51
|
Abstract
Summary It has been postulated that bacterial DNA replication occurs via a factory mechanism in which unreplicated DNA is spooled into a centrally located replisome and newly synthesized DNA is discharged towards opposite cell poles. Although there is considerable support for this view, it does not fit with many key observations. I review new findings, and provide alternative interpretations for old findings, which challenge this model. As a whole, current data suggest that the replisome, at least in slowly growing Escherichia coli cells, tracks along a stationary chromosome. These replisomes are not stationary, tethered or restricted in their movement, but rather travel throughout the nucleoid. One possibility is that the replisome navigates along a chromosome made up of looped domains as has been previously envisioned.
Collapse
Affiliation(s)
- David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
53
|
Nanbo A, Sugden A, Sugden B. The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO J 2007; 26:4252-62. [PMID: 17853891 PMCID: PMC2000340 DOI: 10.1038/sj.emboj.7601853] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 08/15/2007] [Indexed: 02/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is an exceptionally successful human viral pathogen maintained as a licensed, plasmid replicon in proliferating cells. We have measured the distributions of EBV-derived plasmids in single live cells throughout the cell cycle in the absence of selection and confirmed the measured rates of duplication and partitioning computationally and experimentally. These analyses have uncovered a striking, non-random partitioning for this minimalist plasmid replicon and revealed additional properties of it and its host cells: (1) 84% of the plasmids duplicate during each S phase; (2) all duplicated plasmids are spatially colocalized as pairs, a positioning that is coupled to their non-random partitioning; (3) each clone of cells requires a certain threshold number of plasmids per cell for its optimal growth under selection; (4) defects in plasmid synthesis and partitioning are balanced to yield wide distributions of plasmids in clonal populations of cells for which the plasmids provide a selective advantage. These properties of its plasmid replicon underlie EBV's success as a human pathogen.
Collapse
Affiliation(s)
- Asuka Nanbo
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
| | - Arthur Sugden
- Astronomy Department, Wesleyan University, Middletown, CT, USA
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA. Tel.: +1 608 262 1116; Fax: +1 608 262 2824; E-mail:
| |
Collapse
|
54
|
Maya-Mendoza A, Petermann E, Gillespie DAF, Caldecott KW, Jackson DA. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 2007; 26:2719-31. [PMID: 17491592 PMCID: PMC1888675 DOI: 10.1038/sj.emboj.7601714] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/17/2007] [Indexed: 11/09/2022] Open
Abstract
The checkpoint kinase 1 (Chk1) preserves genome integrity when replication is performed on damaged templates. Recently, Chk1 has also been implicated in regulating different aspects of unperturbed S phase. Using mammalian and avian cells with compromised Chk1 activity, we show that an increase in active replicons compensates for inefficient DNA polymerisation. In the absence of damage, loss of Chk1 activity correlates with the frequent stalling and, possibly, collapse of active forks and activation of adjacent, previously suppressed, origins. In human cells, super-activation of replication origins is restricted to pre-existing replication factories. In avian cells, in contrast, Chk1 deletion also correlates with the super-activation of replication factories and loss of temporal continuity in the replication programme. The same phenotype is induced in wild-type avian cells when Chk1 or ATM/ATR is inhibited. These observations show that Chk1 regulates replication origin activation and contributes to S-phase progression in somatic vertebrate cells.
Collapse
Affiliation(s)
| | - Eva Petermann
- Genome damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | | | - Keith W Caldecott
- Genome damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | - Dean A Jackson
- Faculty of Life Sciences, University of Manchester, MIB, Manchester, UK
| |
Collapse
|
55
|
Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 2007; 7:454-63. [PMID: 17522714 DOI: 10.1038/nrc2149] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- University of Massachusetts Medical School and UMASS Memorial Cancer Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Conti C, Saccà B, Herrick J, Lalou C, Pommier Y, Bensimon A. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 2007; 18:3059-67. [PMID: 17522385 PMCID: PMC1949372 DOI: 10.1091/mbc.e06-08-0689] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spatial organization of replicons into clusters is believed to be of critical importance for genome duplication in higher eukaryotes, but its functional organization still remains to be fully clarified. The coordinated activation of origins is insufficient on its own to account for a timely completion of genome duplication when interorigin distances vary significantly and fork velocities are constant. Mechanisms coordinating origin distribution with fork progression are still poorly elucidated, because of technical difficulties of visualizing the process. Taking advantage of a single molecule approach, we delineated and compared the DNA replication kinetics at the genome level in human normal primary and malignant cells. Our results show that replication forks moving from one origin, as well as from neighboring origins, tend to exhibit the same velocity, although the plasticity of the replication program allows for their adaptation to variable interorigin distances. We also found that forks that emanated from closely spaced origins tended to move slower than those associated with long replicons. Taken together, our results indicate a functional role for origin clustering in the dynamic regulation of genome duplication.
Collapse
Affiliation(s)
- Chiara Conti
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Barbara Saccà
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - John Herrick
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| | - Claude Lalou
- Institut National de la Santé et de la Recherche Médicale U532, Hôpital Saint-Louis, Paris 75010, France; and
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817
| | - Aaron Bensimon
- *Department of Genome Stability, Pasteur Institute, Paris F-75724, France
| |
Collapse
|
57
|
Gotoh E. Visualizing the dynamics of chromosome structure formation coupled with DNA replication. Chromosoma 2007; 116:453-62. [PMID: 17503067 DOI: 10.1007/s00412-007-0109-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/02/2007] [Accepted: 04/18/2007] [Indexed: 11/25/2022]
Abstract
A basic question of cell biology is how DNA folds to chromosome. Numbers of examples have suggested the involvement of DNA replication in chromosome structure formation. To visualize and identify the dynamics of chromosome structure formation and to elucidate the involvement of DNA replication in chromosome construction, Cy3-2'-deoxyuridine-5'-triphosphate direct-labeled active replicating DNA was observed in prematurely condensed chromosomes (PCCs) under a confocal scanning microscope utilized with drug-induced premature chromosome condensation (PCC) technique that facilitates the visualization of interphase chromatin as condensed chromosome form. S-phase PCCs revealed clearly the drastic dynamics of chromosome formation that transits during S-phase from a 'cloudy nebula' to numerous numbers of 'beads on a string' and finally to 'striped arrays of banding structured chromosome' along with the progress of DNA replication. The number, distribution, and shape of replication foci were also measured in individual subphases of S-phase more precisely than reported previously; maximally, approximately 1,400 foci of 0.35 microm average radius size were scored at the beginning of the S-phase, and the number reduced to approximately 100 at the end of the S-phase. Drug-induced PCC clearly provided the new insight that eukaryote DNA replication is tightly coupled with the chromosome condensation/compaction for the construction of the higher-ordered structure of the eukaryote chromosome.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Genetic Resources, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
58
|
Abstract
Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, 364 Plantation Street, LRB904, Worcester, MA 01605, USA.
| |
Collapse
|
59
|
Friedl AA. The Role of Chromatin Structure and Nuclear Architecture in the Cellular Response to DNA Double-Strand Breaks. Genome Integr 2006. [DOI: 10.1007/7050_001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
60
|
Shopland LS, Lynch CR, Peterson KA, Thornton K, Kepper N, Hase JV, Stein S, Vincent S, Molloy KR, Kreth G, Cremer C, Bult CJ, O'Brien TP. Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. ACTA ACUST UNITED AC 2006; 174:27-38. [PMID: 16818717 PMCID: PMC2064156 DOI: 10.1083/jcb.200603083] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific mammalian genes functionally and dynamically associate together within the nucleus. Yet, how an array of many genes along the chromosome sequence can be spatially organized and folded together is unknown. We investigated the 3D structure of a well-annotated, highly conserved 4.3-Mb region on mouse chromosome 14 that contains four clusters of genes separated by gene “deserts.” In nuclei, this region forms multiple, nonrandom “higher order” structures. These structures are based on the gene distribution pattern in primary sequence and are marked by preferential associations among multiple gene clusters. Associating gene clusters represent expressed chromatin, but their aggregation is not simply dependent on ongoing transcription. In chromosomes with aggregated gene clusters, gene deserts preferentially align with the nuclear periphery, providing evidence for chromosomal region architecture by specific associations with functional nuclear domains. Together, these data suggest dynamic, probabilistic 3D folding states for a contiguous megabase-scale chromosomal region, supporting the diverse activities of multiple genes and their conserved primary sequence organization.
Collapse
|
61
|
Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14:613-26. [PMID: 16784894 DOI: 10.1016/j.ymthe.2006.03.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 01/20/2023] Open
Abstract
Although the genetic therapy of human diseases has been conceptually possible for many years we still lack a vector system that allows safe and reproducible genetic modification of eukaryotic cells and ensures faithful long-term expression of transgenes. There is increasing agreement that vectors that are based exclusively on chromosomal elements, which replicate autonomously in human cells, could fulfill these criteria. The rational construction of such vectors is still hindered by our limited knowledge of the factors that regulate chromatin function in eukaryotic cells. This review sets out to summarize how our current knowledge of nuclear organization can be applied to the design of extrachromosomal gene expression vectors that can be used for human gene therapy. Within the past years a number of episomal nonviral constructs have been designed and their replication strategies, expression of transgenes, mitotic stability, and delivery strategies and the mechanisms required for their stable establishment will be discussed. To date, these nonviral vectors have not been used in clinical trials. Even so, many compelling arguments can be developed to support the view that nonviral vector systems will play a major role in future gene therapy protocols.
Collapse
Affiliation(s)
- Dean A Jackson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|
62
|
Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006; 292:317-32. [PMID: 16680825 DOI: 10.1016/j.ydbio.2006.01.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although a growing number of studies investigates functional genome organization in somatic cell nuclei, it is largely unknown how mammalian genome organization is established during embryogenesis. To address this question, we investigated chromo center formation and the peculiar arrangements of chromosome domains in early mouse embryos. At the one-cell stage, we observed characteristic arrangements of chromosomes and chromo center components. Subsequently, starting with the burst of zygotic genome transcription major rearrangements led to the establishment of somatic type chromo centers with a defined spatio-temporal organization. These processes appeared to be completed at the blastocyst stage with the onset of cell differentiation. During the same developmental period, a fraction of pericentric heterochromatin that was late replicating in the first cycle underwent switches in replication timing, spatial organization and epigenetic marks. Cloning experiments revealed that the genome organization typical for more advanced stages was quickly reverted into the one-cell stage-specific form after nuclear transfer, supporting the idea that reprogramming associated genome remodeling in normal and cloned embryos is determined by cytoplasmic factors. Together, the results suggest that distinct but characteristic forms of nuclear genome organization are required for genome reprogramming in early embryos and for proper regulation of differential gene expression patterns at later stages.
Collapse
Affiliation(s)
- Catherine Martin
- UMR 13-1198 Biologie du Développment et Reproduction, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | |
Collapse
|
63
|
Taucher-Scholz G, Jakob B. Ion Irradiation as a Tool to Reveal the Spatiotemporal Dynamics of DNA Damage Response Processes. Genome Integr 2006. [DOI: 10.1007/7050_015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
64
|
Zink D. The temporal program of DNA replication: new insights into old questions. Chromosoma 2006; 115:273-87. [PMID: 16552593 DOI: 10.1007/s00412-006-0062-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/10/2006] [Accepted: 02/23/2006] [Indexed: 01/26/2023]
Abstract
During the last decades it has been shown that the replication timing program in metazoans is related to chromosome structure, the nuclear positioning and AT/GC content of chromosomal loci, their patterns of histone modifications, and their transcriptional regulation. Here, the current state of knowledge concerning these relationships is reviewed. An integrated view on structure-function relationships in the nucleus is provided and the determination and functional role of the replication timing program is discussed in this context. A corresponding comprehensive model is developed and a key aspect of this model is the suggestion that mammalian chromosomes are organized into stable units equivalent to replicon clusters. It is proposed that the nuclear positions of these units would depend on their histone modifications and determine the replication timing of the whole unit. It is furthermore predicted that replication timing is only indirectly linked to transcriptional regulation and contributes to the maintenance of gene expression patterns. These clear predictions, and the fact that the tools are at hand now to further test them, open an avenue towards solving the long standing problem on how replication timing is determined in metazoan cells.
Collapse
Affiliation(s)
- Daniele Zink
- Department Biologie II, Ludwig-Maximilians-Universität München, Biozentrum, Planegg-Martinsried, Germany.
| |
Collapse
|
65
|
Abstract
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.
Collapse
Affiliation(s)
- Boyka Anachkova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia 1113, Bulgaria.
| | | | | |
Collapse
|
66
|
Schwaiger M, Schübeler D. A question of timing: emerging links between transcription and replication. Curr Opin Genet Dev 2006; 16:177-83. [PMID: 16503127 DOI: 10.1016/j.gde.2006.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Accepted: 02/13/2006] [Indexed: 11/28/2022]
Abstract
The coordination of transcription and timing of DNA replication during the S phase of the cell cycle has recently been studied chromosome-wide in high resolution. This revealed that in the complex genome of higher eukaryotes actively transcribed genes are more likely to replicate early in S phase. Dynamic changes in chromatin structure and nuclear organization appear to provide the underlying mechanism to link transcription and replication. A possible evolutionary benefit for this connection might result from differential replication fidelity during S phase, and comparisons of the human and chimpanzee genomes are compatible with this hypothesis.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich-Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
67
|
Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2006; 6:669-77. [PMID: 16094312 DOI: 10.1038/nrg1673] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
68
|
Postberg J, Alexandrova O, Cremer T, Lipps HJ. Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 2005; 118:3973-83. [PMID: 16129882 DOI: 10.1242/jcs.02497] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatial and temporal replication patterns are used to describe higher-order chromatin organisation from nuclei of early metazoan to mammalian cells. Here we demonstrate evolutionary conserved similarities and differences in replication patterns of micronuclei and macronuclei in the spirotrichous ciliate Stylonychia lemnae. Since this organism possesses two kinds of morphologically and functionally different nuclei in one cell, it provides an excellent model system to analyse topological requirements for DNA replication and transcription. Replication in the heterochromatic micronucleus occurs in foci-like structures showing spatial and temporal patterns similar to nuclei of higher eukaryotes, demonstrating that these patterns are inherent features of nuclear architecture. The 'nanochromosomes' of the macronucleus are replicated in the propagating replication band. We show that it consists of hundreds of replication foci. Post-replicative macronuclear chromatin remains organised in foci. These foci are not randomly distributed throughout the macronucleus, indicating a higher-order organisation of macronuclear chromatin above the level of 'nanochromosomes'. Both telomerase and proliferating cell nuclear antigen (PCNA) occur as foci-like structures in the rear zone of the replication band, suggesting that a wave of chromatin modification driven by a short or continuous exogenous signal permits the assembly of replication factories at predicted sites. We further show that transcription occurs at discrete sites colocalised with putative nucleoli and dispersed chromatin. Common principles of functional nuclear architecture were conserved during eukaryotic evolution. Moreover nuclear duality inherent to ciliates with their germline micronucleus and their somatic macronucleus may eventually provide further insight into epigenetic regulation of transcription, replication and nuclear differentiation.
Collapse
Affiliation(s)
- Jan Postberg
- Institute of Cell Biology, University of Witten/Herdecke, Stockumer Str. 10, 58453 Witten, Germany.
| | | | | | | |
Collapse
|
69
|
Wu R, Terry AV, Singh PB, Gilbert DM. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 2005; 16:2872-81. [PMID: 15788566 PMCID: PMC1142431 DOI: 10.1091/mbc.e04-11-0997] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mono-, di-, and trimethylation of specific histone residues adds an additional level of complexity to the range of histone modifications that may contribute to a histone code. However, it has not been clear whether different methylated states reside stably at different chromatin sites or whether they represent dynamic intermediates at the same chromatin sites. Here, we have used recently developed antibodies that are highly specific for mono-, di-, and trimethylated lysine 9 of histone H3 (MeK9H3) to examine the subnuclear localization and replication timing of chromatin containing these epigenetic marks in mammalian cells. Me1K9H3 was largely restricted to early replicating, small punctate domains in the nuclear interior. Me2K9H3 was the predominant MeK9 epitope at the nuclear and nucleolar periphery and colocalized with sites of DNA synthesis primarily in mid-S phase. Me3K9H3 decorated late-replicating pericentric heterochromatin in mouse cells and sites of DAPI-dense intranuclear heterochromatin in human and hamster cells that replicated throughout S phase. Disruption of the Suv39h1,2 or G9a methyltransferases in murine embryonic stem cells resulted in a redistribution of methyl epitopes, but did not alter the overall spatiotemporal replication program. These results demonstrate that mono-, di-, and trimethylated states of K9H3 largely occupy distinct chromosome domains.
Collapse
Affiliation(s)
- Rong Wu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
70
|
Laine M, Heath V, Williams R, Noble C, Egan TJ. Monitor – biology. Drug Discov Today 2004. [DOI: 10.1016/s1359-6446(04)03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|