51
|
Thul PJ, Tschapalda K, Kolkhof P, Thiam AR, Oberer M, Beller M. Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. J Cell Sci 2017; 130:3141-3157. [DOI: 10.1242/jcs.199661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Lipid droplets (LDs) are the principal organelles of lipid storage. They consist of a hydrophobic core of storage lipids, surrounded by a phospholipid monolayer with proteins attached. While some of these proteins are essential to regulate cellular and organismic lipid metabolism, key questions concerning LD protein function, such as their targeting to LDs, are still unanswered. Intriguingly, some proteins are restricted to LD subsets by an as yet unknown mechanism. This finding makes LD targeting even more complex.
Here, we characterize the Drosophila protein CG2254 which targets LD subsets in cultured cells and different larval Drosophila tissues, where the prevalence of LD subsets appears highly dynamic. We find that an amphipathic amino acid stretch mediates CG2254 LD localization. Additionally, we identified a juxtaposed sequence stretch limiting CG2254 localization to LD subsets. This sequence is sufficient to restrict a chimeric protein - consisting of the subset targeting sequence introduced to an otherwise pan LD localized protein sequence - to LD subsets. Based on its subcellular localization and annotated function, we suggest to rename CG2254 to Lipid droplet subset dehydrogenase 1 (Ldsdh1).
Collapse
Affiliation(s)
- Peter J. Thul
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kirsten Tschapalda
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Universite de Paris Diderot Sorbonne Paris-Cite, Paris, France
| | - Monika Oberer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Austria
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
52
|
Chang CW, Abhinav K, Di Cara F, Panagakou I, Vass S, Heck MMS. A role for the metalloprotease invadolysin in insulin signaling and adipogenesis. Biol Chem 2016; 398:373-393. [PMID: 27622830 DOI: 10.1515/hsz-2016-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/04/2016] [Indexed: 01/24/2023]
Abstract
Invadolysin is a novel metalloprotease conserved amongst metazoans that is essential for life in Drosophila. We previously showed that invadolysin was essential for the cell cycle and cell migration, linking to metabolism through a role in lipid storage and interaction with mitochondrial proteins. In this study we demonstrate that invadolysin mutants exhibit increased autophagy and decreased glycogen storage - suggestive of a role for invadolysin in insulin signaling in Drosophila. Consistent with this, effectors of insulin signaling were decreased in invadolysin mutants. In addition, we discovered that invadolysin was deposited on newly synthesized lipid droplets in a PKC-dependent manner. We examined two in vitro models of adipogenesis for the expression and localization of invadolysin. The level of invadolysin increased during both murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS), adipogenesis. Invadolysin displayed a dynamic localization to lipid droplets over the course of adipogenesis, which may be due to the differential expression of distinct invadolysin variants. Pharmacological inhibition of adipogenesis abrogated the increase in invadolysin. In summary, our results on in vivo and in vitro systems highlight an important role for invadolysin in insulin signaling and adipogenesis.
Collapse
|
53
|
Chen Y, Frost S, Byrne JA. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte 2016; 5:326-32. [PMID: 27617178 DOI: 10.1080/21623945.2016.1148835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are essential for both the storage and retrieval of excess cellular nutrients, and their biology is regulated by a diverse range of cellular proteins, some of which function at the lipid droplet. Numerous studies have characterized lipid droplet proteomes in different organisms and cell types, and RNAi whole genome screening studies have examined the genetic regulation of lipid storage in C. elegans and D. melanogaster. While tumor protein D52 (TPD52) did not emerge from earlier studies as a strong candidate, exogenous expression of human TPD52 in cultured cells resulted in significantly increased numbers of lipid droplets, and oleic acid supplementation increased TPD52 detection at both lipid droplets and the Golgi apparatus. These results suggest that direct testing of proteins that are infrequently but recurrently identified in proteomic and RNAi screening studies may identify novel lipid droplet regulators. While the analysis of these possibly lower-abundance or itinerant lipid droplet proteins may be more technically challenging, such proteins could facilitate a more detailed interrogation of emerging aspects of lipid droplet biology.
Collapse
|
54
|
Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol 2016; 26:535-546. [PMID: 26995697 DOI: 10.1016/j.tcb.2016.02.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
How proteins specifically localize to the phospholipid monolayer surface of lipid droplets (LDs) is being unraveled. We review here the major known pathways of protein targeting to LDs and suggest a classification framework based on the localization origin for the protein. Class I proteins often have a membrane-embedded, hydrophobic 'hairpin' motif, and access LDs from the endoplasmic reticulum (ER) either during LD formation or after formation via ER-LD membrane bridges. Class II proteins access the LD surface from the cytosol and bind through amphipathic helices or other hydrophobic domains. Other proteins require lipid modifications or protein-protein interactions to bind to LDs. We summarize knowledge for targeting and removal of the different classes, and highlight areas needing investigation.
Collapse
|
55
|
Mills EA, Davis CHO, Bushong EA, Boassa D, Kim KY, Ellisman MH, Marsh-Armstrong N. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc Natl Acad Sci U S A 2015; 112:10509-14. [PMID: 26240339 PMCID: PMC4547286 DOI: 10.1073/pnas.1506486112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event.
Collapse
Affiliation(s)
- Elizabeth A Mills
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chung-ha O Davis
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA 92093
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA 92093; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Nicholas Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205;
| |
Collapse
|
56
|
Kory N, Thiam AR, Farese RV, Walther TC. Protein Crowding Is a Determinant of Lipid Droplet Protein Composition. Dev Cell 2015; 34:351-63. [PMID: 26212136 PMCID: PMC4536137 DOI: 10.1016/j.devcel.2015.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) are lipid storage organelles that grow or shrink, depending on the availability of metabolic energy. Proteins recruited to LDs mediate many metabolic functions, including phosphatidylcholine and triglyceride synthesis. How the LD protein composition is tuned to the supply and demand for lipids remains unclear. We show that LDs, in contrast to other organelles, have limited capacity for protein binding. Consequently, macromolecular crowding plays a major role in determining LD protein composition. During lipolysis, when LDs and their surfaces shrink, some, but not all, proteins become displaced. In vitro studies show that macromolecular crowding, rather than changes in monolayer lipid composition, causes proteins to fall off the LD surface. As predicted by a crowding model, proteins compete for binding to the surfaces of LDs. Moreover, the LD binding affinity determines protein localization during lipolysis. Our findings identify protein crowding as an important principle in determining LD protein composition.
Collapse
Affiliation(s)
- Nora Kory
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abdou-Rachid Thiam
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA; Laboratoire de Physique Statistique, École Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
57
|
Liu J, Hayashi K, Matsuoka K. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells. Biosci Biotechnol Biochem 2015; 79:2007-13. [PMID: 26222189 DOI: 10.1080/09168451.2015.1069700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.
Collapse
Affiliation(s)
- Jianping Liu
- a Laboratory of Plant Nutrition, Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
| | - Kyoko Hayashi
- a Laboratory of Plant Nutrition, Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
| | - Ken Matsuoka
- a Laboratory of Plant Nutrition, Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
- b Laboratory of Plant Nutrition, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
- c Biotron Application Center , Kyushu University , Fukuoka , Japan
| |
Collapse
|
58
|
Park EM, Lim YS, Ahn BY, Hwang SB. AAM-B Interacts with Nonstructural 4B and Regulates Hepatitis C Virus Propagation. PLoS One 2015; 10:e0132839. [PMID: 26185986 PMCID: PMC4505943 DOI: 10.1371/journal.pone.0132839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) usurps host cellular lipid metabolism for production of infectious virus particles. Recently, we have screened a siRNA library targeting host factors that control lipid metabolism and lipid droplet (LD) formation in cell culture grown HCV (HCVcc)-infected cells. Of 10 final candidates, we selected the gene encoding AAM-B for further characterization. We showed that siRNA-mediated knockdown of AAM-B impaired HCV propagation in Jc1-infected cells. More precisely, knockdown of AAM-B abrogated production of infectious HCV particles in both Jc1 RNA electroporated cells and Jc1-infected cells. It is worth noting that knockdown of AAM-B exerted no effect on lipid droplet formation. Moreover, AAM-B interacted with nonstructural 4B (NS4B) through the C-terminal region of NS4B. Protein interplay between AAM-B and NS4B was verified in the context of HCV replication. Using either transient or stable expression of AAM-B, we verified that AAM-B colocalized with NS4B in the cytoplasm. Immunofluorescence data further showed that AAM-B might be involved in recruitment of NS4B to sites in close proximity to LDs to facilitate HCV propagation. Collectively, this study provides new insight into how HCV utilizes cellular AAM-B to facilitate viral propagation.
Collapse
Affiliation(s)
- Eun-Mee Park
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Byung-Yoon Ahn
- School of Science and Biotechnology, Korea University, Seoul, Korea
| | - Soon B. Hwang
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, Korea
- * E-mail:
| |
Collapse
|
59
|
Proteomic analysis of murine testes lipid droplets. Sci Rep 2015; 5:12070. [PMID: 26159641 PMCID: PMC4498221 DOI: 10.1038/srep12070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis.
Collapse
|
60
|
Hashemi HF, Goodman JM. The life cycle of lipid droplets. Curr Opin Cell Biol 2015; 33:119-24. [PMID: 25703629 DOI: 10.1016/j.ceb.2015.02.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/14/2023]
Abstract
Proteomic studies have revealed many potential functions of cytoplasmic lipid droplets, and recent activity has confirmed that these bona fide organelles are central not only for lipid storage and metabolism, but for development, immunity, and pathogenesis by several microbes. There has been a burst of recent activity on the assembly, maintenance and turnover of lipid droplets that reveals fresh insights. This review summarizes several novel findings in initiation of lipid droplet assembly, protein targeting, droplet fusion, and turnover of droplets through lipophagy.
Collapse
Affiliation(s)
- Hayaa F Hashemi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, United States
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, United States.
| |
Collapse
|
61
|
Lucken-Ardjomande Häsler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014; 127:4602-19. [PMID: 25189622 PMCID: PMC4215711 DOI: 10.1242/jcs.147694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We found that GRAF1a, the longest GRAF1 isoform (GRAF1 is also known as ARHGAP26), was enriched in the brains of neonates. Endogenous GRAF1a was found on lipid droplets in oleic-acid-fed primary glial cells. Exclusive localization required a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promoted lipid droplet clustering, inhibited droplet mobility and severely perturbed lipolysis following the chase of cells overloaded with fatty acids. Under these conditions, GRAF1a concentrated at the interface between lipid droplets. Although GRAF1-knockout mice did not show any gross abnormal phenotype, the total lipid droplet volume that accumulated in GRAF1(-/-) primary glia upon incubation with fatty acids was reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
62
|
Characterization of the interaction of diacylglycerol acyltransferase-2 with the endoplasmic reticulum and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1318-28. [DOI: 10.1016/j.bbalip.2014.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
|
63
|
O'Sullivan D, van der Windt GJW, Huang SCC, Curtis JD, Chang CH, Buck MD, Qiu J, Smith AM, Lam WY, DiPlato LM, Hsu FF, Birnbaum MJ, Pearce EJ, Pearce EL. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 2014; 41:75-88. [PMID: 25001241 DOI: 10.1016/j.immuni.2014.06.005] [Citation(s) in RCA: 605] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
Abstract
Generation of CD8(+) memory T cells requires metabolic reprogramming that is characterized by enhanced mitochondrial fatty-acid oxidation (FAO). However, where the fatty acids (FA) that fuel this process come from remains unclear. While CD8(+) memory T cells engage FAO to a greater extent, we found that they acquired substantially fewer long-chain FA from their external environment than CD8(+) effector T (Teff) cells. Rather than using extracellular FA directly, memory T cells used extracellular glucose to support FAO and oxidative phosphorylation (OXPHOS), suggesting that lipids must be synthesized to generate the substrates needed for FAO. We have demonstrated that memory T cells rely on cell intrinsic expression of the lysosomal hydrolase LAL (lysosomal acid lipase) to mobilize FA for FAO and memory T cell development. Our observations link LAL to metabolic reprogramming in lymphocytes and show that cell intrinsic lipolysis is deterministic for memory T cell fate.
Collapse
Affiliation(s)
- David O'Sullivan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gerritje J W van der Windt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stanley Ching-Cheng Huang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan D Curtis
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chih-Hao Chang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D Buck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Qiu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber M Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wing Y Lam
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa M DiPlato
- The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Morris J Birnbaum
- The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward J Pearce
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erika L Pearce
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
64
|
Wilfling F, Haas JT, Walther TC, Farese RV. Lipid droplet biogenesis. Curr Opin Cell Biol 2014; 29:39-45. [PMID: 24736091 DOI: 10.1016/j.ceb.2014.03.008] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
Lipid droplets (LDs) are found in most cells, where they play central roles in energy and membrane lipid metabolism. The de novo biogenesis of LDs is a fascinating, yet poorly understood process involving the formation of a monolayer bound organelle from a bilayer membrane. Additionally, large LDs can form either by growth of existing LDs or by the combination of smaller LDs through several distinct mechanisms. Here, we review recent insights into the molecular process governing LD biogenesis and highlight areas of incomplete knowledge.
Collapse
Affiliation(s)
- Florian Wilfling
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA
| | - Joel T Haas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA
| | - Tobias C Walther
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA.
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, CA, USA.
| |
Collapse
|
65
|
Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJN, Fajardo A, Gelabert-Baldrich M, Tebar F, Enrich C, Gross SP, Parton RG, Pol A. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. ACTA ACUST UNITED AC 2014; 203:985-1001. [PMID: 24368806 PMCID: PMC3871434 DOI: 10.1083/jcb.201305142] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage. Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.
Collapse
Affiliation(s)
- Adam Kassan
- Equip de Senyalització i Proliferació Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kiss RS, Nilsson T. Rab proteins implicated in lipid storage and mobilization. J Biomed Res 2014; 28:169-77. [PMID: 25013400 PMCID: PMC4085554 DOI: 10.7555/jbr.28.20140029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/28/2022] Open
Abstract
Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barring surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now overlooked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Department of Medicine, McGill University, Montreal, Canada; ; Research Institute of McGill University Health Centre, Montreal, Canada
| | - Tommy Nilsson
- Department of Medicine, McGill University, Montreal, Canada; ; Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
67
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
68
|
Liu Y, An Z, Zhao L, Liu H, He J. Enhanced Catalytic Efficiency in the Epoxidation of Alkenes for Manganese Complex Encapsulated in the Hydrophobic Interlayer Region of Layered Double Hydroxides. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4026693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe An
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liwei Zhao
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing He
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
69
|
Horswell SD, Fryer LGD, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, Braithwaite A, Salm MPA, Neuwirth CKY, Potter E, Anderson JR, Taylor KM, Seed M, Betteridge DJ, Crook MA, Wierzbicki AS, Scott J, Naoumova RP, Shoulders CC. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 2013; 54:3491-505. [PMID: 24103848 DOI: 10.1194/jlr.m041814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.
Collapse
Affiliation(s)
- Stuart D Horswell
- Medical Research Council, Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE. NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I. J Biol Chem 2013; 288:33016-26. [PMID: 24089531 PMCID: PMC3829151 DOI: 10.1074/jbc.m113.518803] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 subunits. One arm is embedded in the inner membrane with the other protruding ∼100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH and the primary electron acceptor FMN, and it provides a scaffold for seven iron-sulfur clusters that form an electron pathway linking FMN to the terminal electron acceptor, ubiquinone, which is bound in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, probably energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Complex I is put together from preassembled subcomplexes. Their compositions have been characterized partially, and at least 12 extrinsic assembly factor proteins are required for the assembly of the complex. One such factor, NDUFAF7, is predicted to belong to the family of S-adenosylmethionine-dependent methyltransferases characterized by the presence in their structures of a seven-β-strand protein fold. In the present study, the presence of NDUFAF7 in the mitochondrial matrix has been confirmed, and it has been demonstrated that it is a protein methylase that symmetrically dimethylates the ω-NG,NG′ atoms of residue Arg-85 in the NDUFS2 subunit of complex I. This methylation step occurs early in the assembly of complex I and probably stabilizes a 400-kDa subcomplex that forms the initial nucleus of the peripheral arm and its juncture with the membrane arm.
Collapse
Affiliation(s)
- Virginie F Rhein
- From the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | | | | | | | | |
Collapse
|
71
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
72
|
Barneda D, Frontini A, Cinti S, Christian M. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:924-933. [PMID: 23376222 DOI: 10.1016/j.bbalip.2013.01.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.
Collapse
MESH Headings
- 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
- 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
- 1-Methyl-3-isobutylxanthine/pharmacology
- 3T3-L1 Cells
- Adaptation, Physiological
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation/drug effects
- Female
- Image Processing, Computer-Assisted
- Immunoenzyme Techniques
- Isoproterenol/pharmacology
- Lipase/genetics
- Lipase/metabolism
- Lipids/chemistry
- Lipolysis
- Mice
- Microscopy, Confocal
- Phosphodiesterase Inhibitors/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Temperature
Collapse
Affiliation(s)
- David Barneda
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 ONN, UK
| | | | | | | |
Collapse
|
73
|
Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Fröhlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Walther TC. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24:384-99. [PMID: 23415954 DOI: 10.1016/j.devcel.2013.01.013] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Olzmann JA, Richter CM, Kopito RR. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc Natl Acad Sci U S A 2013; 110:1345-50. [PMID: 23297223 PMCID: PMC3557085 DOI: 10.1073/pnas.1213738110] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UBXD8 is a membrane-embedded recruitment factor for the p97/VCP segregase that has been previously linked to endoplasmic reticulum (ER)-associated degradation and to the control of triacylglycerol synthesis in the ER. UBXD8 also has been identified as a component of cytoplasmic lipid droplets (LDs), but neither the mechanisms that control its trafficking between the ER and LDs nor its functions in the latter organelle have been investigated previously. Here we report that association of UBXD8 with the ER-resident rhomboid pseudoprotease UBAC2 specifically restricts trafficking of UBXD8 to LDs, and that the steady-state partitioning of UBXD8 between the ER and LDs can be experimentally manipulated by controlling the relative expression of these two proteins. We exploit this interaction to show that UBXD8-mediated recruitment of p97/VCP to LDs increases LD size by inhibiting the activity of adipose triglyceride lipase (ATGL), the rate-limiting enzyme in triacylglycerol hydrolysis. Our findings show that UBXD8 binds directly to ATGL and promotes dissociation of its endogenous coactivator, CGI-58. These data indicate that UBXD8 and p97/VCP play central integrative roles in cellular energy homeostasis.
Collapse
Affiliation(s)
| | | | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
75
|
Tanaka T, Kuroda K, Ikeda M, Wakita T, Kato N, Makishima M. Hepatitis C virus NS4B targets lipid droplets through hydrophobic residues in the amphipathic helices. J Lipid Res 2013; 54:881-92. [PMID: 23315449 DOI: 10.1194/jlr.m026443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lipid droplets (LD) are dynamic storage organelles that are involved in lipid homeostasis. Hepatitis C virus (HCV) is closely associated with LDs. HCV Core and nonstructural (NS) proteins colocalize with LDs and presumably are involved in virion formation at that site. We demonstrated that HCV NS4B, an integral membrane protein in endoplasmic reticulum (ER), strongly targeted LDs. Confocal imaging studies showed that NS4B localized at the margins of LDs. Biochemical fractionation of HCV-replicating cells suggested that NS4B existed in membranes associated with LDs rather than on the LD surface membrane itself. The N- and C-terminal cytosolic domains of NS4B showed targeting of LDs, with the former being much stronger. In both domains, activity was present in the region containing an amphipathic α-helix, in which 10 hydrophobic residues were identified as putative determinants for targeting LDs. JFH1 mutants with alanine substitutions for the hydrophobic residues were defective for virus replication. W43A mutant with a single alanine substitution showed loss of association of NS4B with LDs and severely reduced release of infectious virions compared with wild-type JFH1. NS4B plays a crucial role in virus replication at the site of virion formation, namely, the microenvironment associated with LDs.
Collapse
Affiliation(s)
- Torahiko Tanaka
- Division of Biochemistry, Department of Biomedical Sciences and Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Stevanovic A, Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 2012. [PMID: 23197321 DOI: 10.1194/jlr.m033852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ancient ubiquitous protein 1 (AUP1) is a multifunctional protein, which acts on both lipid droplets (LDs) and the endoplasmic reticulum (ER) membrane. Double localization to these two organelles, featuring very different membrane characteristics, was observed also for several other integral proteins, but little is known about the signals and mechanisms behind dual protein targeting to ER and LDs. Here we dissect the AUP1 targeting signals by analyses of localization and topology of several deletion and point mutants. We found that AUP1 is inserted into the membrane of the ER in a monotopic hairpin fashion, and subsequently transported to the hemi-membrane of LDs. A single domain localized in the N-terminal part of AUP1 enables its ER residence, the monotopic insertion, and the LD localization. Different specific residues within this multifunctional domain are responsible for achieving the complex spatial distribution pattern. A mutation of three amino acids, which changes AUP1 topology from hairpin to transmembrane, abolishes LD localization. These findings suggest that the cell is able to target a protein to multiple intracellular locations using a single domain.
Collapse
Affiliation(s)
- Ana Stevanovic
- LIMES Life and Medical Sciences Institute, University of Bonn, D-53115 Bonn, Germany
| | | |
Collapse
|
77
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
78
|
Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RGW, Michaely P. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Exp Cell Res 2012; 318:2128-42. [PMID: 22728266 DOI: 10.1016/j.yexcr.2012.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/30/2023]
Abstract
Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, United States.
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
80
|
Wang CW, Lee SC. The ubiquitin-like (UBX)-domain-containing protein Ubx2/ Ubxd8 regulates lipid droplet homeostasis. J Cell Sci 2012; 125:2930-9. [DOI: 10.1242/jcs.100230] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation (ERAD), is crucial for LD maintenance. Ubx2 redistributes from ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal number and reduced size of LDs and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced TAG in ubx2Δ is likely due to mislocalization of Lro1, one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis likely through Lro1. The mammalian Ubxd8 expressed in yeast complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.
Collapse
|
81
|
Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. ACTA ACUST UNITED AC 2011; 195:953-63. [PMID: 22144693 PMCID: PMC3241734 DOI: 10.1083/jcb.201104142] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lipid droplet–associated protein Fsp27 mediates lipid droplet growth by promoting directional lipid transfer from smaller to larger lipid droplets. Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD–LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.
Collapse
Affiliation(s)
- Jingyi Gong
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1165-76. [PMID: 21820081 PMCID: PMC3229976 DOI: 10.1016/j.bbalip.2011.07.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022]
Abstract
In the yeast Saccharomyces cerevisiae as in other eukaryotes non-polar lipids are a reservoir of energy and building blocks for membrane lipid synthesis. The yeast non-polar lipids, triacylglycerols (TG) and steryl esters (SE) are stored in so-called lipid particles/droplets (LP) as biologically inert form of fatty acids and sterols. To understand LP structure and function in more detail we investigated the molecular equipment of this compartment making use of mass spectrometric analysis of lipids (TG, SE, phospholipids) and proteins. We addressed the question whether or not lipid and protein composition of LP influence each other and performed analyses of LP from cells grown on two different carbon sources, glucose and oleate. Growth of cells on oleate caused dramatic cellular changes including accumulation of TG at the expense of SE, enhanced the amount of glycerophospholipids and strongly increased the degree of unsaturation in all lipid classes. Most interestingly, oleate as a carbon source led to adaptation of the LP proteome resulting in the appearance of several novel LP proteins. Localization of these new LP proteins was confirmed by cell fractionation. Proteomes of LP variants from cells grown on glucose or oleate, respectively, were compared and are discussed with emphasis on the different groups of proteins detected through this analysis. In summary, we demonstrate flexibility of the yeast LP lipidome and proteome and the ability of LP to adapt to environmental changes.
Collapse
Affiliation(s)
- Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology, Graz University of Technology, Austria
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1893-905. [PMID: 21756943 PMCID: PMC7172674 DOI: 10.1016/j.bbamcr.2011.06.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.
Collapse
Affiliation(s)
- Emily M Lynes
- Department of Cell Biology, University of Alberta, Alberta, Canada
| | | |
Collapse
|
84
|
Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 2011; 124:2424-37. [PMID: 21693588 DOI: 10.1242/jcs.076836] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells store metabolic energy in the form of neutral lipids that are deposited within lipid droplets (LDs). In this study, we examine the biogenesis of LDs and the transport of integral membrane proteins from the endoplasmic reticulum (ER) to newly formed LDs. In cells that lack LDs, otherwise LD-localized membrane proteins are homogenously distributed in the ER membrane. Under these conditions, transcriptional induction of a diacylglycerol acyltransferase that catalyzes the formation of the storage lipid triacylglycerol (TAG), Lro1, is sufficient to drive LD formation. Newly formed LDs originate from the ER membrane where they become decorated by marker proteins. Induction of LDs by expression of the second TAG-synthesizing integral membrane protein, Dga1, reveals that Dga1 itself moves from the ER membrane to concentrate on LDs. Photobleaching experiments (FRAP) indicate that relocation of membrane proteins from the ER to LDs is independent of temperature and energy, and thus not mediated by classical vesicular transport routes. LD-localized membrane proteins are homogenously distributed at the perimeter of LDs, they are free to move over the LD surface and can even relocate back into the ER, indicating that they are not restricted to specialized sites on LDs. These observations indicate that LDs are functionally connected to the ER membrane and that this connection allows the efficient partitioning of membrane proteins between the two compartments.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Department of Biology, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
85
|
McFie PJ, Banman SL, Kary S, Stone SJ. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 2011; 286:28235-46. [PMID: 21680734 DOI: 10.1074/jbc.m111.256008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
86
|
Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R. The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. EUKARYOTIC CELL 2011; 10:770-5. [PMID: 21478430 PMCID: PMC3127662 DOI: 10.1128/ec.05038-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
Here, we report the identification of a novel hydrolase in Saccharomyces cerevisiae. Ldh1p (systematic name, Ybr204cp) comprises the typical GXSXG-type lipase motif of members of the α/β-hydrolase family and shares some features with the peroxisomal lipase Lpx1p. Both proteins carry a putative peroxisomal targeting signal type1 (PTS1) and can be aligned with two regions of homology. While Lpx1p is known as a peroxisomal enzyme, subcellular localization studies revealed that Ldh1p is predominantly localized to lipid droplets, the storage compartment of nonpolar lipids. Ldh1p is not required for the function and biogenesis of peroxisomes, and targeting of Ldh1p to lipid droplets occurs independently of the PTS1 receptor Pex5p.
Collapse
Affiliation(s)
- Sven Thoms
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Mykhaylo O. Debelyy
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Melanie Connerth
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
87
|
Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y, Anderson RGW, DeBose-Boyd RA. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem 2010; 285:19288-98. [PMID: 20406816 PMCID: PMC2885207 DOI: 10.1074/jbc.m110.134213] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets.
Collapse
Affiliation(s)
- Isamu Z Hartman
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 74390-9046, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Lipid droplets lighting up: insights from live microscopy. FEBS Lett 2010; 584:2168-75. [PMID: 20347811 DOI: 10.1016/j.febslet.2010.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 11/19/2022]
Abstract
Lipid droplets emerge as important intracellular organelles relevant for lipid homeostasis and the pathophysiology of metabolic diseases. Here, we present a personal view on the current knowledge about the biogenesis of mammalian cytoplasmic lipid droplets, with a focus on microscopy and especially live imaging. We also discuss difficulties related to the lipid droplet proteome, contentious views on lipid droplet growth, and last but not least the evidence for the heterogeneity of lipid droplets within a single cell. We conclude with an outline of the most important future challenges.
Collapse
|
89
|
Beller M, Thiel K, Thul PJ, Jäckle H. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 2010; 584:2176-82. [PMID: 20303960 DOI: 10.1016/j.febslet.2010.03.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/17/2022]
Abstract
Lipid droplets (LDs) were perceived as static storage deposits, which passively participate in the energy homeostasis of both cells and entire organisms. However, this view has changed recently after the realization of a complex and highly dynamic LD proteome. The proteome contains key components of the fat mobilization system and proteins that suggest LD interactions with a variety of cell organelles, including the endoplasmic reticulum, mitochondria and peroxisomes. The study of LD cell biology, including cross-talk with other organelles, the trafficking of LDs in the cell and regulatory events involving the LD coat proteins is now on the verge of leaving its infancy and unfolds that LDs are highly dynamic cellular organelles.
Collapse
Affiliation(s)
- Mathias Beller
- Max-Planck-Institut für biophysikalische Chemie, Abteilung für molekulare Entwicklungsbiologie, Göttingen, Germany.
| | | | | | | |
Collapse
|
90
|
Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 2010; 51:468-71. [PMID: 19638644 PMCID: PMC2817576 DOI: 10.1194/jlr.r000034] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Indexed: 12/04/2022] Open
Abstract
The PAT family of proteins has been identified in eukaryotic species as diverse as vertebrates, insects, and amebazoa. These proteins share a highly conserved sequence organization and avidity for the surfaces of intracellular, neutral lipid storage droplets. The current nomenclature of the various members lacks consistency and precision, deriving more from historic context than from recognition of evolutionary relationship and shared function. In consultation with the Mouse Genomic Nomenclature Committee, the Human Genome Organization Genomic Nomenclature Committee, and conferees at the 2007 FASEB Conference on Lipid Droplets: Metabolic Consequences of the Storage of Neutral Lipids, we have established a unifying nomenclature for the gene and protein family members. Each gene member will incorporate the root term PERILIPIN (PLIN), the founding gene of the PAT family, with the different genes/proteins numbered sequentially.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
91
|
Kaczocha M, Glaser ST, Chae J, Brown DA, Deutsch DG. Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2. J Biol Chem 2009; 285:2796-806. [PMID: 19926788 DOI: 10.1074/jbc.m109.058461] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anandamide (AEA) and other bioactive N-acylethanolamines (NAEs) are primarily inactivated by the enzyme fatty acid amide hydrolase (FAAH). Recently, FAAH-2 was discovered in humans, suggesting an additional enzyme can mediate NAE inactivation in higher mammals. Here, we performed a biochemical characterization of FAAH-2 and explored its capacity to hydrolyze NAEs in cells. In homogenate activity assays, FAAH-2 hydrolyzed AEA and palmitoylethanolamide (PEA) with activities approximately 6 and approximately 20% those of FAAH, respectively. In contrast, FAAH-2 hydrolyzed AEA and PEA in intact cells with rates approximately 30-40% those of FAAH, highlighting a potentially greater contribution toward NAE catabolism in vivo than previously appreciated. In contrast to endoplasmic reticulum-localized FAAH, immunofluorescence revealed FAAH-2 was localized on lipid droplets. Supporting this distribution pattern, the putative N-terminal hydrophobic region of FAAH-2 was identified as a functional lipid droplet localization sequence. Lipid droplet localization was essential for FAAH-2 activity as chimeras excluded from lipid droplets lacked activity and/or were poorly expressed. Lipid droplets represent novel sites of NAE inactivation. Therefore, we examined substrate delivery to these organelles. AEA was readily trafficked to lipid droplets, confirming that lipid droplets constitute functional sites of NAE inactivation. Collectively, these results establish FAAH-2 as a bone fide NAE-catabolizing enzyme and suggest that NAE inactivation is spatially separated in cells of higher mammals.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | | | | | | | |
Collapse
|
92
|
Ingelmo-Torres M, González-Moreno E, Kassan A, Hanzal-Bayer M, Tebar F, Herms A, Grewal T, Hancock JF, Enrich C, Bosch M, Gross SP, Parton RG, Pol A. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 2009; 10:1785-801. [PMID: 19874557 DOI: 10.1111/j.1600-0854.2009.00994.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Mercedes Ingelmo-Torres
- Departament de Biologia Cel.lular, Immunologia i Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RGW. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 2009; 122:3694-702. [PMID: 19773358 DOI: 10.1242/jcs.054700] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets are sites of neutral lipid storage thought to be actively involved in lipid homeostasis. A popular model proposes that droplets are formed in the endoplasmic reticulum (ER) by a process that begins with the deposition of neutral lipids between the membrane bilayer. As the droplet grows, it becomes surrounded by a monolayer of phospholipid derived from the outer half of the ER membrane, which contains integral membrane proteins anchored by hydrophobic regions. This model predicts that for an integral droplet protein inserted into the outer half of the ER membrane to reach the forming droplet, it must migrate in the plane of the membrane to sites of lipid accumulation. Here, we report the results of experiments that directly test this hypothesis. Using two integral droplet proteins that contain unique hydrophobic targeting sequences (AAM-B and UBXD8), we present evidence that both proteins migrate from their site of insertion in the ER to droplets that are forming in response to fatty acid supplementation. Migration to droplets occurs even when further protein synthesis is inhibited or dominant-negative Sar1 blocks transport to the Golgi complex. Surprisingly, when droplets are induced to disappear from the cell, both proteins return to the ER as the level of neutral lipid declines. These data suggest that integral droplet proteins form from and regress to the ER as part of a cyclic process that does not involve traffic through the secretory pathway.
Collapse
Affiliation(s)
- John K Zehmer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
94
|
Goodman JM. Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J Lipid Res 2009; 50:2148-56. [PMID: 19696439 DOI: 10.1194/jlr.r001446] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytosolic lipid droplets were considered until recently to be rather inert particles of stored neutral lipid. Largely through proteomics is it now known that droplets are dynamic organelles and that they participate in several important metabolic reactions as well as trafficking and interorganellar communication. In this review, the role of droplets in metabolism in the yeast Saccharomyces cerevisiae, the fly Drosophila melanogaster, and several mammalian sources are discussed, particularly focusing on those reactions shared by these organisms. From proteomics and older work, it is clear that droplets are important for fatty acid and sterol biosynthesis, fatty acid activation, and lipolysis. However, many droplet-associated enzymes are predicted to span a membrane two or more times, which suggests either that droplet structure is more complex than the current model posits, or that there are tightly bound membranes, particularly derived from the endoplasmic reticulum, which account for the association of several of these proteins.
Collapse
Affiliation(s)
- Joel M Goodman
- Department of Pharmacology University of Texas Southwestern Medical School Dallas TX 75390-9041, USA.
| |
Collapse
|
95
|
Affiliation(s)
- Yi Guo
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
96
|
Petrossian TC, Clarke SG. Multiple Motif Scanning to identify methyltransferases from the yeast proteome. Mol Cell Proteomics 2009; 8:1516-26. [PMID: 19351663 DOI: 10.1074/mcp.m900025-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new program (Multiple Motif Scanning) was developed to scan the Saccharomyces cerevisiae proteome for Class I S-adenosylmethionine-dependent methyltransferases. Conserved Motifs I, Post I, II, and III were identified and expanded in known methyltransferases by primary sequence and secondary structural analysis through hidden Markov model profiling of both a yeast reference database and a reference database of methyltransferases with solved three-dimensional structures. The roles of the conserved amino acids in the four motifs of the methyltransferase structure and function were then analyzed to expand the previously defined motifs. Fisher-based negative log statistical matrix sets were developed from the prevalence of amino acids in the motifs. Multiple Motif Scanning is able to scan the proteome and score different combinations of the top fitting sequences for each motif. In addition, the program takes into account the conserved number of amino acids between the motifs. The output of the program is a ranked list of proteins that can be used to identify new methyltransferases and to reevaluate the assignment of previously identified putative methyltransferases. The Multiple Motif Scanning program can be used to develop a putative list of enzymes for any type of protein that has one or more motifs conserved at variable spacings and is freely available (www.chem.ucla.edu/files/MotifSetup.Zip). Finally hidden Markov model profile clustering analysis was used to subgroup Class I methyltransferases into groups that reflect their methyl-accepting substrate specificity.
Collapse
Affiliation(s)
- Tanya C Petrossian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|