51
|
Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:85. [PMID: 29132389 PMCID: PMC5683324 DOI: 10.1186/s13024-017-0227-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective. In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Xu Jun
- Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.
| |
Collapse
|
52
|
Differentiation of mesenchymal stem cells -derived trabecular meshwork into dopaminergic neuron-like cells on nanofibrous scaffolds. Biologicals 2017; 50:49-54. [DOI: 10.1016/j.biologicals.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
|
53
|
Stem cell transplantation for Huntington's diseases. Methods 2017; 133:104-112. [PMID: 28867501 DOI: 10.1016/j.ymeth.2017.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Therapeutic approaches based on stem cells have received considerable attention as potential treatments for Huntington's disease (HD), which is a fatal, inherited neurodegenerative disorder, caused by progressive loss of GABAergic medium spiny neurons (MSNs) in the striatum of the forebrain. Transplantation of stem cells or their derivatives in animal models of HD, efficiently improved functions by replacing the damaged or lost neurons. In particular, neural stem cells (NSCs) for HD treatments have been developed from various sources, such as the brain itself, the pluripotent stem cells (PSCs), and the somatic cells of the HD patients. However, the brain-derived NSCs are difficult to obtain, and the PSCs have to be differentiated into a population of the desired neuronal cells that may cause a risk of tumor formation after transplantation. In contrast, induced NSCs, derived from somatic cells as a new stem cell source for transplantation, are less likely to form tumors. Given that the stem cell transplantation strategy for treatment of HD, as a genetic disease, is to replace the dysfunctional or lost neurons, the correction of mutant genes containing the expanded CAG repeats is essential. In this review, we will describe the methods for obtaining the optimal NSCs for transplantation-based HD treatment and the differentiation conditions for the functional GABAergic MSNs as therapeutic cells. Also, we will discuss the valuable gene correction of the disease stem cells by the CRISPR/Cas9 system for HD treatment.
Collapse
|
54
|
Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, Goncharova N, Makhrov M, Korolevich P, Misyuk N, Dakukina V, Shamruk I, Slobina E, Marchuk S. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv Med Sci 2017; 62:273-279. [PMID: 28500900 DOI: 10.1016/j.advms.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Existing anti-epileptic drugs (AED) have limited efficiency in many patients, necessitating the search for alternative approaches such as stem cell therapy. We report the use of autologous patient-derived mesenchymal stem cells (MSC) as a therapeutic agent in symptomatic drug-resistant epilepsy in a Phase I open label clinical trial (registered as NCT02497443). PATIENTS AND METHODS The patients received either standard treatment with AED (control group), or AED supplemented with single intravenous administration of undifferentiated autologous MSC (target dose of 1×106cells/kg), followed by a single intrathecal injection of neurally induced autologous MSC (target dose of 0.1×106cells/kg). RESULTS MSC injections were well tolerated and did not cause any severe adverse effects. Seizure frequency was designated as the main outcome and evaluated at 1 year time point. 3 out of 10 patients in MSC therapy group achieved remission (no seizures for one year and more), and 5 additional patients became responders to AEDs, while only 2 out of 12 patients became responders in control group (difference significant, P=0.0135). CONCLUSIONS MSC possess unique immunomodulatory properties and are a safe and promising candidate for cell therapy in AED resistant epilepsy patients.
Collapse
|
55
|
Choi KA, Hong S. Induced neural stem cells as a means of treatment in Huntington's disease. Expert Opin Biol Ther 2017; 17:1333-1343. [PMID: 28792249 DOI: 10.1080/14712598.2017.1365133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| | - Sunghoi Hong
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea.,b Department of Integrated Biomedical and Life Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| |
Collapse
|
56
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
57
|
Mou X, Wang S, Liu X, Guo W, Li J, Qiu J, Yu X, Wang ZL, Liu X, Geng Z, Liu H. Static pressure-induced neural differentiation of mesenchymal stem cells. NANOSCALE 2017; 9:10031-10037. [PMID: 28682386 DOI: 10.1039/c7nr00744b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Growing experimental evidence suggests that physical cues play an important role in regulating the fate of stem cells and stimulating their differentiation behavior. We report here that static pressure enables the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into neural-like cells within several hours in the absence of disruptive bio-factors or chemicals. The realization of such differentiation is supported by the observation of characteristic morphology of neural-like cells with neurites, and an up-regulated expression level of neural-specific markers. Our finding also demonstrates the utility of the static pressure-based approach for in situ and specifically localized creation of neural cell systems, thereby providing profound implications for developing therapeutic application of stem cells.
Collapse
Affiliation(s)
- Xiaoning Mou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology (NCNST), Beijing, P. R. China100083.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lu CW, Hsiao JK, Liu HM, Wu CH. Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells. Sci Rep 2017; 7:3587. [PMID: 28620162 PMCID: PMC5472606 DOI: 10.1038/s41598-017-03863-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the current study was to develop an iron oxide nanoparticle (ION) labelling and magnetic resonance imaging (MRI)-based protocol to allow visualization of the differentiation process of mesenchymal stem cells (MSCs) into neural-like cells (NCs) in vitro. Ferucarbotran, a clinically available ION, which can be visualized under MRI, is used for tracking cells implanted in vivo. The NCs were verified morphologically and histologically by light microscopy, and their functions were verified by measuring their action potentials. Conformational conversion of axon-like structures was observed under light microscopy. These NCs exhibited frequent, active action potentials compared with cells that did not undergo neural differentiation. The labelling of ION had no influence on the morphological and functional differentiation capacity of the MSCs. We conclude that the MSCs that were differentiated into NCs exhibited in vitro activity potential firing and may be used to replace damaged neurons.
Collapse
Affiliation(s)
- Chen-Wen Lu
- Department of Life Science, National Taiwan Normal University, Taipei, 10677, Taiwan.,Department of Medical Imaging, Taipei TzuChi Hospital, The Buddhist TzuChi Medical Foundation, New Taipei City, 23142, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei TzuChi Hospital, The Buddhist TzuChi Medical Foundation, New Taipei City, 23142, Taiwan
| | - Hon-Man Liu
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, 10048, Taiwan.
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, 10677, Taiwan.
| |
Collapse
|
59
|
Adipose tissue-derived stromal cells (ADSC) express oligodendrocyte and myelin markers, but they do not function as oligodendrocytes. Histochem Cell Biol 2017. [PMID: 28620864 DOI: 10.1007/s00418-017-1588-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mesenchymal cells cultured from the vasculo-stromal fraction of adipose tissue (ADSC) show adult stem cell characteristics and several groups have claimed generating neural cells from them. However, we have observed that many markers commonly used for the identification of neural cells are spontaneously expressed by ADSC in culture. In the present study, we have examined the expression of characteristic oligodendrocyte molecules in cultured ADSC, aiming to test if myelinating cells could be generated from accessible non-neural adult tissues. In basal growth conditions, rat ADSC spontaneously expressed CNPase, MBP, MOG, protein zero, GAP43, Sox10, and Olig2, as shown by immunocytrochemistry and western blot. A small population of cultured ADSC expressed membrane galactocerebroside (O1 antibody), but no cell stained with O4 antibody. RT-PCR analyses showed the expression of CNPase, MBP, DM20, and low levels of Olig2, Sox10, and Sox2 mRNA by rat ADSC. When rat ADSC were treated with combinations of factors commonly used in neural-inducing media (retinoic acid, dbcAMP, EGF, basic FGF, NT3, and/or PDGF), the number of O1-positive cells changed, but in no case, mRNA expression of Sox10 and Olig2 transcription factors approached CNS oligodendrocyte levels. In co-culture with rat dorsal root ganglion neurons, no sign of axonal myelination by rat ADSC was observed. These studies show that the expression of oligodendrocyte traits by cultured ADSC is not a proof of functional competence as oligodendroglia and suggest that in culture conditions, ADSC acquire intermediate, uncommitted phenotypes.
Collapse
|
60
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
61
|
Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S. Synergy Between Choroid Plexus Epithelial Cell-Conditioned Medium and Knockout Serum Replacement Converts Human Adipose-Derived Stem Cells to Dopamine-Secreting Neurons. Rejuvenation Res 2017; 20:309-319. [PMID: 28437187 DOI: 10.1089/rej.2016.1887] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs) have great capacity to differentiate into mesodermal origins as well as nonmesodermal lineages, including neural cells. This valuable feature paves the way for the therapeutic application of hADSCs for neurodegenerative maladies such as Parkinson's disease (PD). We tested the capacity of choroid plexus epithelial cell-conditioned medium (CPEC-CM) alone or cocktailed with knockout serum (KS) to induce dopaminergic (DAergic) differentiation of hADSCs. To this end, hADSCs from lipoaspirate were phenotypically characterized and shown to maintain mesodermal multipotency so that selected media easily differentiated them into osteoblasts, chondrocytes, and adipocytes. To begin inducing hADSC neuronal differentiation, we isolated CPECs from rat brain and expanded them in culture to obtain CPEC-CM. We then treated hADSCs with optimized quantities of collected CPEC-CM, KS, or both. The ADSCs treated with either CPEC-CM or CPEC-CM and KS displayed morphological changes typical of neuron-like phenotypes. As revealed by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), and immunostaining analyses, hADSCs cotreated with CPEC-CM and KS expressed significantly higher levels of neuronal and DAergic markers in comparison with single-treated groups. Moreover, the hADSCs began expressing dopamine-biosynthesizing enzymes mainly after cotreatment with CPEC-CM and KS. Consequently, only cotreated hADSCs were capable of synthesizing and releasing dopamine detectable by high-performance liquid chromatography (HPLC). Finally, hADSCs growing in an ordinary medium were found positive for astrocytic marker glial fibrillary acidic protein (GFAP), but stopped GFAP expression on either single or cotreatments. These combined results suggest that CPEC-CM and KS can synergize to remarkably augment DAergic induction of hADSCs, an effect that has implications for cell replacement therapy for PD and related disorders.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mossa Gardaneh
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mehrnoosh Hasan Shahriari
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Abbas Aliaghaei
- 2 Department of Anatomy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sanaz Hasani
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| |
Collapse
|
62
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
63
|
Su WT, Pan YJ, Huang TY, Huang YC. Hydrophobic PDMS promotes neural progenitor formation from SHEDs by Schwann cell–cultivated medium induction. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1297937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Jing Pan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ching Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
64
|
Lim JH, Koh S, Thomas R, Breen M, Olby NJ. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury. Am J Vet Res 2017; 78:371-380. [DOI: 10.2460/ajvr.78.3.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Ding R, Lin C, Wei S, Zhang N, Tang L, Lin Y, Chen Z, Xie T, Chen X, Feng Y, Wu L. Therapeutic Benefits of Mesenchymal Stromal Cells in a Rat Model of Hemoglobin-Induced Hypertensive Intracerebral Hemorrhage. Mol Cells 2017; 40:133-142. [PMID: 28190323 PMCID: PMC5339504 DOI: 10.14348/molcells.2017.2251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood-brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-1β and TNF-α). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation.
Collapse
Affiliation(s)
- Rui Ding
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Chunnan Lin
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - ShanShan Wei
- Department of Hematology, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Naichong Zhang
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Liangang Tang
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Yumao Lin
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Zhijun Chen
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Teng Xie
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - XiaoWei Chen
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Yu Feng
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - LiHua Wu
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| |
Collapse
|
66
|
Luo L, Chen WJ, Yin JQ, Xu RX. EID3 directly associates with DNMT3A during transdifferentiation of human umbilical cord mesenchymal stem cells to NPC-like cells. Sci Rep 2017; 7:40463. [PMID: 28074931 PMCID: PMC5225425 DOI: 10.1038/srep40463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
There has been recently been increased interest in the plasticity of human umbilical cord mesenchymal stem cells (UMSCs) and their potential in the treatment of neurological disorders. In this study, UMSCs were transdifferentiated into neural stem-like cells (uNSCL), these cells grow in neurosphere-like structures and express high levels of NSCs markers. Epigenetics-related gene screening was here used to assess the relationship between E1A-like inhibitor of differentiation 3 (EID3), a p300 inhibitor, and DNA methyltransferase 3 A (DNMT3A) during the transdifferentiation of UMSCs into uNSCL in vitro. Before transdifferentiation of UMSCs into uNSCLs, high levels of EID3 and low levels of DNMT3A were detected; after transdifferentiation, low levels of EID3 and high levels of DNMT3A were detected. The current work showed that EID3 and DNMT3A co-localized in cell nuclei and EID3 interacted directly with DNMT3A in uNSCL. In summary, these results suggest that DNMT3A is probably directly regulated by EID3 during UMSC transdifferentiation into uNSCLs. These findings indicated a novel mechanism by which EID3, a p300 acetyltransferase inhibitor, could directly affect DNMT3A, this enzyme possesses dual methylation and demethylation abilities. These studies may be helpful for understanding a complex regulation mode of DNMT3A, which is a unique member of the methyltransferase family.
Collapse
Affiliation(s)
- Liang Luo
- Bayi Brain Hospital, General Hospital of PLA Army, Southern Medical University, Beijing 100700, P. R. China.,Stem Cell Research Center, Neurosurgery Institute of Beijing Military Region, Beijing 100700, P. R. China
| | - Wen-Jin Chen
- Bayi Brain Hospital, General Hospital of PLA Army, Southern Medical University, Beijing 100700, P. R. China.,Stem Cell Research Center, Neurosurgery Institute of Beijing Military Region, Beijing 100700, P. R. China
| | - James Q Yin
- Bayi Brain Hospital, General Hospital of PLA Army, Southern Medical University, Beijing 100700, P. R. China.,Stem Cell Research Center, Neurosurgery Institute of Beijing Military Region, Beijing 100700, P. R. China
| | - Ru-Xiang Xu
- Bayi Brain Hospital, General Hospital of PLA Army, Southern Medical University, Beijing 100700, P. R. China.,Stem Cell Research Center, Neurosurgery Institute of Beijing Military Region, Beijing 100700, P. R. China
| |
Collapse
|
67
|
Azedi F, Kazemnejad S, Zarnani AH, Soleimani M, Shojaei A, Arasteh S. Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 2016; 44:169-182. [PMID: 27981446 DOI: 10.1007/s11033-016-4095-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/03/2016] [Indexed: 12/29/2022]
Abstract
In order to characterize the potency of menstrual blood stem cells (MenSCs) for future cell therapy of neurological disorders instead of bone marrow stem cells (BMSCs) as a well-known and conventional source of adult stem cells, we examined the in vitro differentiation potential of these stem cells into neural-like cells. The differentiation potential of MenSCs to neural cells in comparison with BMSCs was assessed under two step neural differentiation including conversion to neurosphere-like cells and final differentiation. The expression levels of Nestin, Microtubule-associated protein 2, gamma-aminobutyric acid type B receptor subunit 1 and 2, and Tubulin, beta 3 class III mRNA and/or protein were up-regulated during development of MenSCs into neurosphere-like cells (NSCs) and neural-like cells. The up-regulation level of these markers in differentiated neural-like cells from MenSCs was comparable with differentiated cells from BMSCs. Moreover, both differentiated MenSCs and BMSCs expressed high levels of potassium, calcium and sodium channel genes developing functional channels with electrophysiological recording. For the first time, we demonstrated that MenSCs are a unique cell population with differentiation ability into neural-like cells comparable to BMSCs. In addition, we have introduced an approach to generate NSCs from MenSCs and BMSCs and their further differentiation into neural-like cells in vitro. Our results hold a promise to future stem cell therapy of neurological disorders using NSCs derived from menstrual blood, an accessible source in every woman.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
- Department of Neuroscience, Faculty of advanced technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran.
| | - Amir Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Arasteh
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615, Tehran, Iran
| |
Collapse
|
68
|
Harris VK, Vyshkina T, Sadiq SA. Clinical safety of intrathecal administration of mesenchymal stromal cell–derived neural progenitors in multiple sclerosis. Cytotherapy 2016; 18:1476-1482. [DOI: 10.1016/j.jcyt.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/18/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022]
|
69
|
Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules. Neurochem Res 2016; 42:415-427. [DOI: 10.1007/s11064-016-2086-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022]
|
70
|
Halliwell RF. Electrophysiological properties of neurons derived from human stem cells and iNeurons in vitro. Neurochem Int 2016; 106:37-47. [PMID: 27742467 DOI: 10.1016/j.neuint.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023]
Abstract
Functional studies of neurons have traditionally used nervous system tissues from a variety of non-human vertebrate and invertebrate species, even when the focus of much of this research has been directed at understanding human brain function. Over the last decade, the identification and isolation of human stem cells from embryonic, tissue (or adult) and induced pluripotent stem cells (iPSCs) has revolutionized the availability of human neurons for experimental studies in vitro. In addition, the direct conversion of terminally differentiated fibroblasts into Induced neurons (iN) has generated great excitement because of the likely value of such human stem cell derived neurons (hSCNs) and iN cells in drug discovery, neuropharmacology, neurotoxicology and regenerative medicine. This review addresses the current state of our knowledge of functional receptors and ion channels expressed in neurons derived from human stem cells and iNeurons and identifies gaps and questions that might be investigated in future studies; it focusses almost exclusively on what is known about the electrophysiological properties of neurons derived from human stem cells and iN cells in vitro with an emphasis on voltage and ligand gated ion channels, since these mediate synaptic signalling in the nervous system and they are at the heart of neuropharmacology.
Collapse
Affiliation(s)
- Robert F Halliwell
- Schools of Pharmacy & Dentistry, University of the Pacific, 751 Brookside Road, Stockton, CA, USA.
| |
Collapse
|
71
|
Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy 2016; 18:1245-55. [DOI: 10.1016/j.jcyt.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
72
|
Fazeli Z, Omrani MD, Ghaderian SMH. CD29/CD184 expression analysis provides a signature for identification of neuronal like cells differentiated from PBMSCs. Neurosci Lett 2016; 630:189-193. [DOI: 10.1016/j.neulet.2016.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022]
|
73
|
Hsu HH, Uemura T, Yamaguchi I, Ikoma T, Tanaka J. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J Biosci Bioeng 2016; 122:219-25. [DOI: 10.1016/j.jbiosc.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
|
74
|
Saxena M, Prashar P, Yadav PS, Sen J. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling. Differentiation 2016; 92:1-9. [DOI: 10.1016/j.diff.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/06/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
75
|
Zhou HL, Zhang XJ, Zhang MY, Yan ZJ, Xu ZM, Xu RX. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury. Neurochem Res 2016; 41:2708-2718. [DOI: 10.1007/s11064-016-1987-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
|
76
|
Mesenchymal Stem Cells after Polytrauma: Actor and Target. Stem Cells Int 2016; 2016:6289825. [PMID: 27340408 PMCID: PMC4909902 DOI: 10.1155/2016/6289825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma.
Collapse
|
77
|
Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J, Lin Z, Xiong N, Wang T. A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Front Aging Neurosci 2016; 8:117. [PMID: 27303288 PMCID: PMC4885841 DOI: 10.3389/fnagi.2016.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson's Disease (PD) is a progressively neurodegenerative disorder, implicitly characterized by a stepwise loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and explicitly marked by bradykinesia, rigidity, resting tremor and postural instability. Currently, therapeutic approaches available are mainly palliative strategies, including L-3,4-dihydroxy-phenylalanine (L-DOPA) replacement therapy, DA receptor agonist and deep brain stimulation (DBS) procedures. As the disease proceeds, however, the pharmacotherapeutic efficacy is inevitably worn off, worse still, implicated by side effects of motor response oscillations as well as L-DOPA induced dyskinesia (LID). Therefore, the frustrating status above has propeled the shift to cell replacement therapy (CRT), a promising restorative therapy intending to secure a long-lasting relief of patients' symptoms. By far, stem cell lines of multifarious origins have been established, which can be further categorized into embryonic stem cells (ESCs), neural stem cells (NSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). In this review, we intend to present a compendium of preparation and application of multifarious stem cells, especially in relation to PD research and therapy. In addition, the current status, potential challenges and future prospects for practical CRT in PD patients will be elaborated as well.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Ling Liu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiaoyun Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Chao Han
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Haiyang Jiang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jie Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Tao Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
78
|
Moskvin SV, Klyuchnikov DY, Antipov EV, Gorina AI, Kiseleva ON. [The influence of continuous low-intensity laser radiation at the red (635 nm) and green (525 nm) wavelengths on the human mesenchymal stem cells in vitro: a review of the literature and original investigations]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 93:32-42. [PMID: 27213947 DOI: 10.17116/kurort2016232-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Low-intensity laser radiation can be used as one of the methods for the non-specific regulation of the human mesenchymal stem cell (MSC) activity at the preliminary stage of their in vitro cultivation. The objective of the present study was to estimate the influence of the limiting regimes of continuous low-intensity laser radiation (CLIR) of red (635 nm) and green (525 nm) spectra. MATERIAL AND METHODS The adhesive culture of human mesenchymal stem cells obtained from a donor's umbilical cord tissue was used in the experiments (following 4 passages). They were irradiated using a Lazmik-VLOK laser therapeutic device equipped with the KLO-635-40 (635 nm, 4,9 mW/cm(2)) and KLO-525-50 (525 nm, 5,4 mW/cm(2)) laser diode emitting heads operating in a continuous mode. A special nozzle (jar) for laser and vacuum massage (KB-5, 35 cm in diameter) was employed to fix the heads. The exposure time in all the irradiation regimes was 5 minutes. CONCLUSION The study has demonstrated that neither the morphological features nor the viability of mesenchymal stem cells was altered under the influence of laser irradiation at the aforementioned energy and time parameters. The data obtained indicate that laser irradiation with the limiting levels of the chosen energy parameters produces no positive effect on the cell proliferative activity; more than that, it may cause its inhibition.
Collapse
Affiliation(s)
- S V Moskvin
- Federal state budgetary institution 'State Research Centre of Laser Medicine', Russian Federal Medico-Biological Agency, Moscow, Russia
| | - D Yu Klyuchnikov
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - E V Antipov
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| | - A I Gorina
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - O N Kiseleva
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| |
Collapse
|
79
|
Su WT, Pan YJ. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng 2016; 13:046005. [DOI: 10.1088/1741-2560/13/4/046005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
80
|
Zhao L, Feng Y, Chen X, Yuan J, Liu X, Chen Y, Zhao Y, Liu P, Li Y. Effects of IGF-1 on neural differentiation of human umbilical cord derived mesenchymal stem cells. Life Sci 2016; 151:93-101. [DOI: 10.1016/j.lfs.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
|
81
|
Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression. Mol Neurobiol 2016; 54:1978-1991. [PMID: 26910814 DOI: 10.1007/s12035-016-9782-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.
Collapse
|
82
|
Tzeng HH, Hsu CH, Chung TH, Lee WC, Lin CH, Wang WC, Hsiao CY, Leu YW, Wang TH. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH) Pathway Genes. PLoS One 2015; 10:e0145542. [PMID: 26713735 PMCID: PMC4699852 DOI: 10.1371/journal.pone.0145542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF) and the expression of BDNF receptor tyrosine receptor kinase B (TrkB) correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε) and kinesin heavy chain (KIF5B) increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1) decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hui-Hung Tzeng
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Chi-Hung Hsu
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Ting-Hao Chung
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
- * E-mail:
| | - Chi-Hsien Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Wan-Chen Wang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Chen-Yu Hsiao
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| | - Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Minhsiung, Chiayi, 621, Taiwan
| | - Tzu-Hsien Wang
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhsiung, Chiayi, 621 Taiwan
| |
Collapse
|
83
|
Kim H, Kim I, Choi HJ, Kim SY, Yang EG. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. NANOSCALE 2015; 7:17131-17138. [PMID: 26422757 DOI: 10.1039/c5nr05787f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.
Collapse
Affiliation(s)
- Hyunju Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea.
| | | | | | | | | |
Collapse
|
84
|
Oliveira Á, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2015; 104:272-81. [PMID: 26456352 DOI: 10.1016/j.neuropharm.2015.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
ATP (adenosine 5'-triphosphate), one of the most ancient neurotransmitters, exerts essential functions in the brain, including neurotransmission and modulation of synaptic activity. Moreover, this nucleotide has been attributed with trophic properties and experimental evidence points to the participation of ATP-activated P2X and P2Y purinergic receptors in embryonic brain development as well as in adult neurogenesis for maintenance of normal brain functions and neuroregeneration upon brain injury. We discuss here the available data on purinergic P2 receptor expression and function during brain development and in the neurogenic zones of the adult brain, as well as the insights based on the use of in vitro stem cell cultures. While several P2 receptor subtypes were shown to be expressed during in vitro and in vivo neurogenesis, specific functions have been proposed for P2Y1, P2Y2 metabotropic as well as P2X2 ionotropic receptors to promote neurogenesis. Further, the P2X7 receptor is suggested to function in the maintenance of pools of neural stem and progenitor cells through induction of proliferation or cell death, depending on the microenvironment. Pathophysiological actions have been proposed for this receptor in worsening damage in brain disease. The P2X7 receptor and possibly additional P2 receptor subtypes have been implicated in pathophysiology of neurological diseases including Parkinson's disease, Alzheimer's disease and epilepsy. New strategies in cell therapy could involve modulation of purinergic signaling, either in the achievement of more effective protocols to obtain viable and homogeneous cell populations or in the process of functional engraftment of transplanted cells into the damaged brain. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ágatha Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie der Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil.
| |
Collapse
|
85
|
Li T, Li Z, Nan F, Dong J, Deng Y, Yu Q, Zhang T. Construction of a novel inducing system with multi-layered alginate microcapsules to regulate differentiation of neural precursor cells from bone mesenchymal stem cells. Med Hypotheses 2015; 85:910-3. [PMID: 26386487 DOI: 10.1016/j.mehy.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023]
Abstract
Neural precursor cells (NPCs) are a promising cell source for the treatment of nervous system diseases; however, they are limited in their applications due to source-related ethical considerations or legislations. Therefore, a novel approach is necessary to obtain sufficient NPCs. Recently, the usage of bone marrow-derived mesenchymal stem cells (BMSCs) differentiated into neural cells has become a potential method to obtain NPCs. Moreover, growth factors (GFs) are emerging as inducers to evoke the differentiation of BMSCs into NPCs. For example, GFs may activate various signaling pathways related to neural differentiation, such as phosphatidylinositol 3 kinase/protein kinase B, cyclic adenosine monophosphate/protein kinase A, and Janus kinase/signal transducer activator of transcription. However, the utilization of growth factors still has some limitations such as high costs and low rates of neural differentiation. Neuroblastoma cells have been characterized as a potential pool for growth factors. Additionally, basic fibroblast growth factor (bFGF), a type of growth factor, has been demonstrated to be able to increase the differentiation and survival rate of NPCs. For better use of neuroblastoma cells and bFGF, we established a novel system involving multi-layered alginate-polylysine-alginate (APA) microcapsules to encapsulate neuroblastoma cells and bFGF, which may not only provide sufficient growth factors in a sustained manner but also avoid the carcinogenicity caused by neuroblastoma cells. Above all, we hypothesized that neuroblastoma cells and bFGF encapsulated in multilayered alginate microcapsules may efficiently induce the differentiation of BMSCs into NPCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Zhengwei Li
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Feng Nan
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China.
| | - Jianli Dong
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Yushuang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Qing Yu
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| | - Teng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, District Shahekou, Dalian 116023, PR China
| |
Collapse
|
86
|
Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS One 2015; 10:e0137255. [PMID: 26356539 PMCID: PMC4565666 DOI: 10.1371/journal.pone.0137255] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Collapse
Affiliation(s)
- Rachel K. Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily T. Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Simon M. Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore, Singapore
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lyn R. Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M. Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
87
|
Lojewski X, Srimasorn S, Rauh J, Francke S, Wobus M, Taylor V, Araúzo-Bravo MJ, Hallmeyer-Elgner S, Kirsch M, Schwarz S, Schwarz J, Storch A, Hermann A. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential. Stem Cells Transl Med 2015; 4:1223-33. [PMID: 26304036 DOI: 10.5966/sctm.2015-0057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. SIGNIFICANCE Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use.
Collapse
Affiliation(s)
- Xenia Lojewski
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Sumitra Srimasorn
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Juliane Rauh
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Silvan Francke
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Manja Wobus
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Verdon Taylor
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Marcos J Araúzo-Bravo
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Susanne Hallmeyer-Elgner
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Matthias Kirsch
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Sigrid Schwarz
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Johannes Schwarz
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| |
Collapse
|
88
|
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Quevedo J, Kapczinski F, Rosa AR. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. AN ACAD BRAS CIENC 2015; 87:1435-49. [PMID: 26247151 DOI: 10.1590/0001-3765201520140619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Bruna M Ascoli
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Wollenhaupt-Aguiar
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Pfaffenseller
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Emily G Silva
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Elizabeth O Cirne-Lima
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Adriane R Rosa
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| |
Collapse
|
89
|
Affect of antidepressants on the in vitro differentiation of rat bone marrow mesenchymal stem cells into neuronal cells. Eur J Pharm Sci 2015; 73:81-7. [DOI: 10.1016/j.ejps.2015.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
|
90
|
Liu C, Hu J, Liu R, Liu W, Zhang T, Ma Z. Migration of Transformed Bone Marrow-Derived Cells with Peripheral Neural Tumor Traits In Vivo. Cancer Invest 2015; 33:361-8. [PMID: 25973926 DOI: 10.3109/07357907.2014.933233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The identification of the original cells in tumors may allow for measures that protect the original cells and prevent tumor formation. In the present study, we isolated a subpopulation of cells with the features of neural tumor cells from transformed BMDCs in vitro. These neural tumor cells expressed the markers of neural tumor progenitor cells and differentiated neural tumor cells in vitro. Moreover, the subcloned cells from transformed BMDCs could migrate to distant tissues and drive peripheral neural tumors in vivo. Therefore, our results further verify that transformed mouse BMDCs are a potential source of peripheral neural tumors.
Collapse
Affiliation(s)
- Chunfang Liu
- a Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College , Fudan University , Shanghai , China
| | - Jinghui Hu
- a Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College , Fudan University , Shanghai , China
| | - Ruilai Liu
- a Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College , Fudan University , Shanghai , China
| | - Weiwei Liu
- a Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College , Fudan University , Shanghai , China
| | - Tao Zhang
- a Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College , Fudan University , Shanghai , China
| | - Zhan Ma
- b Department of Laboratory Medicine, Shanghai Children's Hospital , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
91
|
Wharton's jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 2015; 117:329-38. [PMID: 25747736 DOI: 10.1016/j.acthis.2015.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/31/2015] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
Multipotent mesenchymal stromal cells, also known as mesenchymal stem cells (MSC), can be isolated from bone marrow or other tissues, including fat, muscle and umbilical cord. It has been shown that MSC behave in vitro as stem cells: they self-renew and are able to differentiate into mature cells typical of several mesenchymal tissues. Moreover, the differentiation toward non-mesenchymal cell lineages (e.g. neurons) has been reported as well. The clinical relevance of these cells is mainly related to their ability to spontaneously migrate to the site of inflammation/damage, to their safety profile thanks to their low immunogenicity and to their immunomodulation capacities. To date, MSCs isolated from the post-natal bone marrow have represented the most extensively studied population of adult MSCs, in view of their possible use in various therapeutical applications. However, the bone marrow-derived MSCs exhibit a series of limitations, mainly related to their problematic isolation, culturing and use. In recent years, umbilical cord (UC) matrix (i.e. Wharton's jelly, WJ) stromal cells have therefore emerged as a more suitable alternative source of MSCs, thanks to their primitive nature and the easy isolation without relevant ethical concerns. This review seeks to provide an overview of the main biological properties of WJ-derived MSCs. Moreover, the potential application of these cells for the treatment of some known dysfunctions in the central and peripheral nervous system will also be discussed.
Collapse
|
92
|
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF. Int J Mol Sci 2015; 16:9693-718. [PMID: 25938966 PMCID: PMC4463612 DOI: 10.3390/ijms16059693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip® miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
Collapse
|
93
|
Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci U S A 2015; 112:E2725-34. [PMID: 25870293 DOI: 10.1073/pnas.1504393112] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.
Collapse
|
94
|
Fujii H, Matsubara K, Sakai K, Ito M, Ohno K, Ueda M, Yamamoto A. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 2015; 1613:59-72. [PMID: 25863132 DOI: 10.1016/j.brainres.2015.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of nigrostriatal dopaminergic (DAergic) neurons and the depletion of striatal dopamine. Here we show that DAergic-neuron-like cells could be efficiently induced from stem cells derived from human exfoliated deciduous teeth (SHEDs), and that these induced cells had therapeutic benefits in a 6-OHDA-induced Parkinsonian rat model. In our protocol, EGF and bFGF signaling activated the SHED's expression of proneural genes, Ngn2 and Mash1, and subsequent treatment with brain-derived neurotrophic factor (BDNF) promoted their maturation into DAergic neuron-like SHEDs (dSHEDs). A hypoxic DAergic differentiation protocol improved cell viability and enhanced the expression of multiple neurotrophic factors, including BDNF, GDNF, NT-3, and HGF. Engrafted dSHEDs survived in the striatum of Parkinsonian rats, improved the DA level more efficiently than engrafted undifferentiated SHEDs, and promoted the recovery from neurological deficits. Our findings further suggested that paracrine effects of dSHEDs contributed to neuroprotection against 6-OHDA-induced neurodegeneration and to nigrostriatal tract restoration. In addition, we found that the conditioned medium derived from dSHEDs protected primary neurons against 6-OHDA toxicity and accelerated neurite outgrowth in vitro. Thus, our data suggest that stem cells derived from dental pulp may have therapeutic benefits for PD.
Collapse
Affiliation(s)
- Hiromi Fujii
- Departments of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kohki Matsubara
- Departments of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kiyoshi Sakai
- Departments of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Departments of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Departments of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Minoru Ueda
- Departments of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihito Yamamoto
- Departments of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
95
|
Borkowska P, Fila-Danilow A, Paul-Samojedny M, Kowalczyk M, Hart J, Ryszawy J, Kowalski J. Differentiation of adult rat mesenchymal stem cells to GABAergic, dopaminergic and cholinergic neurons. Pharmacol Rep 2015; 67:179-86. [DOI: 10.1016/j.pharep.2014.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/31/2023]
|
96
|
Mathivanan I, Trepp C, Brunold C, Baerlocher G, Enzmann V. Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp Cell Res 2015; 333:11-20. [PMID: 25724900 DOI: 10.1016/j.yexcr.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Collapse
Affiliation(s)
- Isai Mathivanan
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland
| | - Carolyn Trepp
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland
| | - Claudio Brunold
- Dept. of Hematology, Inselspital, University of Bern, Bern, Switzerland
| | - Gabriela Baerlocher
- Dept. of Clinical Research, University of Bern, Bern, Switzerland; Dept. of Hematology, Inselspital, University of Bern, Bern, Switzerland
| | - Volker Enzmann
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
97
|
Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. Mesenchymal Stem Cells: Rising Concerns over Their Application in Treatment of Type One Diabetes Mellitus. J Diabetes Res 2015; 2015:675103. [PMID: 26576437 PMCID: PMC4630398 DOI: 10.1155/2015/675103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/17/2015] [Accepted: 01/18/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes.
Collapse
Affiliation(s)
- Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Seyed Jafar Hashemian:
| | - Marjan Kouhnavard
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Poloni A, Maurizi G, Foia F, Mondini E, Mattiucci D, Ambrogini P, Lattanzi D, Mancini S, Falconi M, Cinti S, Olivieri A, Leoni P. Glial-like differentiation potential of human mature adipocytes. J Mol Neurosci 2015; 55:91-98. [PMID: 25007949 DOI: 10.1007/s12031-014-0345-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/30/2023]
Abstract
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage.
Collapse
Affiliation(s)
- Antonella Poloni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy.
| | - Giulia Maurizi
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Federica Foia
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Eleonora Mondini
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Mattiucci
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Patrizia Ambrogini
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Fisiologia, Università di Urbino Carlo Bo, Urbino, Italy
| | - Davide Lattanzi
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Fisiologia, Università di Urbino Carlo Bo, Urbino, Italy
| | - Stefania Mancini
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Massimo Falconi
- Clinica Chirurgia del Pancreas, Università Politecnica delle Marche, Ospedali Riuniti, Ancona, Italy
| | - Saverio Cinti
- Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| | - Pietro Leoni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto, 60020, Ancona, Italy
| |
Collapse
|
99
|
Matsumoto R, Uemura T, Xu Z, Yamaguchi I, Ikoma T, Tanaka J. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2014; 103:2531-9. [DOI: 10.1002/jbm.a.35387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Rena Matsumoto
- Nanosystem Research Insutitute, AIST (National Institute of Advanced Industrial Science and Technology); Central 4 1-1-1 Higashi Tsukuba Ibaraki 305-8562 Japan
| | - Toshimasa Uemura
- Nanosystem Research Insutitute, AIST (National Institute of Advanced Industrial Science and Technology); Central 4 1-1-1 Higashi Tsukuba Ibaraki 305-8562 Japan
| | - Zhefeng Xu
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| | - Isamu Yamaguchi
- Research Department, R & D Division, Taki Chemical Co. Ltd.; 346, Miyanishi, Harima-Cho Kako-Gun Hyogo 675-0145 Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| | - Junzo Tanaka
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| |
Collapse
|
100
|
Rong JU, Wen Z, Rong WU, Zhichun F. Interaction between neural stem cells and bone marrow derived-mesenchymal stem cells during differentiation. Biomed Rep 2014; 3:242-246. [PMID: 25798249 DOI: 10.3892/br.2014.405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
Due to their capacity to self-replicate or produce specific differentiated cell types, neural stem cells (NSCs) and bone marrow derived-mesenchymal stem cells (BMSCs) are potential sources for cell transplantation therapies, particularly for neural injury. However, the interaction between NSCs and BMSCs during differentiation has not yet been defined. The interaction is believed to improve the effectiveness and efficiency of cell therapy. In the present study, human NSCs and BMSCs were cultured and the Transwell co-culture system was used to observe the interplay between NSCs and BMSCs during differentiation. The results revealed that NSCs promoted BMSCs to differentiate into neurons and NSCs; whereas, BMSCs did not affect the differentiation of NSCs. Simultaneously, co-culture increased the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are secreted by NSCs and BMSCs. The present findings suggest that co-culture of NSCs and BMSCs can promote the differentiation and this process may be modulated by BDNF and NGF.
Collapse
Affiliation(s)
- J U Rong
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chongqing Medical University, Chengdu, Sichuan 610091, P.R. China
| | - Zeng Wen
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, Chongqing Medical University, Chengdu, Sichuan 610091, P.R. China
| | - W U Rong
- Neonatal Medical Center, Huaian Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy, Huaian, Jiangsu 223002, P.R. China
| | - Feng Zhichun
- Department of Neonatology, Bayi Children's Hospital Affiliated to General Hospital of Beijing Military Command, Beijing 100700, P.R. China
| |
Collapse
|