51
|
Gerasimenko JV, Sherwood M, Tepikin AV, Petersen OH, Gerasimenko OV. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci 2006; 119:226-38. [PMID: 16410548 DOI: 10.1242/jcs.02721] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inositol trisphosphate and cyclic ADP-ribose release Ca2+ from the endoplasmic reticulum via inositol trisphosphate and ryanodine receptors, respectively. By contrast, nicotinic acid adenine dinucleotide phosphate may activate a novel Ca2+ channel in an acid compartment. We show, in two-photon permeabilized pancreatic acinar cells, that the three messengers tested could each release Ca2+ from the endoplasmic reticulum and also from an acid store in the granular region. The nicotinic acid adenine dinucleotide phosphate action on both types of store, like that of cyclic ADP-ribose but unlike inositol trisphosphate, depended on operational ryanodine receptors, since it was blocked by ryanodine or ruthenium red. The acid Ca2+ store in the granular region did not have Golgi or lysosomal characteristics and might therefore be associated with the secretory granules. The endoplasmic reticulum is predominantly basal, but thin extensions penetrate into the granular area and cytosolic Ca2+ signals probably initiate at sites where endoplasmic reticulum elements and granules come close together.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | | | | | | | | |
Collapse
|
52
|
Kim T, Loh YP. Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol Biol Cell 2005; 17:789-98. [PMID: 16319172 PMCID: PMC1356589 DOI: 10.1091/mbc.e05-08-0755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
53
|
Crivellato E, Guidolin D, Nico B, Nussdorfer GG, Ribatti D. Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle-mediated secretory process. ACTA ACUST UNITED AC 2005; 211:79-86. [PMID: 16374612 DOI: 10.1007/s00429-005-0059-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2005] [Indexed: 11/28/2022]
Abstract
Observation by transmission electron microscopy, coupled with morphometric analysis and estimation procedure, revealed unique ultrastructural features in 25.94% of noradrenaline (NA)-containing granules and 16.85% of adrenaline (A)-containing granules in the rat adrenal medulla. These consisted of evaginations of the granule limiting membrane to form budding structures having different morphology and extension. In 14.8% of NA granules and 12.0% of A granules, outpouches were relatively short, looked like small blebs emerging from the granule surface and generally contained electron-dense material. A proportion of 11.2% of NA granules and 4.9% of A granules revealed the most striking ultrastructural features. These secretory organelles presented thin, elongated, tail-like or stem-like appendages, which were variably filled by chromaffin substance and terminated with spherical expansions of different electron density. A cohort of vesicles of variable size (30-150 nm in diameter) and content was found either close to them or in the intergranular cytosol. Examination of adrenal medullary cells fixed by zinc iodide-osmium tetroxide (ZIO) revealed fine electron dense precipitates in chromaffin granules, budding structures as well as cytoplasmic vesicles. These data indicate that a common constituent is revealed by the ZIO histochemical reaction in chromaffin cells. As catecholic compounds are the main tissue targets of ZIO complexes, catecholamines are good candidates to be responsible for the observed ZIO reactivity. This study adds further to the hypothesis that release of secretory material from chromaffin granules may be accomplished by a vesiclular transport mechanism typical of piecemeal degranulation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Researches, Anatomy section, University of Udine Medical School, P.le Kolbe, n. 3, Udine 33100, Italy.
| | | | | | | | | |
Collapse
|
54
|
Kim T, Loh YP. Chromogranin A: a surprising link between granule biogenesis and hypertension. J Clin Invest 2005; 115:1711-3. [PMID: 16007250 PMCID: PMC1159154 DOI: 10.1172/jci25706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromogranin A (CHGA) and its derived peptides, which are stored and released from dense-core secretory granules of neuroendocrine cells, have been implicated as playing multiple roles in the endocrine, cardiovascular, and nervous systems. In this issue of the JCI, Mahapatra et al. present in vivo evidence for 2 important functions of CHGA: the regulation of catecholamine-containing dense-core chromaffin granule biogenesis in the adrenal gland and the control of blood pressure. Obliteration of CHGA expression in a KO mouse model led to decreased size and number of chromaffin granules as well as hypertension in these animals. Transgenic expression of human Chga and exogenous injection of human catestatin, a CHGA-derived nicotinic cholinergic antagonist, restored normal blood pressure in these mice. These results suggest a coupled relationship between CHGA-mediated chromaffin granule biogenesis, necessary for catecholamine storage, and catestatin-induced inhibition of cholinergic-stimulated catecholamine release, which regulates autonomic control of blood pressure.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
55
|
Crivellato E, Nico B, Ribatti D. Ultrastructural evidence of piecemeal degranulation in large dense-core vesicles of brain neurons. ACTA ACUST UNITED AC 2005; 210:25-34. [PMID: 16044317 DOI: 10.1007/s00429-005-0002-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Large dense-core vesicles (LDCV) are a group of neuronal secretory organelles with different size and characteristically condensed morphology. LDCV release their specific cargo by regulated exocytosis, either in the form of "full fusion" or "kiss-and-run" exocytosis. In this paper, we provide ultrastructural evidence indicative of a slow and particulate mode of secretion from LDCV, called piecemeal degranulation (PMD). A number of LDCV in the nerve boutons of mouse brain presented marked increase in their size accompanied by reduction and also disappearance of content material. Residual secretory constituents in altered LDCV displayed eroded marginated patterns, leading to eccentric "haloed" morphologies. Remarkably, altered LDCV never appeared to be fused with each other or with the nerve plasma membrane. Very small vesicles, empty or apparently loaded with the same material making-up the LDCV content, could be seen near or attached to LDCV and the plasma membrane. First described in basophils, mast cells and eosinophils, PMD has recently been recognized in various neuro-endocrine cells, like adrenal chromaffin cells and endocrine cells of the gastro-intestinal epithelia. Here we suggest that PMD may be a hitherto unrecognized pathway of neuron secretion. It would represent the morphological correlate of a long-lasting and low-level process of neuro-transmitter release. It extends the patterns of neuron secretion and possibly opens new perspectives in understanding neuron plasticity.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Researches, Anatomy Section, University of Udine Medical School, P.le Kolbe, n. 3, 33100, Udine, Italy.
| | | | | |
Collapse
|
56
|
Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci 2005; 20:2617-28. [PMID: 15548205 DOI: 10.1111/j.1460-9568.2004.03729.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Together with its adaptor protein, the adaptor protein of 12 kDa also known as KARAP and TYROBP (DAP12), triggering receptor expressed in myeloid cells 2 (TREM2) is a stimulatory membrane receptor of the immunoglobulin/lectin-like superfamily, well known in myeloid cells. In humans, however, loss-of-function mutations of TREM2/DAP12 leave myeloid cells unaffected but induce an autosomal recessive disease characterized, together with bone cysts, by a spectrum of pathological lesions in the cortex, thalamus and basal ganglia with clinical symptoms of progressive dementia (polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy). Nothing was known about the role of TREM2/DAP12 in brain cell biology and physiology. By confocal immunocytochemistry we demonstrate that, in both human and mouse cerebral cortex, TREM2/DAP12, strongly expressed by microglia, is also present in a fraction of neurons but not in astrocytes and oligodendrocytes. In contrast, in the hippocampal cortex TREM2-expressing neurons are rare. Both in neurons and microglia the receptor appears to be located mostly intracellularly in a discrete compartment(s) partially coinciding with (or adjacent to) the Golgi complex/trans-Golgi network. Four nerve cell lines were identified as expressing the intracellular receptor system. In living human microglia CHME-5 and glioblastoma T98G cells, activation of TREM2 by its specific antibody induced [Ca2+]i responses, documenting its surface expression and functioning. Surface expression of TREM2, low in resting CHME-5 and T98G cells, increases significantly and transiently (60 min) when cells are stimulated by ionomycin, as revealed by both surface biotinylation and surface immunolabeling. Our results provide the first information about the expression, distribution (mostly intracellular) and functioning of TREM2/DAP12 system in nerve cells, a necessary step in the understanding of the cellular mechanisms affected in polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies/pharmacology
- Brain/anatomy & histology
- Brain/metabolism
- Calcium/metabolism
- Cell Line, Tumor
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Dementia/complications
- Dementia/genetics
- Drug Interactions
- Epilepsy/metabolism
- Flow Cytometry/methods
- Glial Fibrillary Acidic Protein/metabolism
- Glioblastoma
- Golgi Apparatus/metabolism
- Golgi Apparatus/ultrastructure
- Golgi Matrix Proteins
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Ionomycin/pharmacology
- Ionophores/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/ultrastructure
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Microglia/metabolism
- Microscopy, Confocal/methods
- Microscopy, Immunoelectron/methods
- Myeloid Cells/metabolism
- Neuroblastoma
- Neurons/cytology
- Neurons/metabolism
- Phosphopyruvate Hydratase/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Subacute Sclerosing Panencephalitis/complications
- Subacute Sclerosing Panencephalitis/genetics
- Time Factors
- Triggering Receptor Expressed on Myeloid Cells-1
Collapse
Affiliation(s)
- Giuseppina Sessa
- Department of Neuroscience, DIBIT, Vita-Salute San Raffaele University and San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV. Chromogranin A transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 2005; 16:173-86. [PMID: 16299400 DOI: 10.1385/ep:16:3:173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Folliculostellate (FS) cells are present in the anterior pituitary and have important regulatory functions including controlling hormone release from other anterior pituitary cells. FS cells do not usually express neuroendocrine genes such as chromogranin A (CgA). We analyzed transcriptional regulation and gene expression in the TtT/GF FS cell line to better understand the role of FS cells in anterior pituitary function. After transient transfection with a human (h) CgA promoter sequence linked to a luciferase reporter, there was basal level of transcriptional activity, which was two- to fourfold less than that observed in the anterior pituitary neuroendocrine cell lines HP75 and GH3. The transcriptional activity was decreased in all cell lines when a mutant hCgA promoter cyclic AMP response element (CRE) was used for transfection. Sodium butyrate treatment increased the transcriptional activity in all cell lines, but remained two- to fourfold higher in the HP75 and GH3 cell lines than in the TtT/GF cells. Stable transfection of a plasmid expressing bovine (b) CgA in the TtT/GF cells led to inhibition of cell growth as measured by 3H-thymidine incorporation, Ki-67 labeling index, and growth curve analysis. CgA protein and mRNA could be readily demonstrated in the cloned cells but not in the parental cell line or vector control cells. When the CgA expressing cloned cells were injected into SCID mice, there was a decrease in the rate of tumor growth compared to the vector control in vivo. These results indicate that the TtT/GF FS cells are fibroblast-like compared to the neuroendocrine anterior pituitary secretory cells when analyzed by transcriptional activity with a transiently transfected CgA promoter. In TtT/GF cells with a stably transfected bCgA plasmid, CgA has a direct regulatory effect on tumor cell proliferation.
Collapse
Affiliation(s)
- Gail A Stilling
- Mayo Clinic College of Medicine, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
58
|
Meldolesi J, Chieregatti E, Luisa Malosio M. Requirements for the identification of dense-core granules. Trends Cell Biol 2004; 14:13-9. [PMID: 14729176 DOI: 10.1016/j.tcb.2003.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dense-core granules (DCGs), cytoplasmic organelles competent for regulated exocytosis, show considerable heterogeneity depending upon the specificity of their expressing cells--primarily neurons and neurosecretory cells. DCGs have been mainly identified by detecting their cargo molecules, often members of the granin family, and using conventional electron microscopy and immunocytochemistry. However, by a critical analysis of the various stages of DCG "life" within neurosecretory cells, we have highlighted several specific molecular and functional properties that are common to all these organelles. We propose that these properties be considered as strict requirements for the identification of DCGs.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Vita-Salute San Raffaele University and Scientific Institute San Raffaele, Department of Neuroscience and Immunology, Centre of Excellence in Physiopathology of Cell Differentiation, via Olgettina 58, 20132 Milan, Italy.
| | | | | |
Collapse
|
59
|
Knoch KP, Bergert H, Borgonovo B, Saeger HD, Altkrüger A, Verkade P, Solimena M. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 2004; 6:207-14. [PMID: 15039777 DOI: 10.1038/ncb1099] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 01/26/2004] [Indexed: 01/12/2023]
Abstract
Pancreatic beta-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes beta-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that beta-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired.
Collapse
Affiliation(s)
- Klaus-Peter Knoch
- Experimental Diabetology, Carl Gustav Carus Medical School, University of Technology Dresden, Dresden 01307, Germany
| | | | | | | | | | | | | |
Collapse
|