in the nucleus.
Collapse
|
65
|
Kwak HG, Suzuki T, Dohmae N. Global mapping of post-translational modifications on histone H3 variants in mouse testes. Biochem Biophys Rep 2017; 11:1-8. [PMID: 28955761 PMCID: PMC5614684 DOI: 10.1016/j.bbrep.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs. Various post-translational modifications in histone H3 variants were characterized in the mouse testes. We specifically identified similar modified patterns based on immonium ions. Novel modified lysines in testis-specific H3 histone, H3t, were verified. Our approach will be helpful for the discovery of other novel or specific modifications during spermatogenesis.
Collapse
Key Words
- DTT, dithiothreitol
- ESI-TRAP, electrospray TRAP
- FDR, false discovery rate
- H2SO4, sulfuric acid
- HCD, high-energy collision dissociation
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ISD, in source decay
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- PTMs, post-translational modifications
- Post-translational modification
- RP, reverse phase
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Spermatogenesis
- TCA, trichloroacetic acid
- TFA, trifluoroacetic acid
- Testis-specific H3 histone
Collapse
|
66
|
Aldrich JC, Ferree PM. Genome Silencing and Elimination: Insights from a "Selfish" B Chromosome. Front Genet 2017; 8:50. [PMID: 28487723 PMCID: PMC5403880 DOI: 10.3389/fgene.2017.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023] Open
Abstract
B chromosomes are non-essential components of numerous plant and animal genomes. Because many of these "extra" chromosomes enhance their own transmission in ways that are detrimental to the rest of the genome, they can be thought of as genome parasites. An extreme example is a paternally inherited B chromosome known as paternal sex ratio (PSR), which is found in natural populations of the jewel wasp Nasonia vitripennis. In order to ensure its own propagation, PSR severely biases the wasp sex ratio by converting diploid female-destined embryos into transmitting haploid males. This action occurs at the expense of the other paternally inherited chromosomes, which fail to resolve during the first round of division and are thus eliminated. Recent work has revealed that paternal genome elimination by PSR occurs through the disruption of a number of specific histone post-translational modifications, suggesting a central role for chromatin regulation in this phenomenon. In this review, we describe these recent advances in the light of older ones and in the context of what is currently understood about the molecular mechanisms of targeted genome silencing and elimination in other systems.
Collapse
Affiliation(s)
| | - Patrick M. Ferree
- W.M. Keck Science Department, Claremont McKenna College, Pitzer College and Scripps College, ClaremontCA, USA
| |
Collapse
|
67
|
Theofel I, Bartkuhn M, Boettger T, Gärtner SMK, Kreher J, Brehm A, Rathke C. tBRD-1 and tBRD-2 regulate expression of genes necessary for spermatid differentiation. Biol Open 2017; 6:439-448. [PMID: 28235844 PMCID: PMC5399552 DOI: 10.1242/bio.022467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Male germ cell differentiation proceeds to a large extent in the absence of active gene transcription. In Drosophila, hundreds of genes whose proteins are required during post-meiotic spermatid differentiation (spermiogenesis) are transcribed in primary spermatocytes. Transcription of these genes depends on the sequential action of the testis meiotic arrest complex (tMAC), Mediator complex, and testis-specific TFIID (tTFIID) complex. How the action of these protein complexes is coordinated and which other factors are involved in the regulation of transcription in spermatocytes is not well understood. Here, we show that the bromodomain proteins tBRD-1 and tBRD-2 regulate gene expression in primary spermatocytes and share a subset of target genes. The function of tBRD-1 was essential for the sub-cellular localization of endogenous tBRD-2 but dispensable for its protein stability. Our comparison of different microarray data sets showed that in primary spermatocytes, the expression of a defined number of genes depends on the function of the bromodomain proteins tBRD-1 and tBRD-2, the tMAC component Aly, the Mediator component Med22, and the tTAF Sa.
Collapse
Affiliation(s)
- Ina Theofel
- Philipps-Universität Marburg, Department of Biology, Marburg 35043, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-Universität, Giessen 35392, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | | | - Judith Kreher
- Philipps-Universität Marburg, Institute of Molecular Biology and Tumor Research, Marburg 35037, Germany
| | - Alexander Brehm
- Philipps-Universität Marburg, Institute of Molecular Biology and Tumor Research, Marburg 35037, Germany
| | - Christina Rathke
- Philipps-Universität Marburg, Department of Biology, Marburg 35043, Germany
| |
Collapse
|
68
|
Abstract
In the course of spermatogenesis, germ cells undergo dramatic morphological changes that affect almost all cellular components. Therefore, it is impossible to study the process of spermatogenesis in its entirety without detailed morphological analyses. Here, we describe a method to visualize chromatin dynamics in differentiating Drosophila male germ cells using immunofluorescence staining. In addition, we demonstrate how to treat Drosophila sperm before immunofluorescence staining to help reveal epitopes in the highly condensed sperm chromatin that otherwise may be inaccessible to antibodies.
Collapse
|
69
|
Kwak H, Dohmae N. Characterization of post-translational modifications on lysine 9 of histone H3 variants in mouse testis using matrix-assisted laser desorption/ionization in-source decay. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2529-2536. [PMID: 27643486 PMCID: PMC5108415 DOI: 10.1002/rcm.7742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Post-translational modifications (PTMs) of histones result in changes to transcriptional activities and chromatin remodeling. Lysine 9 of histone H3 (H3K9) is subject to PTMs, such as methylation and acetylation, which influence histone activity during spermatogenesis. Characterization strategies for studying PTMs on H3K9 have been developed to provide epigenetic and proteomic information. Proteomic analysis has been used to limited success to study PTMs on H3K9; however, a comprehensive analytical approach is required to elucidate global patterns of PTMs of H3 variants during spermatogenesis. METHODS Intact H3 variants in mouse testis were separated by high-performance liquid chromatography on a reversed-phase column with an ion-pairing reagent. Modifications to H3K9 were identified via top-down analysis using matrix-assisted laser desorption/ionization in source decay (MALDI-ISD). RESULTS Mono-, di-, and tri-methylations were identified at H3K9 in mouse testis and epididymis. These modifications were also observed in testis-specific histone H3 (H3t). Specifically, tri-methylation was more abundant on H3tK9 than on K9 of other H3 variants. CONCLUSIONS We introduce a method for rapid, simple, and comprehensive characterization of PTMs on the N-termini of H3 variants using MALDI-ISD. This approach provides novel and useful information, including K9 modifications on H3t, which would benefit epigenetic and proteomic research. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Ho‐Geun Kwak
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource Science2‐1 HirosawaWako351‐0198Japan
- Graduate School of Science and EngineeringSaitama UniversitySaitamaSaitama338‐8570Japan
| | - Naoshi Dohmae
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource Science2‐1 HirosawaWako351‐0198Japan
- Graduate School of Science and EngineeringSaitama UniversitySaitamaSaitama338‐8570Japan
| |
Collapse
|
70
|
Wu CH, Zong Q, Du AL, Zhang W, Yao HC, Yu XQ, Wang YF. Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev Biol 2016; 420:79-89. [DOI: 10.1016/j.ydbio.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
71
|
Epigenetic Remodeling in Male Germline Development. Stem Cells Int 2016; 2016:3152173. [PMID: 27818689 PMCID: PMC5081465 DOI: 10.1155/2016/3152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
In mammals, germ cells guarantee the inheritance of genetic and epigenetic information across generations and are the origin of a new organism. During embryo development, the blastocyst is formed in the early stage, is comprised of an inner cell mass which is pluripotent, and could give rise to the embryonic stem cells (ESCs). The inner cell mass undergoes demethylation processes and will reestablish a methylated state that is similar to that of somatic cells later in epiblast stage. Primordial germ cells (PGCs) will be formed very soon and accompanied by the process of genome-wide demethylation. With the input of male sex determination genes, spermatogonial stem cells (SSCs) are generated and undergo the process of spermatogenesis. Spermatogenesis is a delicately regulated process in which various regulations are launched to guarantee normal mitosis and meiosis in SSCs. During all these processes, especially during spermatid development, DNA methylation profile and histone modifications are of crucial importance. In this review, we will discuss the epigenetic modifications from zygote formation to mature sperm generation and their significance to these development processes.
Collapse
|
72
|
Goto M, Toda N, Shimaji K, Suong DNA, Vo N, Kimura H, Yoshida H, Inoue YH, Yamaguchi M. Polycomb-dependent nucleolus localization of Jumonji/Jarid2 during Drosophila spermatogenesis. SPERMATOGENESIS 2016; 6:e1232023. [PMID: 28144496 DOI: 10.1080/21565562.2016.1232023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022]
Abstract
Drosophila Jumonji/Jarid2 (dJmj) has been identified as a component of Polycomb repressive complex 2. However, it is suggested that dJmj has both PRC-dependent and -independent roles. Subcellular localization of dJmj during spermatogenesis is unknown. We therefore performed immunocytochemical analyses with specific antibodies to dJmj and tri-methylation at lysine 27 on histone H3 (H3K27me3). Interestingly, dJmj exclusively localizes at nucleolus in the late growth stage. Examination of the dJmj localization in various Polycomb group (PcG) mutant lines at the late growth stage allowed identification of some PcG genes, including Polycomb (Pc), to be responsible for dJmj recruitment to nucleolus. In addition, we found that size of nucleolus was decreased in some of these mutant lines. In a mutant of testis-specific TAF homolog (tTAF) that is responsible for nucleolus localization of Pc, dJmj signals were detected not only at nucleolus but also on the condensed chromatin in the late growth stage. Duolink In situ Proximity ligation assay clarified that Pc interacts with dJmj at nucleolus in the late growth stage. Furthermore, the level of H3K27me3 decreased in nuclei at this stage. Taken together, we conclude that tTAF is responsible for recruitments of dJmj to nucleolus in the late growth stage that appears to be mediated by Pc. Compartmentalization of dJmj in nucleolus together with some of PcG may be necessary to de-repress the expression of genes required to cellular growth and proliferation in the following meiotic divisions.
Collapse
Affiliation(s)
- Moyu Goto
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto, Japan
| | - Narumi Toda
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto, Japan
| | - Kouhei Shimaji
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto, Japan
| | | | - Nicole Vo
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research (IIR), Tokyo Institute of Technology , Yokohama, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto, Japan
| | - Yoshihiro H Inoue
- Insect Advanced Research Center, Kyoto Institute of Technology , Kyoto, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan; Insect Advanced Research Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
73
|
The de-ubiquitylating enzyme DUBA is essential for spermatogenesis in Drosophila. Cell Death Differ 2016; 23:2019-2030. [PMID: 27518434 DOI: 10.1038/cdd.2016.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/21/2016] [Accepted: 07/05/2016] [Indexed: 01/21/2023] Open
Abstract
De-ubiquitylating enzymes (DUBs) reverse protein ubiquitylation and thereby control essential cellular functions. Screening for a DUB that counteracts caspase ubiquitylation to regulate cell survival, we identified the Drosophila ovarian tumour-type DUB DUBA (CG6091). DUBA physically interacts with the initiator caspase death regulator Nedd2-like caspase (Dronc) and de-ubiquitylates it, thereby contributing to efficient inhibitor of apoptosis-antagonist-induced apoptosis in the fly eye. Searching also for non-apoptotic functions of DUBA, we found that Duba-null mutants are male sterile and display defects in spermatid individualisation, a process that depends on non-apoptotic caspase activity. Spermatids of DUBA-deficient flies showed reduced caspase activity and lack critical structures of the individualisation process. Biochemical characterisation revealed an obligate activation step of DUBA by phosphorylation. With genetic rescue experiments we demonstrate that DUBA phosphorylation and catalytic activity are crucial in vivo for DUBA function in spermatogenesis. Our results demonstrate for the first time the importance of de-ubiquitylation for fly spermatogenesis.
Collapse
|
74
|
Wen K, Yang L, Xiong T, Di C, Ma D, Wu M, Xue Z, Zhang X, Long L, Zhang W, Zhang J, Bi X, Dai J, Zhang Q, Lu ZJ, Gao G. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res 2016; 26:1233-44. [PMID: 27516619 PMCID: PMC5052038 DOI: 10.1101/gr.199547.115] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 07/12/2016] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs), a recently discovered class of cellular RNAs, play important roles in the regulation of many cellular developmental processes. Although lncRNAs have been systematically identified in various systems, most of them have not been functionally characterized in vivo in animal models. In this study, we identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of them using an optimized three-component CRISPR/Cas9 system. Among the lncRNA knockouts, 33 (31%) exhibited a partial or complete loss of male fertility, accompanied by visual developmental defects in late spermatogenesis. In addition, six knockouts were fully or partially rescued by transgenes in a trans configuration, indicating that those lncRNAs primarily work in trans. Furthermore, gene expression profiles for five lncRNA mutants revealed that testis-specific lncRNAs regulate global gene expression, orchestrating late male germ cell differentiation. Compared with coding genes, the testis-specific lncRNAs evolved much faster. Moreover, lncRNAs of greater functional importance exhibited higher sequence conservation, suggesting that they are under constant evolutionary selection. Collectively, our results reveal critical functions of rapidly evolving testis-specific lncRNAs in late Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Kejia Wen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijuan Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Animal Science, Tarim University, Xinjiang 843300, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Di
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Danhui Ma
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Menghua Wu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaoyu Xue
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuedi Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Long
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaying Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolin Bi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Guanjun Gao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
75
|
Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe SI, Aizawa SI, Yamamura KI. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep 2016; 6:27409. [PMID: 27250771 PMCID: PMC4890041 DOI: 10.1038/srep27409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
Protamines are expressed in the spermatid nucleus and allow denser packaging of DNA compared with histones. Disruption of the coding sequence of one allele of either protamine 1 (Prm1) or Prm2 results in failure to produce offspring, although sperm with disrupted Prm1 or Prm2 alleles are produced. Here, we produced Prm1-deficient female chimeric mice carrying Prm1-deficient oocytes. These mice successfully produced Prm1(+/-) male mice. Healthy Prm1(+/-) offspring were then produced by transferring blastocysts obtained via in vitro fertilization using zona-free oocytes and sperm from Prm1(+/-) mice. This result suggests that sperm lacking Prm1 can generate offspring despite being abnormally shaped and having destabilised DNA, decondensed chromatin and a reduction in mitochondrial membrane potential. Nevertheless, these mice showed little derangement of expression profiles.
Collapse
Affiliation(s)
- Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Kazuya Yoshinaga
- Department of Anatomy, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0975, Japan
| | - Kenryo Furushima
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Kazufumi Takamune
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Zhenghua Li
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Shin-Ichi Abe
- Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Shin-Ichi Aizawa
- Center for Developmental Biology, RIKEN Kobe, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Ken-Ichi Yamamura
- Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
76
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
77
|
Widespread colocalization of the Drosophila histone acetyltransferase homolog MYST5 with DREF and insulator proteins at active genes. Chromosoma 2016; 126:165-178. [PMID: 26894919 DOI: 10.1007/s00412-016-0582-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
MYST family histone acetyltransferases play important roles in gene regulation. Here, we have characterized the Drosophila MYST histone acetyltransferase (HAT) encoded by cg1894, whose closest homolog is Drosophila MOF, and which we have termed MYST5. We found it localized to a large number of interbands as well as to the telomeres of polytene chromosomes, and it showed strong colocalization with the interband protein Z4/Putzig and RNA polymerase II. Accordingly, genome-wide location analysis by ChIP-seq showed co-occurrence of MYST5 with the Z4-interacting partner Chriz/Chromator. Interestingly, MYST5 bound to the promoter of actively transcribed genes, and about half of MYST5 sites colocalized with the transcription factor DNA replication-related element-binding factor (DREF), indicating a role for MYST5 in gene expression. Moreover, we observed substantial overlap of MYST5 binding with that of the insulator proteins CP190, dCTCF, and BEAF-32, which mediate the organization of the genome into functionally distinct topological domains. Altogether, our data suggest a broad role for MYST5 both in gene-specific transcriptional regulation and in the organization of the genome into chromatin domains, with the two roles possibly being functionally interconnected.
Collapse
|
78
|
Elnfati AH, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. GENOMICS DATA 2015; 7:175-7. [PMID: 26981400 PMCID: PMC4778661 DOI: 10.1016/j.gdata.2015.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 11/23/2022]
Abstract
During spermiogenesis in mammals and many other vertebrate classes, histone-containing nucleosomes are replaced by protamine toroids, which can repackage chromatin at a 10 to 20-fold higher density than in a typical somatic nucleus. However, recent evidence suggests that sperm of many species, including human and mouse retain a small compartment of nucleosomal chromatin, particularly near genes important for embryogenesis. As in mammals, spermiogenesis in the fruit fly, Drosophila melanogaster has also been shown to undergo a programmed substitution of nucleosomes with protamine-like proteins. Using chromatin immunoprecipitation (ChIP) and whole-genome tiling array hybridization (ChIP-chip), supported by immunocytochemical evidence, we show that in a manner analogous to nucleosomal chromatin retention in mammalian spermatozoa, distinct domains packaged by the canonical histones H2A, H2B, H3 and H4 are present in the fly sperm nucleus. We also find evidence for the retention of nucleosomes with specific histone H3 trimethylation marks characteristic of chromatin repression (H3K9me3, H3K27me3) and active transcription (H3K36me3). Raw and processed data from the experiments are available at GEO, accession GSE52165.
Collapse
Affiliation(s)
- Abdul Hakim Elnfati
- Department of Zoology, Faculty of Science, Tripoli University, Tripoli, Libya
| | - David Iles
- Visiting Research Fellow in Bioinformatics, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK
| | - David Miller
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
79
|
Kuckwa J, Fritzen K, Buttgereit D, Rothenbusch-Fender S, Renkawitz-Pohl R. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion. Development 2015; 143:329-38. [PMID: 26657767 PMCID: PMC4725342 DOI: 10.1242/dev.126730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/28/2015] [Indexed: 12/26/2022]
Abstract
The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. Summary:Drosophila testes muscles arise from stem cells and can compensate for fusion defects to safeguard fertility; this plasticity may compensate for the observed lack of satellite cells in Drosophila.
Collapse
Affiliation(s)
- Jessica Kuckwa
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Katharina Fritzen
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Detlev Buttgereit
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Silke Rothenbusch-Fender
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Renate Renkawitz-Pohl
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| |
Collapse
|
80
|
Eren-Ghiani Z, Rathke C, Theofel I, Renkawitz-Pohl R. Prtl99C Acts Together with Protamines and Safeguards Male Fertility in Drosophila. Cell Rep 2015; 13:2327-2335. [DOI: 10.1016/j.celrep.2015.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
|
81
|
Doyen CM, Chalkley GE, Voets O, Bezstarosti K, Demmers JA, Moshkin YM, Verrijzer CP. A Testis-Specific Chaperone and the Chromatin Remodeler ISWI Mediate Repackaging of the Paternal Genome. Cell Rep 2015; 13:1310-1318. [PMID: 26549447 DOI: 10.1016/j.celrep.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 08/12/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
During spermatogenesis, the paternal genome is repackaged into a non-nucleosomal, highly compacted chromatin structure. Bioinformatic analysis revealed that Drosophila sperm chromatin proteins are characterized by a motif related to the high-mobility group (HMG) box, which we termed male-specific transcript (MST)-HMG box. MST77F is a MST-HMG-box protein that forms an essential component of sperm chromatin. The deposition of MST77F onto the paternal genome requires the chaperone function of tNAP, a testis-specific NAP protein. MST77F, in turn, enables the stable incorporation of MST35Ba and MST35Bb into sperm chromatin. Following MST-HMG-box protein deposition, the ATP-dependent chromatin remodeler ISWI mediates the appropriate organization of sperm chromatin. Conversely, at fertilization, maternal ISWI targets the paternal genome and drives its repackaging into de-condensed nucleosomal chromatin. Failure of this transition in ISWI mutant embryos is followed by mitotic defects, aneuploidy, and haploid embryonic divisions. Thus, ISWI enables bi-directional transitions between two fundamentally different forms of chromatin.
Collapse
Affiliation(s)
- Cécile M Doyen
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Gillian E Chalkley
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Olaf Voets
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Yuri M Moshkin
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
82
|
Alvi ZA, Chu TC, Schawaroch V, Klaus AV. Genomic and expression analysis of transition proteins in Drosophila. SPERMATOGENESIS 2015; 5:e1178518. [PMID: 27512614 PMCID: PMC4964972 DOI: 10.1080/21565562.2016.1178518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
Abstract
The current study was aimed at analyzing putative protein sequences of the transition protein-like proteins in 12 Drosophila species based on the reference sequences of transition protein-like protein (Tpl (94D) ) expressed in Drosophila melanogaster sperm nuclei. Transition proteins aid in transforming chromatin from a histone-based nucleosome structure to a protamine-based structure during spermiogenesis - the post-meiotic stage of spermatogenesis. Sequences were obtained from NCBI Ref-Seq database using NCBI ORF-Finder (PSI-BLAST). Sequence alignments and analysis of the amino acid content indicate that orthologs for Tpl (94D) are present in the melanogaster species subgroup (D. simulans, D. sechellia, D. erecta, and D. yakuba), D. ananassae, and D. pseudoobscura, but absent in D. persmilis, D. willistoni, D. mojavensis, D. virilis, and D. grimshawi. Transcriptome next generation sequence (RNA-Seq) data for testes and ovaries was used to conduct differential gene expression analysis for Tpl (94D) in D. melanogaster, D. simulans, D. yakuba, D. ananassae, and D. pseudoobscura. The identified Tpl (94D) orthologs show high expression in the testes as compared to the ovaries. Additionally, 2 isoforms of Tpl (94D) were detected in D. melanogaster with isoform A being much more highly expressed than isoform B. Functional analyses of the conserved region revealed that the same high mobility group (HMG) box/DNA binding region is conserved for both Drosophila Tpl (94D) and Drosophila protamine-like proteins (MST35Ba and MST35Bb). Based on the rigorous bioinformatic approach and the conservation of the HMG box reported in this work, we suggest that the Drosophila Tpl (94D) orthologs should be classified as their own transition protein group.
Collapse
Affiliation(s)
- Zain A. Alvi
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| | - Tin-Chun Chu
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| | | | - Angela V Klaus
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| |
Collapse
|
83
|
Mapping of post-translational modifications of spermatid-specific linker histone H1-like protein, HILS1. J Proteomics 2015; 128:218-30. [PMID: 26257145 DOI: 10.1016/j.jprot.2015.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/29/2022]
Abstract
In mammalian spermiogenesis, haploid round spermatids undergo dramatic biochemical and morphological changes and transform into motile mature spermatozoa. A majority of the histones are replaced by transition proteins during mid-spermiogenesis and later replaced by protamines, which occupy the sperm chromatin. In mammals, 11 linker histone H1 subtypes have been reported. Among them, H1t, HILS1, and H1T2 are uniquely expressed in testis, with the expression of HILS1 and H1T2 restricted to spermiogenesis. However, there is a lack of knowledge about linker histone role in the nuclear reorganization during mammalian spermiogenesis. Here, we report a method for separation of endogenous HILS1 protein from other rat testis linker histones by reversed-phase high-performance liquid chromatography (RP-HPLC) and identification of 15 novel post-translational modifications of HILS1, which include lysine acetylation and serine/threonine/tyrosine phosphorylation sites. Immunofluorescence studies demonstrate the presence of linker histone HILS1 and HILS1Y78p during different steps of spermiogenesis from early elongating to condensing spermatids.
Collapse
|
84
|
Gupta N, Madapura MP, Bhat UA, Rao MRS. Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2. J Biol Chem 2015; 290:12101-22. [PMID: 25818198 DOI: 10.1074/jbc.m114.620443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg(71), Arg(75), and Arg(92) residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys(88) and Lys(91) residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.
Collapse
Affiliation(s)
- Nikhil Gupta
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M Pradeepa Madapura
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - U Anayat Bhat
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M R Satyanarayana Rao
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
85
|
Kost N, Kaiser S, Ostwal Y, Riedel D, Stützer A, Nikolov M, Rathke C, Renkawitz-Pohl R, Fischle W. Multimerization of Drosophila sperm protein Mst77F causes a unique condensed chromatin structure. Nucleic Acids Res 2015; 43:3033-45. [PMID: 25735749 PMCID: PMC4381051 DOI: 10.1093/nar/gkv015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023] Open
Abstract
Despite insights on the cellular level, the molecular details of chromatin reorganization in sperm development, which involves replacement of histone proteins by specialized factors to allow ultra most condensation of the genome, are not well understood. Protamines are dispensable for DNA condensation during Drosophila post-meiotic spermatogenesis. Therefore, we analyzed the interaction of Mst77F, another very basic testis-specific protein with chromatin and DNA as well as studied the molecular consequences of such binding. We show that Mst77F on its own causes severe chromatin and DNA aggregation. An intrinsically unstructured domain in the C-terminus of Mst77F binds DNA via electrostatic interaction. This binding results in structural reorganization of the domain, which induces interaction with an N-terminal region of the protein. Via putative cooperative effects Mst77F is induced to multimerize in this state causing DNA aggregation. In agreement, overexpression of Mst77F results in chromatin aggregation in fly sperm. Based on these findings we postulate that Mst77F is crucial for sperm development by giving rise to a unique condensed chromatin structure.
Collapse
Affiliation(s)
- Nils Kost
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sophie Kaiser
- Developmental Biology, FB17, Philipps University, 35037 Marburg, Germany
| | - Yogesh Ostwal
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dietmar Riedel
- Electron Microscopy Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Alexandra Stützer
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Miroslav Nikolov
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christina Rathke
- Developmental Biology, FB17, Philipps University, 35037 Marburg, Germany
| | | | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
86
|
Abstract
Genetic elements that cheat Mendelian segregation by biasing transmission in their favor gain a significant fitness benefit. Several examples of sex-ratio meiotic drive, where one sex chromosome biases its own transmission at the cost of the opposite sex chromosome, exist in animals and plants. While the distorting sex chromosome gains a significant advantage by biasing sex ratio, the autosomes, and especially the opposite sex chromosome, experience strong selection to resist this transmission bias. In most well-studied sex-ratio meiotic drive systems, autosomal and/or Y-linked resistance has been identified. We specifically surveyed for Y-linked resistance to sex-ratio meiotic drive in Drosophila affinis by scoring the sex ratio of offspring sired by males with a driving X and one of several Y chromosomes. Two distinct types of resistance were identified: a restoration to 50/50 sex ratios and a complete reversal of sex ratio to all sons. We confirmed that fathers siring all sons lacked a Y chromosome, consistent with previously published work. Considerable variation in Y-chromosome morphology exists in D. affinis, but we showed that morphology does not appear to be associated with resistance to sex-ratio meiotic drive. We then used two X chromosomes (driving and standard) and three Y chromosomes (susceptible, resistant, and lacking) to examine fertility effects of all possible combinations. We find that both the driving X and resistant and lacking Y have significant fertility defects manifested in microscopic examination of testes and a 48-hr sperm depletion assay. Maintenance of variation in this sex-ratio meiotic drive system, including both the X-linked distorter and the Y-resistant effects, appear to be mediated by a complex interaction between fertility fitness and transmission dynamics.
Collapse
|
87
|
Gärtner SM, Rothenbusch S, Buxa MK, Theofel I, Renkawitz R, Rathke C, Renkawitz-Pohl R. The HMG-box-containing proteins tHMG-1 and tHMG-2 interact during the histone-to-protamine transition in Drosophila spermatogenesis. Eur J Cell Biol 2015; 94:46-59. [DOI: 10.1016/j.ejcb.2014.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022] Open
|
88
|
Exposure to endosulfan influences sperm competition in Drosophila melanogaster. Sci Rep 2014; 4:7433. [PMID: 25503806 PMCID: PMC4262826 DOI: 10.1038/srep07433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/21/2014] [Indexed: 01/20/2023] Open
Abstract
Dwindling male fertility due to xenobiotics is of global concern. Accordingly, male reproductive toxicity assessment of xenobiotics through semen quality analysis in exposed males, and examining progeny production of their mates is critical. These assays, in part, are biased towards monogamy. Females soliciting multiple male partners (polyandry) is the norm in many species. Polyandry incites sperm competition and allows females to bias sperm use. However, consequences of xenobiotic exposure to the sperm in the light of sperm competition remain to be understood. Therefore, we exposed Drosophila melanogaster males to endosulfan, and evaluated their progeny production as well as the ability of their sperm to counter rival control sperm in the storage organs of females sequentially mated to control/exposed males. Endosulfan (2 μg/ml) had no significant effect on progeny production and on the expression of certain genes associated with reproduction. However, exposed males performed worse in sperm competition, both as 1(st) and 2(nd) male competitors. These findings indicate that simple non-competitive measures of reproductive ability may fail to demonstrate the harmful effects of low-level exposure to xenobiotics on reproduction and advocate consideration of sperm competition, as a parameter, in the reproductive toxicity assessment of xenobiotics to mimic situations prevailing in the nature.
Collapse
|
89
|
Zhang Y, Song B, Du WD, He XJ, Ruan J, Zhou FS, Zuo XB, Ye L, Xie XS, Cao YX. Genetic association study ofRNF8andBRDTvariants with non-obstructive azoospermia in the Chinese Han population. Syst Biol Reprod Med 2014; 61:26-31. [DOI: 10.3109/19396368.2014.979513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
90
|
Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. SPERMATOGENESIS 2014; 2:158-166. [PMID: 23087835 PMCID: PMC3469439 DOI: 10.4161/spmg.21775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Drosophila spermatogenesis has become a paradigmatic system for the study of mechanisms that regulate adult stem cell maintenance, proliferation and differentiation. The dramatic cellular differentiation process from germline stem cell (GSC) to mature sperm is accompanied by dynamic changes in gene expression, which are regulated at transcriptional, post-transcriptional (including translational) and post-translational levels. Post-transcriptional regulation has been proposed as a unique feature of germ cells. However, recent studies have provided new insights into transcriptional regulation during Drosophila spermatogenesis. Both signaling pathways and epigenetic mechanisms act to orchestrate the transcriptional regulation of distinct genes at different germ cell differentiation stages. Many of the regulatory pathways that control male gamete differentiation in Drosophila are conserved in mammals. Therefore, studies using Drosophila spermatogenesis will provide insight into the molecular mechanisms that regulate mammalian germ cell differentiation pathways.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
91
|
Kanippayoor RL, Alpern JHM, Moehring AJ. Protamines and spermatogenesis in Drosophila and Homo sapiens : A comparative analysis. SPERMATOGENESIS 2014; 3:e24376. [PMID: 23885304 PMCID: PMC3710222 DOI: 10.4161/spmg.24376] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The production of mature and motile sperm is a detailed process that utilizes many molecular players to ensure the faithful execution of spermatogenesis. In most species that have been examined, spermatogenesis begins with a single cell that undergoes dramatic transformation, culminating with the hypercompaction of DNA into the sperm head by replacing histones with protamines. Precise execution of the stages of spermatogenesis results in the production of motile sperm. While comparative analyses have been used to identify similarities and differences in spermatogenesis between species, the focus has primarily been on vertebrate spermatogenesis, particularly mammals. To understand the evolutionary basis of spermatogenetic variation, however, a more comprehensive comparison is needed. In this review, we examine spermatogenesis and the final packaging of DNA into the sperm head in the insect Drosophila melanogaster and compare it to spermatogenesis in Homo sapiens.
Collapse
|
92
|
Rettie EC, Dorus S. Drosophila sperm proteome evolution: Insights from comparative genomic approaches. SPERMATOGENESIS 2014; 2:213-223. [PMID: 23087838 PMCID: PMC3469443 DOI: 10.4161/spmg.21748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite their conserved functional role in sexually reproducing organisms, spermatozoa are a diverse and rapidly evolving cell type. This phenomenon is largely attributed to sexual selection in polygamous species where sperm from multiple males compete to fertilize a limited number of oocytes. Drosophila have proven to be a particularly informative model system for the study of spermatogenesis and in this review we discuss how the characterization of the Drosophila melanogaster sperm proteome has advanced our understanding of the evolutionary genomics of sperm form and function. We summarize the molecular evolutionary characteristics of sperm genes and highlight recent evidence demonstrating the importance of novel gene creation in the evolution of sperm function and competitive ability. Comparative proteomic evidence is also provided, supporting an overall functional conservation between the Drosophila and mouse sperm proteomes. This analysis reveals a diverse repertoire of proteins functioning in proteolytic pathways, as well as the presence of proteins of the complement and innate immunity systems. We propose that these pathways may have functional relevance to post-mating female immunological responses as well as coevolved interactions with pathways expressed in the female reproductive tract, including those involved in sperm-oocyte recognition and fertilization.
Collapse
Affiliation(s)
- Elaine C Rettie
- Department of Biology and Biochemistry; University of Bath; Bath, UK
| | | |
Collapse
|
93
|
Abstract
Sperm RNA has been linked recently to trans-generational, non-Mendelian patterns of inheritance. Originally dismissed as “residual” to spermatogenesis, some sperm RNA may have postfertilization functions including the transmission of acquired characteristics. Sperm RNA may help explain how trans-generational effects are transmitted and it may also have implications for assisted reproductive technologies (ART) where sperm are subjected to considerable, ex vivo manual handling. The presence of sperm RNA was originally a controversial topic because nuclear gene expression is switched off in the mature mammalian spermatozoon. With the recent application of next generation sequencing (NGS), an unexpectedly rich and complex repertoire of RNAs has been revealed in the sperm of several species that makes its residual presence counterintuitive. What follows is a personal survey of the science behind our understanding of sperm RNA and its functional significance based on experimental observations from my laboratory as well as many others who have contributed to the field over the years and are continuing to contribute today. The narrative begins with a historical perspective and ends with some educated speculation on where research into sperm RNA is likely to lead us in the next 10 years or so.
Collapse
|
94
|
Agnieszka W. Etoposide interferes with the process of chromatin condensation during alga Chara vulgaris spermiogenesis. Micron 2014; 65:45-50. [DOI: 10.1016/j.micron.2014.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 11/26/2022]
|
95
|
Samson M, Jow MM, Wong CCL, Fitzpatrick C, Aslanian A, Saucedo I, Estrada R, Ito T, Park SKR, Yates JR, Chu DS. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet 2014; 10:e1004588. [PMID: 25299455 PMCID: PMC4191889 DOI: 10.1371/journal.pgen.1004588] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Collapse
Affiliation(s)
- Mark Samson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Margaret M. Jow
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Catherine C. L. Wong
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Division, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Colin Fitzpatrick
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Israel Saucedo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo Estrada
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Sung-kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
96
|
tBRD-1 selectively controls gene activity in the Drosophila testis and interacts with two new members of the bromodomain and extra-terminal (BET) family. PLoS One 2014; 9:e108267. [PMID: 25251222 PMCID: PMC4177214 DOI: 10.1371/journal.pone.0108267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023] Open
Abstract
Multicellular organisms have evolved specialized mechanisms to control transcription in a spatial and temporal manner. Gene activation is tightly linked to histone acetylation on lysine residues that can be recognized by bromodomains. Previously, the testis-specifically expressed bromodomain protein tBRD-1 was identified in Drosophila. Expression of tBRD-1 is restricted to highly transcriptionally active primary spermatocytes. tBRD-1 is essential for male fertility and proposed to act as a co-factor of testis-specific TATA box binding protein-associated factors (tTAFs) for testis-specific transcription. Here, we performed microarray analyses to compare the transcriptomes of tbrd-1 mutant testes and wild-type testes. Our data confirmed that tBRD-1 controls gene activity in male germ cells. Additionally, comparing the transcriptomes of tbrd-1 and tTAF mutant testes revealed a subset of common target genes. We also characterized two new members of the bromodomain and extra-terminal (BET) family, tBRD-2 and tBRD-3. In contrast to other members of the BET family in animals, both possess only a single bromodomain, a characteristic feature of plant BET family members. Immunohistology techniques not only revealed that tBRD-2 and tBRD-3 partially co-localize with tBRD-1 and tTAFs in primary spermatocytes, but also that their proper subcellular distribution was impaired in tbrd-1 and tTAF mutant testes. Treating cultured male germ cells with inhibitors showed that localization of tBRD-2 and tBRD-3 depends on the acetylation status within primary spermatocytes. Yeast two-hybrid assays and co-immunoprecipitations using fly testes protein extracts demonstrated that tBRD-1 is able to form homodimers as well as heterodimers with tBRD-2, tBRD-3, and tTAFs. These data reveal for the first time the existence of single bromodomain BET proteins in animals, as well as evidence for a complex containing tBRDs and tTAFs that regulates transcription of a subset of genes with relevance for spermiogenesis.
Collapse
|
97
|
Drosophila protamine-like Mst35Ba and Mst35Bb are required for proper sperm nuclear morphology but are dispensable for male fertility. G3-GENES GENOMES GENETICS 2014; 4:2241-5. [PMID: 25236732 PMCID: PMC4232549 DOI: 10.1534/g3.114.012724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During spermiogenesis, histones are massively replaced with protamines. A previous report showed that Drosophila males homozygous for a genomic deletion covering several genes including the protamine-like genes Mst35Ba/b are surprisingly fertile. Here, we have precisely deleted the Mst35B locus by homologous recombination, and we confirm the dispensability of Mst35Ba/b for fertility.
Collapse
|
98
|
Simard O, Grégoire MC, Arguin M, Brazeau MA, Leduc F, Marois I, Richter MV, Boissonneault G. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum Mutat 2014; 35:1280-4. [PMID: 25136821 DOI: 10.1002/humu.22637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022]
Abstract
Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.
Collapse
Affiliation(s)
- Olivier Simard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Gärtner SMK, Rathke C, Renkawitz-Pohl R, Awe S. Ex vivo culture of Drosophila pupal testis and single male germ-line cysts: dissection, imaging, and pharmacological treatment. J Vis Exp 2014:51868. [PMID: 25286189 PMCID: PMC4828063 DOI: 10.3791/51868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin-the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Collapse
Affiliation(s)
| | - Christina Rathke
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg
| | | | - Stephan Awe
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg;
| |
Collapse
|
100
|
Dottermusch-Heidel C, Klaus ES, Gonzalez NH, Bhushan S, Meinhardt A, Bergmann M, Renkawitz-Pohl R, Rathke C, Steger K. H3K79 methylation directly precedes the histone-to-protamine transition in mammalian spermatids and is sensitive to bacterial infections. Andrology 2014; 2:655-65. [PMID: 25079683 DOI: 10.1111/j.2047-2927.2014.00248.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
Abstract
In both mammalian and Drosophila spermatids, the completely histone-based chromatin structure is reorganized to a largely protamine-based structure. During this histone-to-protamine switch, transition proteins are expressed, for example TNP1 and TNP2 in mammals and Tpl94D in Drosophila. Recently, we demonstrated that in Drosophila spermatids, H3K79 methylation accompanies histone H4 hyperacetylation during chromatin reorganization. Preceding the histone-to-protamine transition, the H3K79 methyltransferase Grappa is expressed, and the predominant isoform bears a C-terminal extension. Here, we show that isoforms of the Grappa-equivalent protein in humans, rats and mice, that is DOT1L, have a C-terminal extension. In mice, the transcript of this isoform was enriched in the post-meiotic stages of spermatogenesis. In human and mice spermatids, di- and tri-methylated H3K79 temporally overlapped with hyperacetylated H4 and thus accompanied chromatin reorganization. In rat spermatids, trimethylated H3K79 directly preceded transition protein loading on chromatin. We analysed the impact of bacterial infections on spermatid chromatin using a uropathogenic Escherichia coli-elicited epididymo-orchitis rat model and showed that these infections caused aberrant spermatid chromatin. Bacterial infections led to premature emergence of trimethylated H3K79 and hyperacetylated H4. Trimethylated H3K79 and hyperacetylated H4 simultaneously occurred with transition protein TNP1, which was never observed in spermatids of mock-infected rats. Upon bacterial infection, only histone-based spermatid chromatin showed abnormalities, whereas protamine-compacted chromatin seemed to be unaffected. Our results indicated that H3K79 methylation is a histone modification conserved in Drosophila, mouse, rat and human spermatids and may be a prerequisite for proper chromatin reorganization.
Collapse
|