51
|
Gjorevski N, Nelson CM. Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine Growth Factor Rev 2009; 20:459-65. [PMID: 19896886 DOI: 10.1016/j.cytogfr.2009.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Departments of Chemical Engineering & Molecular Biology, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544, United States
| | | |
Collapse
|
52
|
Arendt LM, Evans LC, Rugowski DE, Garcia-Barchino MJ, Rui H, Schuler LA. Ovarian hormones are not required for PRL-induced mammary tumorigenesis, but estrogen enhances neoplastic processes. J Endocrinol 2009; 203:99-110. [PMID: 19635758 PMCID: PMC2841967 DOI: 10.1677/joe-09-0221] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiologic studies have demonstrated that increased prolactin (PRL) exposure raises the risk of invasive estrogen receptor alpha (ERalpha)-positive breast cancer in women. However, the mechanism(s) whereby this occurs and the interactions with estrogen itself in this disease remain poorly understood. In order to investigate the role of ovarian hormones in the disease process, we employed a transgenic model neu-related lipocalin (NRL)-PRL in which transgenic PRL is directed to mammary epithelial cells by the PRL- and estrogen-insensitive NRL promoter, mimicking the endogenous PRL expression within the breast observed in women. This high local exposure leads to mammary lesion development and eventually carcinomas. Ovariectomy (ovx), shortly after puberty, did not alter the incidence or latency of PRL-induced mammary carcinomas, consistent with the independence of PRL from circulating estrogens as a risk factor for invasive breast cancer in women. However, chronic estrogen administration to ovx NRL-PRL females decreased the latency of both ERalpha-positive and -negative tumors. We identified multiple mechanisms that may underlie this observation. Elevated estrogen exposure cooperated with PRL to increase epithelial proliferation and myoepithelial abnormalities, increasing the incidence of preneoplastic lesions. Critical components of the extracellular matrix secreted by the myoepithelium were reduced with age, and transgenic PRL raised transcripts for tenascin-C and maspin, both associated with tumor progression and poor prognosis in subclasses of clinical breast tumors. Mammary pERK1/2 and pAkt, but not phosphorylated Stat5, were markedly elevated by local PRL. Together, these findings indicate that PRL employs multiple mechanisms to promote mammary tumorigenesis.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
54
|
Li JX, Zhang Y, Ma LB, Sun JH, Yin BY. Isolation and culture of bovine mammary epithelial stem cells. J Vet Med Sci 2009; 71:15-9. [PMID: 19194071 DOI: 10.1292/jvms.71.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine mammary epithelial stem cells (MESCs) are very important in agricultural production and bioengineering. In the present study, we compared different isolation and culture methods for MESCs and observed their growth and differentiation characteristics. MESCs have an extremely weak proliferation capacity, and it is very difficult to obtain and prolong subculture of a bovine mammary epithelial stem cell line. We obtained some multipotent MESC aggregates that looked like spherical colonies. These colonies were only derived from suspension culture and were induced to differentiate into epithelial-like cells, myoepithelial-like cells and secretory cells and to establish a ductal-like structure. In contrast, MESCs cultured in adherent culture displayed low morphogenetic competence and only differentiated into epithelial-like cells. MESCs are often identified by testing their differentiation in vivo; however, herein, we have demonstrated the in vitro differentiation potential of bovine MESCs. In our study, beta 1-integrin and alpha 6-integrin which are expressed by human epidermal stem cells, were found in bovine, which shows that bovine MESCs share the same molecular signature as human MESCs.
Collapse
Affiliation(s)
- Ji-Xia Li
- Institute of Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
55
|
Estradiol and tamoxifen differently affects the inhibitory effects of vitamin A and their metabolites on the proliferation and expression of alpha2beta1 integrins in MCF-7 breast cancer cells. Adv Med Sci 2009; 54:91-8. [PMID: 19581203 DOI: 10.2478/v10039-009-0021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Retinoids are well known inhibitors of estrogen-dependent breast cancer cell growth and differentiation. alpha2beta1 integrins are involved in the normal growth and differentiation of breast cells, they also take part in many pathological processes including malignancies. The aim of the study was to evaluate the effect of estradiol and tamoxifen on the inhibitory action of retinoids on the proliferation of MCF-7 breast cancer cells and alpha2beta1 integrin expression. MATERIALS AND METHODS Evaluation was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. Expression of alpha2beta1 was assessed through immunocytochemical analysis. RESULTS Treatment of cancer cells with the examined compounds and tamoxifen (10 microM) revealed that only 13-cis retinoic acid (13-cis RA) and all-trans retinoic acid (ATRA) (10(-5) M) decreased cells proliferation compared to the tamoxifen group (30.84%+/-3.32, p<0.01 and 31.05%+/-4.67, p<0.01, respectively). The lowest fraction of PCNA positive cells was also observed after the simultaneous addition ATRA (10(-5) M) and tamoxifen (10 microM) (30.75%+/-0.95, p<0.01, compared to the tamoxifen group). Our results showed that the decrease of alpha2beta1 integrin expression by 13-cis RA (10(-5) M, 49.6+/-3.25%) and ATRA (10-9 M, 15.0%+/-5.0) was augmented by tamoxifen and to a lesser extent by estradiol, particularly in the case of ATRA at 10(-7) or 10(-9) M. CONCLUSIONS This data suggest that tamoxifen augments the inhibitory effect of retinoids on proliferation and alpha2beta1 integrin expression in MCF-7 cells.
Collapse
|
56
|
Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP, Lydon JP. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 2008; 149:6236-50. [PMID: 18687774 PMCID: PMC2613059 DOI: 10.1210/en.2008-0768] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our mechanistic understanding of progesterone's involvement in murine mammary morphogenesis and tumorigenesis is dependent on defining effector pathways responsible for transducing the progesterone signal into a morphogenetic response. Toward this goal, microarray methods were applied to the murine mammary gland to identify novel downstream gene targets of progesterone. Consistent with a tissue undergoing epithelial expansion, mining of the progesterone-responsive transcriptome revealed the up-regulation of functional gene classes involved in epithelial proliferation and survival. Reassuringly, signaling pathways previously reported to be responsive to progesterone were also identified. Mining this informational resource for rapidly induced genes, we identified "inhibitor of differentiation 4" (Id4) as a new molecular target acutely induced by progesterone exposure. Mammary Id4 is transiently induced during early pregnancy and colocalizes with progesterone receptor (PR) expression, suggesting that Id4 mediates the early events of PR-dependent mammary morphogenesis. Chromatin immunoprecipitation assay detecting direct recruitment of ligand occupied PR to the Id4 promoter supports this proposal. Given that Id4 is a member of the Id family of transcriptional regulators that have been linked to the maintenance of proliferative status and tumorigenesis, the establishment of a mechanistic link between PR signaling and Id4 promises to furnish a wider conceptual framework with which to advance our understanding of normal and abnormal mammary epithelial responses to progestins. In sum, the progesterone-responsive transcriptome described herein not only reinforces the importance of progesterone in mammary epithelial expansion but also represents an invaluable information resource with which to identify novel signaling paradigms for mammary PR action.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Valdivia
- Department of Molecular and Cellular Biology, Room M732A, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Martin MD, Fingleton B, Lynch CC, Wells S, McIntyre JO, Piston DW, Matrisian LM. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth. Clin Exp Metastasis 2008; 25:877-85. [PMID: 18787962 DOI: 10.1007/s10585-008-9206-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022]
Abstract
The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.
Collapse
MESH Headings
- Animals
- Coculture Techniques
- Diagnostic Imaging
- Disease Models, Animal
- Disease Progression
- Female
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Imaging, Three-Dimensional
- Immunoenzyme Techniques
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Microscopy, Confocal
- Organ Culture Techniques
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Michelle D Martin
- Department of Cancer Biology, Vanderbilt University, 771 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37212, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, Hemminki K, Lenner P, Försti A. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis 2008; 29:1394-9. [PMID: 18550570 DOI: 10.1093/carcin/bgn126] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Integrins control the cell attachment to the extracellular matrix and play an important role in mediating cell proliferation, migration and survival. A number of important cancer-associated integrin genes can be regulated by microRNAs (miRNAs) that bind to their target sites in the 3' untranslated regions. We examined the effect of single-nucleotide polymorphisms (SNPs) in predicted miRNA target sites of six integrin genes (ITGA3, ITGA6, ITGAv, ITGB3, ITGB4 and ITGB5) on breast cancer (BC) risk and clinical outcome. Six SNPs were genotyped in 749 Swedish incident BC cases with detailed clinical data and up to 15 years of follow-up together with 1493 matched controls. We evaluated associations between genotypes and BC risk and clinical tumour characteristics. Survival probabilities were compared between different subgroups. As a novel finding, several SNPs seemed to associate with the hormone receptor status. The strongest association was observed between the A allele of the SNP rs743554 in the ITGB4 gene and oestrogen receptor-negative tumours [odds ratio 2.09, 95% confidence intervals (CIs) 1.19-3.67]. The same SNP was associated with survival. The A allele carriers had a worse survival compared with the wild-type genotype carriers (hazard ratio 2.11, 95% CIs 1.21-3.68). The poor survival was significantly associated with the aggressive tumour characteristics: high grade, lymph node metastasis and high stage. None of the SNPs was significantly associated with BC risk. As the ITGB4 SNP seems to influence tumour aggressiveness and survival, it may have prognostic value in the clinic.
Collapse
Affiliation(s)
- Annika Brendle
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Coppock HA, Gilham DE, Howell A, Clarke RB. Cyclin-dependent kinase inhibitors and basement membrane interact to regulate breast epithelial cell differentiation and acinar morphogenesis. Cell Prolif 2007; 40:721-40. [PMID: 17877612 PMCID: PMC6496798 DOI: 10.1111/j.1365-2184.2007.00463.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The cyclin-dependent kinase inhibitors (CDKIs), p21(CIP1) and p27(KIP1) regulate growth and differentiation in diverse tissue types. We aimed to determine whether p21(CIP1) or p27(KIP1) could induce a terminally differentiated phenotype in breast cells, and to examine if CDKI expression is regulated by basement membrane interactions. MATERIALS AND METHODS Effects of increased CDKI expression on the phenotype of MCF-10A breast epithelial cells were examined by retroviral transduction of p21(CIP1) or p27(KIP1) cDNA. RESULTS Overexpression of p21(CIP1) or p27(KIP1) reduced MCF-10A growth rates in monolayer cultures, altered cellular morphology and stimulated accumulation of neutral lipid droplets, suggesting partial lactational differentiation. However, markers of luminal differentiation (oestrogen and progesterone receptors, alpha-lactalbumin, beta-casein and adipophilin) were absent when examined by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Cell-basement membrane contacts are known to be essential for full mammary epithelial cell differentiation and therefore parental MCF-10A cells were cultured on a basement membrane preparation (Matrigel) in which they form acini. Immunocytochemistry showed that Ki67, the cell proliferation marker, was initially expressed at high levels and as growth decreased p27(KIP1) expression steadily increased. Surprisingly, p21(CIP1) was highest at the early stages of acinus growth and was detected in proliferating cells, as demonstrated by colocalization in dual Ki67/p21(CIP1) immunofluorescence. Overexpression of p21(CIP1) or p27(KIP1) impaired formation of acini, whereas their knockdown, using siRNA, increased acinus formation. CONCLUSION We conclude that both p21(CIP1) and p27(KIP1) induce partial secretory differentiation of mammary cells in monolayer, but during acinus morphogenesis in 3D culture they have a highly regulated temporal expression pattern.
Collapse
Affiliation(s)
- H A Coppock
- Centre for Molecular Medicine, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
60
|
Montero Girard G, Vanzulli SI, Cerliani JP, Bottino MC, Bolado J, Vela J, Becu-Villalobos D, Benavides F, Gutkind S, Patel V, Molinolo A, Lanari C. Association of estrogen receptor-alpha and progesterone receptor A expression with hormonal mammary carcinogenesis: role of the host microenvironment. Breast Cancer Res 2007; 9:R22. [PMID: 17341305 PMCID: PMC1868922 DOI: 10.1186/bcr1660] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 02/14/2007] [Accepted: 03/06/2007] [Indexed: 11/29/2022] Open
Abstract
Introduction Medroxyprogesterone acetate (MPA) induces estrogen receptor (ER)-positive and progesterone receptor (PR)-positive ductal invasive mammary carcinomas in BALB/c mice. We sought to reproduce this MPA cancer model in C57BL/6 mice because of their widespread use in genetic engineering. Within this experimental setting, we studied the carcinogenic effects of MPA, the morphologic changes in mammary glands that are induced by MPA and progesterone, and the levels of ER and PR expression in MPA-treated and progesterone-treated mammary glands. Finally, we evaluated whether the differences found between BALB/c and C57BL/6 mouse strains were due to intrinsic differences in epithelial cells. Methods The carcinogenic effect of MPA was evaluated in C57BL/6 mice using protocols proven to be carcinogenic in BALB/c mice. In addition, BALB/c and C57BL/6 females were treated with progesterone or MPA for 1 or 2 months, and mammary glands were excised for histologic studies and for immunohistochemical and Western blot evaluation of ER and PR. Hormone levels were determined by radioimmunoassay. Isolated mammary epithelial cells were transplanted into cleared fat pads of 21-day-old female Swiss nu/nu mice or control congenic animals. Results MPA failed to induce mammary carcinomas or significant morphologic changes in the mammary glands of C57BL/6 mice. The expression of ER-α and PR isoform A in virgin mice was surprisingly much higher in BALB/c than in C57BL/6 mammary glands, and both receptors were downregulated in progestin-treated BALB/c mice (P < 0.05). PR isoform B levels were low in virgin control mice and increased after progestin treatment in both strains. ER-β expression followed a similar trend. No differences in hormone levels were found between strains. Surprisingly, the transplantation of the epithelial mammary gland cells of both strains into the cleared fat pads of Swiss (nu/nu) mice abolished the mammary gland morphologic differences and the ER and PR differences between strains. Conclusion C57BL/6 mammary glands are resistant to MPA-induced carcinogenesis and to hormone action. MPA and progesterone have different effects on mammary glands. Low ER-α and PR-A levels in untreated mammary glands may be associated with a low-risk breast cancer profile. Although we cannot at this time rule out the participation of other, untested factors, our findings implicate the stroma as playing a crucial role in the strain-specific differential hormone receptor expression and hormone responsiveness.
Collapse
Affiliation(s)
- Guadalupe Montero Girard
- Instituto de Investigaciones Oncológicas, Academia Nacional de Medicina, 3092 Las Heras, Buenos Aires 1425, Argentina
| | - Silvia I Vanzulli
- Instituto de Investigaciones Oncológicas, Academia Nacional de Medicina, 3092 Las Heras, Buenos Aires 1425, Argentina
| | - Juan Pablo Cerliani
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| | - María Cecilia Bottino
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| | - Julieta Bolado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| | - Jorge Vela
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| | - Fernando Benavides
- Department of Carcinogenesis, Science Park Research Division, The University of Texas MD Anderson Cancer Center, Park Road 1C, Science Park, Smithville, Texas 78957, USA
| | - Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Rockville Pike, Bethesda, Maryland 20892, USA
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Rockville Pike, Bethesda, Maryland 20892, USA
| | - Alfredo Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Rockville Pike, Bethesda, Maryland 20892, USA
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 2490 V de Obligado, Buenos Aires 1428, Argentina
| |
Collapse
|
61
|
Xu R, Spencer VA, Bissell MJ. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 2007; 282:14992-9. [PMID: 17387179 PMCID: PMC2933196 DOI: 10.1074/jbc.m610316200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation assays and mammary-specific genes as models, we show here that extracellular matrix molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the beta- and gamma-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both beta- and gamma-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. Chromatin immunoprecipitation analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Co-immunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, CCAAT/enhancer-binding protein beta, and glucocorticoid receptor. Thus, extracellular matrix- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
62
|
Johnson KR, Leight JL, Weaver VM. Demystifying the effects of a three-dimensional microenvironment in tissue morphogenesis. Methods Cell Biol 2007; 83:547-83. [PMID: 17613324 PMCID: PMC2658721 DOI: 10.1016/s0091-679x(07)83023-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue morphogenesis and homeostasis are dependent on a complex dialogue between multiple cell types and chemical and physical cues in the surrounding microenvironment. The emergence of engineered three-dimensional (3D) tissue constructs and the development of tractable methods to recapitulate the native tissue microenvironment ex vivo has led to a deeper understanding of tissue-specific behavior. However, much remains unclear about how the microenvironment and aberrations therein directly affect tissue morphogenesis and behavior. Elucidating the role of the microenvironment in directing tissue-specific behavior will aid in the development of surrogate tissues and tractable approaches to diagnose and treat chronic-debilitating diseases such as cancer and atherosclerosis. Toward this goal, 3D organotypic models have been developed to clarify the mechanisms of epithelial morphogenesis and the subsequent maintenance of tissue homeostasis. Here we describe the application of these 3D culture models to illustrate how the microenvironment plays a critical role in regulating mammary tissue function and signaling, and discuss the rationale for applying precisely defined organotypic culture assays to study epithelial cell behavior. Experimental methods are provided to generate and manipulate 3D organotypic cultures to study the effect of matrix stiffness and matrix dimensionality on epithelial tissue morphology and signaling. We end by discussing technical limitations of currently available systems and by presenting opportunities for improvement.
Collapse
Affiliation(s)
- Kandice R Johnson
- Institute for Medicine and Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
63
|
Acconcia F, Manavathi B, Mascarenhas J, Talukder AH, Mills G, Kumar R. An inherent role of integrin-linked kinase-estrogen receptor alpha interaction in cell migration. Cancer Res 2006; 66:11030-8. [PMID: 17108142 DOI: 10.1158/0008-5472.can-06-2676] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrin-linked kinase (ILK) and estrogen receptor (ER)-alpha modulate cell migration. However, the crosstalk between ERalpha and ILK and the role of ILK in ERalpha-mediated cell migration remain unexplored. Here, we report that ILK participates in ERalpha signaling in breast cancer cells. We found that ILK binds ERalpha in vitro and in vivo through a LXXLL motif in ILK. Estrogen prevented ERalpha-ILK binding, resulting in phosphatidylinositol 3-kinase (PI3K)-dependent increase in ILK kinase activity. Furthermore, the regulation of ERalpha-ILK interaction was dependent on the PI3K pathway. Unexpectedly, transient knockdown or inhibition of ILK caused hyperphosphorylation of ERalpha Ser(118) in an extracellular signal-regulated kinase/mitogen-activated protein kinase pathway-dependent manner and an enhanced ERalpha recruitment to the target chromatin and gene expression, a process reversed by overexpression of ILK. Compatible with these interactions, estrogen regulated cell migration via the PI3K/ILK/AKT pathway with stable ILK overexpression hyperactivating cell migration. Thus, status of ILK signaling may be an important modifier of ER signaling in breast cancer cells and this pathway could be exploited for therapeutic intervention in breast cancer cells.
Collapse
Affiliation(s)
- Filippo Acconcia
- Departments of Molecular and Cellular Oncology and Molecular Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
64
|
Katz E, Streuli CH. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol 2006; 39:715-26. [PMID: 17251051 PMCID: PMC2625401 DOI: 10.1016/j.biocel.2006.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/26/2006] [Accepted: 11/08/2006] [Indexed: 12/02/2022]
Abstract
The development of the mammary gland is spatially regulated by the interaction of the mammary epithelium with the extracellular matrix (ECM). Cells receive cues from the ECM through a family of adhesion receptors called integrins, consisting of α- and β-chain dimers. Integrins assist cells in sensing their appropriate developmental context in response to both hormones and growth factors. Here we argue that cell adhesion to the ECM plays a key role in specific developmental checkpoints, particularly in alveolar survival, morphogenesis and function. Specific ablation of αβ1-integrins in the luminal epithelium of the mammary gland shows that this sub-type of receptors is required for proliferation, accurate morphological organisation, as well as milk secretion. Downstream, small Rho GTPases mediate cellular polarisation and differentiation. Current challenges in studying the integration of signals in checkpoints of mammary gland development are discussed.
Collapse
|
65
|
Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura KI. LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod 2006; 76:303-13. [PMID: 17079737 DOI: 10.1095/biolreprod.106.054619] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of the leucine-rich repeat domain containing G protein-coupled receptor (GPCR) 4 (Lgr4), which is one of the orphan GPCRs, were analyzed with the Lgr4 hypomorphic mutant mouse line (Lgr4(Gt)). This homozygous mutant had only one-tenth the normal transcription level; furthermore, 60% of them survived to adulthood. The homozygous male was infertile, showing morphologic abnormalities in both the testes and the epididymides. In the testes, luminal swelling, loss of germinal epithelium in the seminiferous tubules, and rete testis dilation were observed. Cauda epididymidis sperm were immotile. Rete testis dilation was due to a water reabsorption failure caused by a decreased expression of an estrogen receptor (ESR1) and SLC9A3 in the efferent ducts. Although we found differential regulation of ESR1 expression in the efferent ducts and the epididymis, the role of ESR1 in the epididymis remains unclear. The epididymis contained short and dilated tubules and completely lacked its initial segment. In the caput region, we observed multilamination and distortion of the basement membranes (BMs) with an accumulation of laminin. Rupture of swollen epididymal ducts was observed, leading to an invasion of macrophages into the lumen. Male infertility was probably due to the combination of a developmental defect of the epididymis and the rupture of the epithelium resulting in the immotile spermatozoa. These results indicate that Lgr4 has pivotal roles to play in the regulation of ESR1 expression, the control of duct elongation through BM remodeling, and the regional differentiation of the caput epididymidis.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Animals, Newborn/physiology
- Cell Line
- Down-Regulation
- Epididymis/abnormalities
- Epididymis/growth & development
- Epididymis/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Genitalia, Male/growth & development
- Genitalia, Male/metabolism
- Homozygote
- Infertility, Male/genetics
- Laminin/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Microscopy, Electron
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rete Testis/metabolism
- Rete Testis/pathology
- Rete Testis/ultrastructure
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/metabolism
- Sperm Motility
- Survival Analysis
- Testis/abnormalities
Collapse
Affiliation(s)
- Takayuki Hoshii
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 2006; 341:73-81. [PMID: 16412380 DOI: 10.1016/j.bbrc.2005.12.164] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 12/21/2005] [Indexed: 11/19/2022]
Abstract
The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer.
Collapse
|
67
|
Nelson CM, Bissell MJ. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 2005; 15:342-52. [PMID: 15963732 PMCID: PMC2933210 DOI: 10.1016/j.semcancer.2005.05.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to understand why cancer develops as well as predict the outcome of pharmacological treatments, we need to model the structure and function of organs in culture so that our experimental manipulations occur under physiological contexts. This review traces the history of the development of a prototypic example, the three-dimensional (3D) model of the mammary gland acinus. We briefly describe the considerable information available on both normal mammary gland function and breast cancer generated by the current model and present future challenges that will require an increase in its complexity. We propose the need for engineered tissues that faithfully recapitulate their native structures to allow a greater understanding of tissue function, dysfunction, and potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Mina J. Bissell
- Corresponding author. Tel.: +1 510 486 4365; fax: +1 510 486 5586. (M.J. Bissell)
| |
Collapse
|
68
|
Robledo T, Arriaga-Pizano L, Lopez-Pérez M, Salazar EP. Type IV collagen induces STAT5 activation in MCF7 human breast cancer cells. Matrix Biol 2005; 24:469-77. [PMID: 16139998 DOI: 10.1016/j.matbio.2005.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/27/2005] [Accepted: 07/25/2005] [Indexed: 12/11/2022]
Abstract
A rapid increase in the tyrosine phosphorylation of signal transducer and activators of transcription (STAT) proteins has been extensively documented in cells stimulated with cytokines and growth factors, but virtually nothing is known about the regulation of STAT5 activation in breast cancer cells stimulated with basement membrane (BM) components. Stimulation of MCF7 cells with type IV collagen (Col-IV) promoted a striking increase in the phosphorylation of STAT5 at Tyr-694, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. In addition, Col-IV also stimulated STAT5 nuclear translocation and an increased in STAT5 DNA binding activity. Treatment with the selective Src family inhibitor pyrazolopyrimidine PP-2 prevented STAT5 phosphorylation at Tyr-694, nuclear translocation of STAT5 and the STAT5-DNA complex formation. Our results demonstrate, for the first time, that stimulation with Col-IV induces STAT5 phosphorylation of endogenous STAT5 at Tyr-694, nuclear translocation of STAT5 and increases in STAT5 DNA binding activity via a Src-dependent pathway in MCF7 cells.
Collapse
Affiliation(s)
- Teresa Robledo
- Departamento de Biología Celular, Cinvestav-IPN, México, DF. 07360 México
| | | | | | | |
Collapse
|
69
|
Brockman JL, Schuler LA. Prolactin signals via Stat5 and Oct-1 to the proximal cyclin D1 promoter. Mol Cell Endocrinol 2005; 239:45-53. [PMID: 15885880 PMCID: PMC1635012 DOI: 10.1016/j.mce.2005.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/29/2005] [Accepted: 04/12/2005] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) modulates proliferation in the mammary gland and other tissues, in part through inducing transcription of cyclin D1, a key regulator of G(1) phase cell cycle progression. We showed previously that PRL, via Jak2, induces binding of Stat5 to a distal GAS site (GAS1) in the cyclin D1 promoter. However, full promoter activity requires additional regions, and in this paper we explored PRL-induced activity at sites other than GAS1. We defined a second PRL-responsive region spanning -254 to -180 that contains a second GAS site (GAS2) and an Oct-1 binding site. Although mutational analysis indicated independence from GAS2, proximal promoter activity remained Stat5-dependent, suggesting alternative mechanisms. EMSA showed that Oct-1 binds the -254 to -180 region and that PRL decreased Oct-1 binding, leading to increased PRL-responsiveness of the proximal cyclin D1 promoter in multiple cell lines. This suggests a role for Oct-1 in PRL-dependent control of cyclin D1 transcription.
Collapse
Affiliation(s)
| | - Linda A. Schuler
- * Corresponding author. Tel.: +1 608 263 9825; fax: +1 608 263 3926. E-mail address: (L.A. Schuler)
| |
Collapse
|
70
|
Eckert LB, Repasky GA, Ulkü AS, McFall A, Zhou H, Sartor CI, Der CJ. Involvement of Ras Activation in Human Breast Cancer Cell Signaling, Invasion, and Anoikis. Cancer Res 2004; 64:4585-92. [PMID: 15231670 DOI: 10.1158/0008-5472.can-04-0396] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although mutated forms of ras are not associated with the majority of breast cancers (<5%), there is considerable experimental evidence that hyperactive Ras can promote breast cancer growth and development. Therefore, we determined whether Ras and Ras-responsive signaling pathways were activated persistently in nine widely studied human breast cancer cell lines. Although only two of the lines harbor mutationally activated ras, we found that five of nine breast cancer cell lines showed elevated active Ras-GTP levels that may be due, in part, to HER2 activation. Unexpectedly, activation of two key Ras effector pathways, the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/AKT signaling pathways, was not always associated with Ras activation. Ras activation also did not correlate with invasion or the expression of proteins associated with tumor cell invasion (estrogen receptor alpha and cyclooxygenase 2). We then examined the role of Ras signaling in mediating resistance to matrix deprivation-induced apoptosis (anoikis). Surprisingly, we found that ERK and phosphatidylinositol 3'-kinase/AKT activation did not have significant roles in conferring anoikis resistance. Taken together, these observations show that Ras signaling exhibits significant cell context variations and that other effector pathways may be important for Ras-mediated oncogenesis, as well as for anoikis resistance, in breast cancer. Additionally, because ERK and AKT activation are not strictly associated with Ras activation, pharmacological inhibitors of these two signaling pathways may not be the best approach for inhibition of aberrant Ras function in breast cancer treatment.
Collapse
Affiliation(s)
- Lynn B Eckert
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Cui X, Lee AV. Regulatory nodes that integrate and coordinate signaling as potential targets for breast cancer therapy. Clin Cancer Res 2004; 10:396S-401S. [PMID: 14734498 DOI: 10.1158/1078-0432.ccr-031205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blockade of the estrogen receptor (ER) with antiestrogens and aromatase inhibitors is effective in the treatment of breast cancer. Why ER plays such a dominant role in breast cancer and represents such an excellent target remains to be defined. The ability of ER to respond to multiple inputs and to control expression of multiple downstream genes may be one of the reasons why ER is such a powerful target for breast cancer treatment. The recent modest performance of a number of targeted therapies in breast cancer has raised the question whether we will ever develop therapies that have such success as antiestrogens. Targeted therapies tend to inhibit a single pathway that is probably altered in only a subset of patients. Even within this subset, only a limited number of patients respond. The evidence that virtually all pathways can cross-talk and that they exhibit several layers of redundancy reveals a complexity of signaling networks that may defy the generation of targeted therapies with efficacy similar to antiestrogens. However, there are clearly regulatory nodes that can integrate multiple upstream inputs and elicit diverse downstream outputs. We provide evidence and rationales for integrins, insulin receptor substrates (IRSs), and cyclin D1 as potential therapeutic targets. These proteins, similar to ER, can integrate and coordinate multiple signals in breast cancer cells and thus mediate diverse aspects of breast cancer progression. New treatment targets will emerge in light of more global models of signal transduction that fully integrate all aspects of cell biology such as the role of the extracellular matrix and will hopefully result in the development of targeted therapies that show efficacy similar to antiestrogens.
Collapse
Affiliation(s)
- Xiaojiang Cui
- Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
72
|
Novaro V, Radisky DC, Ramos Castro NE, Weisz A, Bissell MJ. Malignant mammary cells acquire independence from extracellular context for regulation of estrogen receptor alpha. Clin Cancer Res 2004; 10:402S-9S. [PMID: 14734499 DOI: 10.1158/1078-0432.ccr-031209] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between luminal epithelial cells and their surrounding microenvironment govern the normal development and function of the mammary gland. Alterations of these interactions can induce abnormal intracellular signaling pathways that affect the development and progression of breast tumors. One critical component of mammary gland development, as well as breast cancer progression, is the expression of estrogen receptors. In a previous study using cultured nonmalignant mammary epithelial cells, we found that the basement membrane molecules, laminin-1 and collagen-IV, were involved in maintenance of estrogen receptor (ER) alpha expression, and that this response could be interfered with by disrupting cell-extracellular matrix adhesion. Here we use phenotypically normal mammary epithelial SCp2 cells to dissect the promoter region of the ERalpha that is involved in the selective response to basement membrane. We also analyze the alteration of this response in SCg6 cells, a malignant cell line that shares a common lineage with the SCp2 cells, to provide insight into the relative overexpression of ERalpha and the unresponsiveness to basement membrane regulation found in those malignant cells. Evidence is presented to show the relevance of the cross-talk between different signaling pathways in the constitution of a functional tissue organization and how this integration may be disrupted in the malignant phenotype.
Collapse
Affiliation(s)
- Virginia Novaro
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|
73
|
Taddei I, Faraldo MM, Teulière J, Deugnier MA, Thiery JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003; 8:383-94. [PMID: 14985635 DOI: 10.1023/b:jomg.0000017426.74915.b9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integrins are major extracellular matrix (ECM) receptors that can also serve for some cell-cell interactions. They have been identified as important regulators of mammary epithelial cell growth and differentiation. Their ability to promote cell anchorage, proliferation, survival, migration, and the induction of active ECM-degrading enzymes suggests that they play an essential role in normal mammary morphogenesis, but, on the other hand, reveals their potential to promote tumor progression.
Collapse
Affiliation(s)
- Ilaria Taddei
- UMR 144 CNRS-Institut Curie, Section de Recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|