51
|
Motallebnejad P, Azarin SM. Chemically defined human vascular laminins for biologically relevant culture of hiPSC-derived brain microvascular endothelial cells. Fluids Barriers CNS 2020; 17:54. [PMID: 32912242 PMCID: PMC7488267 DOI: 10.1186/s12987-020-00215-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, differentiation of human induced pluripotent stem cells (hiPSCs) into brain-specific microvascular endothelial cells (iBMECs) has frequently been used to model the blood-brain barrier (BBB). However, there are limitations in the use of iBMECs for in vitro studies, such as transendothelial electrical resistance (TEER) instability, weak junctional expression of VE-cadherin, and lack of proper fluid shear stress response. In vivo, the basement membrane (BM) composition of the BBB evolves throughout development, and laminins become the dominant component of the mature vascular BM. However, laminin isoforms of the endothelial BM have not been used for culture of differentiated iBMECs. The main goal of this study is to investigate the effect of different laminin isoforms of the endothelial BM on iBMEC functionality and to determine whether better recapitulation of the physiological BM in vitro can address the aforementioned limitations of iBMECs. METHODS Using a previously reported method, hiPSCs were differentiated into iBMECs. The influence of main laminins of the endothelial BM, LN 411 and LN 511, on iBMEC functionality was studied and compared to a collagen IV and fibronectin mixture (CN IV-FN). Quantitative RT-PCR, immunocytochemistry, and TEER measurement were utilized to assess gene and protein expression and barrier properties of iBMECs on different extracellular matrices. Single-channel microfluidic devices were used to study the effect of shear stress on iBMECs. RESULTS LN 511, but not LN 411, improved iBMEC barrier properties and resulted in more sustained TEER stability. Immunocytochemistry showed improved junctional protein expression compared to iBMECs cultured on CN IV-FN. iBMECs cultured on LN 511 showed a reduction of stress fibers, indicating resting endothelial phenotype, whereas gene expression analysis revealed upregulation of multiple genes involved in endothelial activation in iBMECs on CN IV-FN. Finally, culturing iBMECs on LN 511 enhanced physiological responses to shear stress, including morphological changes and enhanced junctional protein association. CONCLUSION LN 511 improves the functionality and long-term barrier stability of iBMECs. Our findings suggest that incorporation of physiologically relevant LN 511 in iBMEC culture would be beneficial for disease modeling applications and BBB-on-a-chip platforms that accommodate fluid flow.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
52
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
53
|
Fiori A, Hammes HP, Bieback K. Adipose-derived mesenchymal stromal cells reverse high glucose-induced reduction of angiogenesis in human retinal microvascular endothelial cells. Cytotherapy 2020; 22:261-275. [PMID: 32247542 DOI: 10.1016/j.jcyt.2020.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Diabetic retinopathy (DR) is characterized by a progressive alteration of the retinal microvasculature, arising from microaneurysms to leaky vessels and finally abnormal neovascularization. The hyperglycemia-mediated loss of pericytes is a key event in vessel degeneration causing vascular destabilization. To overcome this, mesenchymal stromal cells (MSCs) have been tested as pericyte replacement in several animal models showing repair and regeneration of DR-damaged vasculature. METHODS We hypothesized that adipose-derived mesenchymal stromal cells (ASCs) resist high glucose-induced challenges and protect human retinal microvascular endothelial cells (HRMVECs) from glucose-mediated injury. ASCs and HRMVECs were cultured under normal-glucose (NG; 1 g/L) and high-glucose (HG; 4.5 g/L) conditions comparing their phenotype and angiogenic potential. RESULTS Whereas ASCs were generally unaffected by HG, HG caused a reduction of the angiogenic potential in HRMVEC. Indeed, HG-treated HRMVECs formed fewer vascular tube structures in a basement membrane angiogenesis assay. However, this was not observed in a direct ASC and HRMVEC coculture angiogenesis assay. Increased oxidative stress levels appeared to be linked to the HG-induced reduction of angiogenesis, which could be restored by ASC-conditioned medium and antioxidant treatment. CONCLUSIONS These findings suggest that ASC resist HG-stress whereas endothelial cell angiogenic capacity is reduced. Thus, ASC may be potentially therapeutically active in DR by restoring angiogenic deficits in retinal endothelial cells by the secretion of proangiogenic factors. However, these data also inquire for a thorough risk assessment about the timing of the ASC-based cell therapy, which can be considered advantageous at early stage of DR, but possibly detrimental at the late neo-angiogenic stage of DR.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany
| | - Hans-Peter Hammes
- Endocrinology Department, 5th Medical Department, Medical Faculty Mannheim, Heidelberg University Mannheim, Baden-Württemberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany.
| |
Collapse
|
54
|
High Levels of Serum Angiopoietin 2 and Angiopoietin 2/1 Ratio at the Critical Stage of Dengue Hemorrhagic Fever in Patients and Association with Clinical and Biochemical Parameters. J Clin Microbiol 2020; 58:JCM.00436-19. [PMID: 31941693 DOI: 10.1128/jcm.00436-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023] Open
Abstract
Longitudinal changes of serum angiopoietin 1 (Ang-1) and angiopoietin 2 (Ang-2) associated with endothelial stability in dengue patients with different disease stages were studied. Serum Ang-1 and Ang-2 levels were measured in confirmed dengue fever (DF) patients on admission (DFA, n = 40) and discharge (DFD, n = 20); in dengue hemorrhagic fever (DHF) patients on admission (DHFA, n = 40), at critical stage (DHFC, n = 36), and on discharge (DHFD, n = 20); and in healthy controls (HC, n = 25). DHFC had the highest serum Ang-2 and lowest Ang-1 levels compared to DFA, DHFA, and HC (P < 0.050). The ratio of serum Ang-2/Ang-1 in DHFC was the highest among all study categories tested (P < 0.001). Significant positive correlations were observed between serum Ang-1 and platelet count in DHFA (Pearson r = 0.653, P < 0.001) and between Ang-1 and pulse pressure in DHFC (r = 0.636, P = 0.001). Using a cutoff value of 1.01 for the Ang-2/Ang-1 ratio for DHFC, a sensitivity of 83.2% and a specificity of 81.2% discerning DF from DHF were obtained. Therefore, serum Ang-2/Ang-1 could be used as a biomarker for endothelial dysfunction in severe dengue at the critical stage.
Collapse
|
55
|
Yu X, Ye F. Role of Angiopoietins in Development of Cancer and Neoplasia Associated with Viral Infection. Cells 2020; 9:cells9020457. [PMID: 32085414 PMCID: PMC7072744 DOI: 10.3390/cells9020457] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover, through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.
Collapse
Affiliation(s)
- Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| | - Fengchun Ye
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| |
Collapse
|
56
|
Ruan Y, Dong W, Kang L, Lei X, Zhang R, Wang F, Zhu X. The Changes of Twist1 Pathway in Pulmonary Microvascular Permeability in a Newborn Rat Model of Hyperoxia-Induced Acute Lung Injury. Front Pediatr 2020; 8:190. [PMID: 32391293 PMCID: PMC7190807 DOI: 10.3389/fped.2020.00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in preterm infants, which is characterized by alveolar and vascular dysplasia and increased vascular permeability. Hyperoxia is a critical factor in the pathogenesis of BPD, hyperoxia-induced acute lung injury (HALI) model has similar pathological manifestations as human BPD, therefore, may provide insight into the pathogenesis of human BPD. Studies have shown that Twist1 regulates pulmonary vascular permeability of LPS-induced lung injury through the Ang-Tie2 pathway. However, the effect of Twist1 pathway on vascular permeability in HALI has not been reported. Methods: We randomly exposed newborn rats to the room air or hyperoxia for 14 days. Lung histopathology, immunofluorescence, vascular permeability, mRNA and protein expression was assessed on day 1,7,14. Results: Our results verified that hyperoxia caused alveolar and vascular developmental disorders and increased pulmonary vascular permeability, which was consistent with previous findings. In hyperoxia-exposed rat lungs, the expressions of Twist1, Ang1, Tie1, Tie2, and pTie2 were significantly reduced, whereas the expression of Ang2 was significantly increased. Next, we observed a significant down-regulation of the Akt/Foxo1 pathway. Conclusion: In HALI, the pulmonary microvascular permeability was increased, accompanied by changes in Twist1-Tie2 pathway which combined to Angs, and downregulation of Tie1 and Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Kang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaodan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
57
|
Sasaki M, North PE, Elsey J, Bubley J, Rao S, Jung Y, Wu S, Zou MH, Pollack BP, Kumar J, Singh H, Arbiser JL. Propranolol exhibits activity against hemangiomas independent of beta blockade. NPJ Precis Oncol 2019; 3:27. [PMID: 31701018 PMCID: PMC6825155 DOI: 10.1038/s41698-019-0099-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Propranolol is a widely used beta blocker that consists of a racemic mixture of R and S stereoisomers. Only the S stereoisomer has significant activity against the beta-adrenergic receptor. A fortuitous clinical observation was made in an infant who received propranolol for cardiac disease, and regression of a hemangioma of infancy was noted. This has led to the widespread use of propranolol for the treatment of large and life-threatening hemangiomas of infancy. Infants receiving propranolol require monitoring to ensure that they do not suffer from side effects related to beta blockade. The exact mechanism of activity of propranolol in hemangioma of infancy is unknown. In this study, we treated hemangioma stem cells with both beta blockade active S- and inactive R-propranolol and looked for genes that were coordinately regulated by this treatment. Among the genes commonly downregulated, Angiopoietin-like 4 (ANGPTL4) was among the most regulated. We confirmed that propranolol isomers downregulated ANGPTL4 in endothelial cells, with greater downregulation of ANGPTL4 using the beta blockade inactive R-propranolol. ANGPTL4 is present in human hemangiomas of infancy. Finally, R-propranolol inhibited the growth of bEnd.3 hemangioma cells in vivo. The implication of this is that hemangioma growth can be blocked without the side effects of beta blockade. Given that humans have been exposed to racemic propranolol for decades and thus to R-propranolol, clinical development of R-propranolol for hemangiomas of infancy and other angiogenic diseases is warranted.
Collapse
Affiliation(s)
- Maiko Sasaki
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA.,2Veterans Affairs Medical Center, Decatur, GA 30033 USA
| | - Paula E North
- 3Department of Pathology, Children's Hospital of Wisconsin, Milwaukee, 53226 USA
| | - Justin Elsey
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jeffrey Bubley
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shikha Rao
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yoonhee Jung
- 4Department of Biology, Emory University, Atlanta, GA 30322 USA
| | - Shengnan Wu
- 5Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Ming-Hui Zou
- 5Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Brian P Pollack
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA.,2Veterans Affairs Medical Center, Decatur, GA 30033 USA
| | | | - Hartej Singh
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jack L Arbiser
- 1Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322 USA.,2Veterans Affairs Medical Center, Decatur, GA 30033 USA
| |
Collapse
|
58
|
Rojo Arias JE, Economopoulou M, Juárez López DA, Kurzbach A, Au Yeung KH, Englmaier V, Merdausl M, Schaarschmidt M, Ader M, Morawietz H, Funk RHW, Jászai J. VEGF-Trap is a potent modulator of vasoregenerative responses and protects dopaminergic amacrine network integrity in degenerative ischemic neovascular retinopathy. J Neurochem 2019; 153:390-412. [PMID: 31550048 DOI: 10.1111/jnc.14875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.
Collapse
Affiliation(s)
- Jesús E Rojo Arias
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Matina Economopoulou
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - David A Juárez López
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Anica Kurzbach
- Medizinische Klinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kwan H Au Yeung
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Vanessa Englmaier
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marie Merdausl
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Martin Schaarschmidt
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Saxony, Germany
| | - Henning Morawietz
- Department of Medicine III, University Hospital Carl Gustav Carus, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Saxony, Germany
| | - Richard H W Funk
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - József Jászai
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
59
|
Age- and BMI-Associated Expression of Angiogenic Factors in White Adipose Tissue of Children. Int J Mol Sci 2019; 20:ijms20205204. [PMID: 31640116 PMCID: PMC6829445 DOI: 10.3390/ijms20205204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
The growth of adipose tissue and its vasculature are tightly associated. Angiogenic factors have been linked to obesity, yet little is known about their expression during early childhood. To identify associations of angiogenic factors with characteristics on individual and tissue level, subcutaneous white adipose tissue samples were taken from 45 children aged 0-9 years undergoing elective surgery. We measured the expression of vascular endothelial growth factor A (VEFGA), fibroblast growth factor 1 and 2 (FGF1, FGF2), angiopoietin 1 and 2 (ANGPT1, ANGPT2), TEK receptor tyrosine kinase (TEK), and von Willebrand factor (VWF). In addition, we determined the mean adipocyte size in histologic tissue sections. We found positive correlations of age with FGF1 and FGF2 and a negative correlation with ANGPT2, with pronounced differences in the first two years of life. FGF1, FGF2, and ANGPT1 correlated positively with adipocyte size. Furthermore, we identified a correlation of ANGPT1 and TEK with body mass index-standard deviation score (BMI-SDS), a measure to define childhood obesity. Except for ANGPT2, all angiogenic factors correlated positively with the endothelial marker VWF. In sum, our findings suggest that differences related to BMI-SDS begin early in childhood, and the analyzed angiogenic factors possess distinct roles in adipose tissue biology.
Collapse
|
60
|
Abstract
Background:
This review presents the exhaustive exploration of 1,3,5-triazine scaffold
for development of analogs of anticancer drugs, over the last century. In the recent years, striazine
moiety has been one of the most studied moiety, showing broad-spectrum pharmacological
activities such as antibacterial, antifungal, analgesic, anti-HIV, antileishmanial, antitrypanosomal,
antimalarial and antiviral. Nowadays, many boffins are have become interested in novel
synthesis of s-triazine derivatives because of low cost and ease of availability.
Methods:
This scaffold has been extensively investigated mainly in the past decade. Many products
have been synthesized from different starting materials and these synthetic products possess
anticancer potential against various cell lines.
Results:
Many 1,3,5-triazine analogs exhibited significant anticancer activity in various models
and cell lines exhibiting different mechanisms. Some analogs have also shown good pharmacokinetic
parameters with less IC50 values.
Conclusion:
Various 1,3,5-triazine analogs have shown potent activities and may be regarded as
clinical candidates for future anticancer formulations. This review may be helpful to those researchers
seeking required information with regard to the drug design and medicinal properties of
1,3,5-triazine derivatives for selected targets. This review may also offer help to find and improve
clinically viable anticancer molecules.
Collapse
Affiliation(s)
- Rajeev Kumar
- Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar)-263148, Uttarakhand, India
| | - Neeraj Kumar
- Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar)-263148, Uttarakhand, India
| | | | - Anita Singh
- Department of Pharmacy, Kumaun University, Bhimtal, Nainital-263136, Uttarakhand, India
| |
Collapse
|
61
|
Jászai J, Schmidt MHH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells 2019; 8:cells8091102. [PMID: 31540455 PMCID: PMC6770676 DOI: 10.3390/cells8091102] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 01/18/2023] Open
Abstract
Excessive abnormal angiogenesis plays a pivotal role in tumor progression and is a hallmark of solid tumors. This process is driven by an imbalance between pro- and anti-angiogenic factors dominated by the tissue hypoxia-triggered overproduction of vascular endothelial growth factor (VEGF). VEGF-mediated signaling has quickly become one of the most promising anti-angiogenic therapeutic targets in oncology. Nevertheless, the clinical efficacy of this approach is severely limited in certain tumor types or shows only transient efficacy in patients. Acquired or intrinsic therapy resistance associated with anti-VEGF monotherapeutic approaches indicates the necessity of a paradigm change when targeting neoangiogenesis in solid tumors. In this context, the elaboration of the conceptual framework of “vessel normalization” might be a promising approach to increase the efficacy of anti-angiogenic therapies and the survival rates of patients. Indeed, the promotion of vessel maturation instead of regressing tumors by vaso-obliteration could result in reduced tumor hypoxia and improved drug delivery. The implementation of such anti-angiogenic strategies, however, faces several pitfalls due to the potential involvement of multiple pro-angiogenic factors and modulatory effects of the innate and adaptive immune system. Thus, effective treatments bypassing relapses associated with anti-VEGF monotherapies or breaking the intrinsic therapy resistance of solid tumors might use combination therapies or agents with a multimodal mode of action. This review enumerates some of the current approaches and possible future directions of treating solid tumors by targeting neovascularization.
Collapse
Affiliation(s)
- József Jászai
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany.
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 61920 Heidelberg, Germany.
| |
Collapse
|
62
|
Gutbier B, Neuhauß AK, Reppe K, Ehrler C, Santel A, Kaufmann J, Scholz M, Weissmann N, Morawietz L, Mitchell TJ, Aliberti S, Hippenstiel S, Suttorp N, Witzenrath M. Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia. Am J Respir Crit Care Med 2019; 198:220-231. [PMID: 29447449 DOI: 10.1164/rccm.201708-1733oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified. OBJECTIVES To investigate the prognostic and pathogenic impact of angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. METHODS Serum angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n = 148, n = 395). Human postmortem lung tissue, pneumolysin- or angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. MEASUREMENTS AND MAIN RESULTS In patients with pneumonia, decreased serum angiopoietin-1 and increased angiopoietin-2 levels were observed as compared with healthy subjects. Higher angiopoietin-2 serum levels were found in patients with community-acquired pneumonia who died within 28 days of diagnosis compared with survivors. Receiver operating characteristic analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment, and length of hospital stay if combined with angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial angiopoietin-2 release, angiopoietin-2 increased endothelial permeability, and angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with angiopoietin-2 knockdown showed reduced permeability on pneumolysin stimulation. Increased pulmonary angiopoietin-2 and reduced angiopoietin-1 mRNA expression were observed in Streptococcus pneumoniae-infected mice. Finally, angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. CONCLUSIONS These data suggest a central role of angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased angiopoietin-2 serum levels predicted mortality and length of hospital stay, and angiopoietin-1 may provide a therapeutic target for severe pneumonia.
Collapse
Affiliation(s)
- Birgitt Gutbier
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne-Kathrin Neuhauß
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Ehrler
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Markus Scholz
- 4 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Norbert Weissmann
- 5 Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Lars Morawietz
- 6 Pathology, Healthcare Center Fuerstenberg-Karree, Berlin, Germany
| | - Timothy J Mitchell
- 7 Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefano Aliberti
- 8 Department of Pathophysiology and Transplantation, University of Milan, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; and
| | - Stefan Hippenstiel
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | - Martin Witzenrath
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | | |
Collapse
|
63
|
Plasma Angiopoietin-2/-1 Ratio is Elevated and Angiopoietin-2 Levels Correlate With Plasma Syndecan-1 Following Pediatric Trauma. Shock 2019; 52:340-346. [DOI: 10.1097/shk.0000000000001267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Pieterse Z, Sinha D, Kaur P. Pericytes in Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:125-135. [PMID: 31147875 DOI: 10.1007/978-3-030-16908-4_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pericytes have long been known to contribute indirectly to tumour growth by regulating angiogenesis. Thus, remodelling tumour blood vessels to maintain blood supply is critical for continued tumour growth. A role for pericytes in restricting leakage of tumour cells through blood vessels has also become evident given that adequate pericyte coverage of these blood vessels is critical for maintaining vascular permeability. Interestingly, the relocation of pericytes from blood vessels to the tumour microenvironment results in the emergence of different properties in these cells that actively promote tumour growth and metastasis-functions not associated with their well-studied role in vascular stability and permeability. These form the focus of this review.
Collapse
Affiliation(s)
- Zalitha Pieterse
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Devbarna Sinha
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Pritinder Kaur
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.
| |
Collapse
|
65
|
Piard C, Jeyaram A, Liu Y, Caccamese J, Jay SM, Chen Y, Fisher J. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 2019; 222:119423. [PMID: 31442885 DOI: 10.1016/j.biomaterials.2019.119423] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on their crosstalk. In the present study, we showed that the separation and distance between ECs and MSCs populations affects angiogenesis by modulating cell-cell communication. HUVECs grown farther apart from MSCs (˃400 μm) presented characteristics of an early stage of angiogenesis (migration/proliferation). Results showed an increase in the up-regulation of VEGF, FGF-2, and ITGA3 (integrins) but a smaller fold change in the expression of VE-Cadherin and Ang-1. HUVECs were also still highly proliferative. On the contrary, HUVECs incubated closer (≤200 μm) to MSCs, showed signs of stabilization, mainly an increase in Ang-1 and VE-cadherin expression, as well as tighter monolayers. Conditioned media collected from HUVECs and MSCs grown ≤200 μm apart preferentially promoted tube formation, a later stage of angiogenesis, due in part to a significant increase in Ang-1 paracrine secretion. In addition, in groups in which fibers were printed farther apart (400 μm), cells produced EVs with a significantly increase cargo. Finally, in vivo experiment results showed an increase in blood vessels density and new bone thickness after 12 weeks of implantation in rat cranial defect, further suggesting the higher efficiency of indirect ECs/MSCs contact in prompting the release of paracrine signals that stimulate the angiogenesis of local tissues, and enhanced subsequent bone regeneration.
Collapse
Affiliation(s)
- Charlotte Piard
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - John Caccamese
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, R Adams Cowley Shock Trauma Center, Baltimore, MD, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD, 20742, United States.
| |
Collapse
|
66
|
Abd-El-Moety HA, Magour GH, Maharem DA, Hussein AM. Evaluation of serum angiopoietin-II in HCV related glomerulonephrities. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hoda A. Abd-El-Moety
- Medical Research Institute Alexandria University Horria Street Ibrahimia Alexandria Egypt
| | - Gehan H. Magour
- Medical Research Institute Alexandria University Horria Street Ibrahimia Alexandria Egypt
| | - Dalia A. Maharem
- Medical Research Institute Alexandria University Horria Street Ibrahimia Alexandria Egypt
| | - Amira M. Hussein
- Medical Research Institute Alexandria University Horria Street Ibrahimia Alexandria Egypt
| |
Collapse
|
67
|
Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019; 8:cells8050471. [PMID: 31108880 PMCID: PMC6562915 DOI: 10.3390/cells8050471] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Angiopoietins 1–4 (Ang1–4) represent an important family of growth factors, whose activities are mediated through the tyrosine kinase receptors, Tie1 and Tie2. The best characterized are angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 is a potent angiogenic growth factor signaling through Tie2, whereas Ang2 was initially identified as a vascular disruptive agent with antagonistic activity through the same receptor. Recent data demonstrates that Ang2 has context-dependent agonist activities. Ang2 plays important roles in physiological processes and the deregulation of its expression is characteristic of several diseases. In this review, we summarize the activity of Ang2 on blood and lymphatic endothelial cells, its significance in human physiology and disease, and provide a current view of the molecular signaling pathways regulated by Ang2 in endothelial cells.
Collapse
Affiliation(s)
- Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Md S Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Fatema T Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
68
|
Morrison VV, Bozhedomov AY. Dynamics of hemostasis parameters and endothelial dysfunction markers in patients with thermal injury. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burn injuries kill thousands of people. The aim of this study was to investigate the dynamics of systemic inflammatory response parameters, endothelial dysfunction markers and hemostasis impairment in patients with thermal burn injuries. The study was conducted in 51 patients aged 16 to 80 years presenting with moderate to severe thermal burns. The systemic inflammatory response was assessed based on the levels of tumor necrosis factor α (TNFα), a number of interleukins (IL6, IL12), the С-reactive protein, and the monocyte chemoattractant protein 1 (MCP-1). Hemostatic impairments were inferred from the results of coagulation tests that measured the activated partial thromboplastin time (APTT), the prothrombin index (PI), the prothrombin time (PT) and the platelet count. Endothelial dysfunction was analyzed based on the levels of vascular endothelial growth factor (VEGF), total endothelin (TE) and circulating endothelial cells. The dynamics of the listed parameters were studied over 45 days following the injury. Endothelial dysfunction markers peaked on days 3–15 (VEGF 828.9 ± 993.2 pg/mL, TE 3.0 ± 1.7 fmol/mL, CEC 6.4 ± 6.0 • 104/l, IL6 264.4 ± 131.2 pg/mL, TNFα 41.4 ± 111.9 pg/ml, C-reactive protein 128.3 ± 52.4 nmol/mL). Coagulation was significantly impaired during the same period (APTT 41.4 ± 17.7 s, PI 83.6 ± 15.4%, PT 22.3 ± 10.0 s). By day 30–35, blood concentrations of proinflammatory cytokines and inflammation mediators had declined (TNFα 3.9 ± 9.6 pg/mL, IL6 49.0 ± 35.9 pg/mL, С-reactive protein 81.9 ± 341 nmol/ml); in that phase, the coagulation potential was continuing to decrease (APTT 51.8 ± 34.1 s, PI 82.9 ± 19.4%, PT 24.9 ± 21.4 s). The study demonstrates that damage to the endothelium results from both injured tissue breakdown and inflammation mediators. The risk of thromboembolic and hemorrhagic complications is the highest on days 7 through 15 following thermal injury. Further research is needed to study the mechanisms of endothelial damage in patients with thermal burns.
Collapse
Affiliation(s)
- VV Morrison
- Saratov State Medical University, Saratov, Russia
| | - AYu Bozhedomov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
69
|
Ren L, Wei C, Li K, Lu Z. LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen-glucose deprivation via targetting miR-145. Biosci Rep 2019; 39:BSR20180226. [PMID: 30038058 PMCID: PMC6400790 DOI: 10.1042/bsr20180226] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/07/2018] [Accepted: 09/07/2018] [Indexed: 01/17/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disability around the world. Angiogenesis is supposed to protect brain microvascular endothelial cells (BMECs) from oxidative and ischemic stress. Previous studies indicated that interaction between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-145 was involved in myocardial ischemia reperfusion, suggesting MALAT1 and miR-145 were also mediated with the progress of angiogenesis and cell migration in oxygen-glucose deprivation (OGD)-induced BMECs. The present study aimed to investigate the functional roles of MALAT1 in regulating miR-145 and its downstream pro-angiogenesis factors, vascular endothelial growth factor (VEGF)-A and Angiopoietin-2 (ANGPT2) during the progress of angiogenesis in OGD-induced BMECs. An in vitro OGD model was employed in mouse BMECs to mimic brain hypoxic and ischemic conditions; MTT was used to determine cell viability. qRT-PCR was used to determine the expression of long non-coding RNA (lncRNA)-MALAT1 and miR-145 under OGD conditions; in vitro tube formation assay was used to investigate angiogenic effect of MALAT1 and miR-145 The relationship between lncRNA-MALAT1/miR-145 and miR-145/VEGF-A/ANGPT2 was evaluated by qRT-PCR and Western blot, and direct binding was assessed using dual luciferase assay. Results showed that the levels of lncRNA-MALAT1 and miR-145 were up-regulated in OGD-induced BMECs. miR-145 functioned as an anti-angiogenic and pro-apoptotic factor in OGD treated BMECs via down-regulating VEGF-A and ANGPT2 directly. While lncRNA-MALAT1 enhanced the expressions of VEGF-A and ANGPT2 by targetting miR-145 to promote angiogenesis and proliferation of BMECs under OGD conditions. Our present study revealed the inhibitory functions of miR-145 on angiogenesis through direct targetting on VEGF-A and ANGPT2 for the first time and proved the protective role of lncRNA-MALAT1 for BMECs under OGD conditions through the direct regulation of miR-145.
Collapse
Affiliation(s)
- Lanfen Ren
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Chunxia Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Kui Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
70
|
Differential Effects of Ang-2/VEGF-A Inhibiting Antibodies in Combination with Radio- or Chemotherapy in Glioma. Cancers (Basel) 2019; 11:cancers11030314. [PMID: 30845704 PMCID: PMC6468722 DOI: 10.3390/cancers11030314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Antiangiogenic strategies have not shown striking antitumor activities in the majority of glioma patients so far. It is unclear which antiangiogenic combination regimen with standard therapy is most effective. Therefore, we compared anti-VEGF-A, anti-Ang2, and bispecific anti-Ang-2/VEGF-A antibody treatments, alone and in combination with radio- or temozolomide (TMZ) chemotherapy, in a malignant glioma model using multiparameter two-photon in vivo microscopy in mice. We demonstrate that anti-Ang-2/VEGF-A lead to the strongest vascular changes, including vascular normalization, both as monotherapy and when combined with chemotherapy. The latter was accompanied by the most effective chemotherapy-induced death of cancer cells and diminished tumor growth. This was most probably due to a better tumor distribution of the drug, decreased tumor cell motility, and decreased formation of resistance-associated tumor microtubes. Remarkably, all these parameters where reverted when radiotherapy was chosen as combination partner for anti-Ang-2/VEGF-A. In contrast, the best combination partner for radiotherapy was anti-VEGF-A. In conclusion, while TMZ chemotherapy benefits most from combination with anti-Ang-2/VEGF-A, radiotherapy does from anti-VEGF-A. The findings imply that uninformed combination regimens of antiangiogenic and cytotoxic therapies should be avoided.
Collapse
|
71
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
72
|
Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol 2018; 311:182-193. [PMID: 30291853 DOI: 10.1016/j.expneurol.2018.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
A human mesenchymal stem cell line (B10) transplantation has been shown to improve ischemia-induced neurological deficits in animal stroke models. To understand the underlying mechanism, we have investigated the effects of B10 transplantation on cerebral angiogenesis in a rat middle cerebral artery occlusion (MCAO) model. B10 cells were transplanted intravenously 24 h after MCAO. Immunofluorescence staining results showed that compared to PBS-groups, vWF positive vessel and endoglin positive new vessels were increased in B10-transplanted MCAO groups in the lesion areas. The mRNA of angiogenesis factors including placental growth factor and hypoxia inducible factor (HIF)-1α were increased 3 days after MCAO in the core and IBZ areas of B10-transplanted group. Angiopoetin1 mRNA was increased only in the IBZ. Western blotting results showed that HIF-1α and vascular endothelial growth factor (VEGF) proteins were increased in B10-transplanted group. Both HIF-1α and VEGF were expressed in macrophage/microglia in the core area. In the IBZ, however, HIF-1α was expressed both in astrocytes and macrophage/microglia, while VEGF was expressed only in macrophage/microglia. Moreover, TGFβ protein levels were found to be increased in B10-transplanted group in the core and IBZ regions. Cell culture experiments using a human microglia cell line (HMO6) and B10 showed that IL-1β induced VEGF mRNA expression in both cell types. IL-1β was found to be highly expressed in B10 cells, and its co-culture with HMO6 further increased that in B10. Co-culture increased VEGF mRNA in both B10 and HMO6. In the rat brains, IL-1β was expressed in macrophage/microglia and transplanted-B10 cells in the core. IL-1β positive cell number was increased slightly, but significantly in B10-transplanted rats. To explore further, IL-1β expression was silenced in B10 cells by transfecting mRNA specific siRNA, and then transplanted in MCAO rats. Immunostaining result showed that endoglin positive area was decreased in IL-1β-silenced B10 transplanted groups compared to nonsilenced-B10 transplanted groups. Interestingly, vessel-like structure appeared as early as 3 days after MCAO in IL-1β-silenced B10-transplanted group. Thus our results demonstrated that B10 cells increased angiogenesis in MCAO rat model, through the regulation of HIF-1α and VEGF expression, where IL-1β might play a role.
Collapse
Affiliation(s)
- Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Md Ahsanul Haque
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan.
| |
Collapse
|
73
|
Magkouta S, Kollintza A, Moschos C, Spella M, Skianis I, Pappas A, Vazakidou ME, Stathopoulos G, Kalomenidis I. Role of angiopoietins in mesothelioma progression. Cytokine 2018; 118:99-106. [PMID: 30201261 DOI: 10.1016/j.cyto.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Anti-angiogenic treatment has been recently shown to be clinically beneficial for mesothelioma patients. Angiopoietins-1 and -2 are key regulators of tumor angiogenesis. Ang-1 is mainly known to promote angiogenesis and vessel stability, while Ang-2 could serve as an antagonist of Ang-1 causing vessel regression and destabilization or enhance angiogenesis in a context-dependent manner. We hypothesized that Ang-1 would promote and Ang2 would halt experimental mesothelioma by affecting tumor angiogenesis. METHODS To examine the effects of angiopoietins in mesothelioma angiogenesis and in vivo growth we constructed Ang-1 or Ang-2 overexpressing AE17 and AB1 mesothelioma cells and implanted them in the respective syngeneic animals. We also explored the clinical relevance of our observations using the human tumoral mRNAseq data available in the TCGA database. RESULTS AND CONCLUSIONS Ang-1 promotes mesothelioma angiogenesis and growth while the effect of Ang-2 is context-dependent. Low Ang-1 levels in human mesotheliomas are associated with the epitheloid subtype. Tumors of high Ang-1, or concurrent high Ang-2 and VEGF expression present high PECAM-1 and CDH5 expression, markers of vascularity and vascular stability, respectively. Our results highlight the importance of angiopoietins in mesothelioma pathophysiology and pave the way for the clinical development of novel anti-angiogenic strategies.
Collapse
Affiliation(s)
- Sophia Magkouta
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece.
| | - Androniki Kollintza
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece
| | - Magdalini Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
| | - Ioannis Skianis
- Applied Econometrics & Data Analysis, Department of Statistics, Athens University of Economic & Business, Athens, Greece
| | - Apostolos Pappas
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece
| | - Maria-Eleni Vazakidou
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece
| | - Georgios Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece; Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory", 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, 10675 Athens, Greece
| |
Collapse
|
74
|
Amin FZ, Yamashita T, Ohneda O. Deterioration of alveolar development in mice with both HIF-3α knockout and HIF-2α knockdown. BMC Res Notes 2018; 11:449. [PMID: 29986746 PMCID: PMC6038241 DOI: 10.1186/s13104-018-3563-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Earlier studies from our group using hypoxia-inducible factor 3α knockout mice showed impairments in lung remodeling and lung endothelial cells. Another research from our group demonstrated that impaired expression of hypoxia-inducible factor 2α induced compensatory expression of hypoxia-inducible factor 1α in hypoxia-inducible factor 2α knockdown mice. The present study uncovers more insights by extending the investigation, utilizing mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown. Results No mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown died immediately after birth. The mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown exhibited impaired alveolar sacs and lung alveolar structure and decreased endothelial cell numbers. Analysis of relative mRNA expression revealed depressed expressions of hypoxia-inducible factor 1α, vascular cell adhesion molecule 1, vascular endothelial cadherin, angiopoietin 2, Tie-2, and vascular endothelial growth factor in the lungs of mice with both hypoxia-inducible factor 3α knockout and hypoxia-inducible factor 2α knockdown compared to that in wild-type mice. Further analysis is needed to elucidate the impaired development occurred in the lung endothelial cells.
Collapse
Affiliation(s)
- Firman Zulkifli Amin
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| | - Toshiharu Yamashita
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Osamu Ohneda
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| |
Collapse
|
75
|
Coelho AL, Gomes MP, Catarino RJ, Rolfo C, Lopes AM, Medeiros RM, Araújo AM. Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches? Oncotarget 2018; 8:39795-39804. [PMID: 26950275 PMCID: PMC5503654 DOI: 10.18632/oncotarget.7794] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The critical role of angiogenesis in tumor development makes its inhibition a valuable new approach in therapy, rapidly making anti-angiogenesis a major focus in research. While the VEGF/VEGFR pathway is the main target of the approved anti-angiogenic molecules in NSCLC treatment, the results obtained are still modest, especially due to resistance mechanisms. Accumulating scientific data show that vessel co-option is an alternative mechanism to angiogenesis during tumor development in well-vascularized organs such as the lungs, where tumor cells highjack the existing vasculature to obtain its blood supply in a non-angiogenic fashion. This can explain the low/lack of response to current anti-angiogenic strategies. The same principle applies to lung metastases of other primary tumors. The exact mechanisms of vessel co-option need to be further elucidated, but it is known that the co-opted vessels regress by the action of Angiopoietin-2 (Ang-2), a vessel destabilizing cytokine expressed by the endothelial cells of the pre-existing mature vessels. In the absence of VEGF, vessel regression leads to tumor cell loss and hypoxia, with a subsequent switch to a neoangiogenic phenotype by the remaining tumor cells. Unravelling the vessel co-option mechanisms and involved players may be fruitful for numerous reasons, and the particularities of this form of vascularization should be carefully considered when planning anti-angiogenic interventions or designing clinical trials for this purpose. In view of the current knowledge, rationale for therapeutic approaches of dual inhibition of Ang-2 and VEGF are swiftly gaining strength and may serve as a launchpad to more successful NSCLC anti-vascular treatments.
Collapse
Affiliation(s)
- Ana Luísa Coelho
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Mónica Patrícia Gomes
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel Jorge Catarino
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Christian Rolfo
- Phase I, Early Clinical Trials Unit, Antwerp University Hospital, Edegem, Belgium.,Centre of Oncological Research (CORE), Antwerp University, Edegem, Belgium
| | - Agostinho Marques Lopes
- Faculdade de Medicina, University of Porto, Porto, Portugal.,Centro Hospitalar de S. João, Pulmonology Department, Porto, Portugal
| | - Rui Manuel Medeiros
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Liga Portuguesa Contra o Cancro (NRNorte), Research Department, Porto, Portugal
| | - António Manuel Araújo
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Centro Hospitalar do Porto, Medical Oncology Department, Porto, Portugal
| |
Collapse
|
76
|
Magkouta S, Pappas A, Pateras IS, Kollintza A, Moschos C, Vazakidou ME, Karavana V, Gorgoulis VG, Kalomenidis I. Targeting Tie-2/angiopoietin axis in experimental mesothelioma confers differential responses and raises predictive implications. Oncotarget 2018; 9:21783-21796. [PMID: 29774102 PMCID: PMC5955153 DOI: 10.18632/oncotarget.25004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is resistant to currently used treatment. Angiopoieitn-1 directly promotes mesothelioma cell growth in a Tie-2-dependent fashion. Angiopoietin/Tie-2 axis may thus be valid targets for therapeutic interventions against mesothelioma. We hypothesized that a soluble angiopoietin inhibitor (Murine Tek-deltaFc) would halt mesothelioma progression in vivo by enhancing mesothelioma cell proliferation and inhibiting tumor angiogenesis. Our hypothesis was challenged on two syngeneic mesothelioma in vivo models (AB1 cells-Balb/c mice and AE17 cells-C57BL/6 mice. Even though both mesothelioma cell lines express the Angiopoietin-1/-2 and Tie-2, murine Tek-deltaFc hampered AB1 but not AE17 mesothelioma growth in vivo by enhancing tumor cell apoptosis and limiting tumor angiogenesis. Neither angiopoietins (Angs)-1 and -2 nor the inhibitor affected mesothelioma cell growth in vitro. AB1 (responding) tumors were more vascularized and displayed higher endothelial Tie-2 and lower tumor Ang-1 expression than the (non-responding) AE17 tumors. Angiopoietins-1 and -2 are expressed in tumors and pleural cavity of mesothelioma patients demonstrating the clinical relevance of our experimental observations. In conclusion, disrupting Ang-Tie-2 signaling limits mesothelioma angiogenesis and halts tumor progression. Tumor vascularity, endothelial Tie-2 expression and tumor Ang-1 expression may predict mesothelioma response to Tek-deltaFc.
Collapse
Affiliation(s)
- Sophia Magkouta
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Apostolos Pappas
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, GR-11527, Greece
| | - Androniki Kollintza
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Charalampos Moschos
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Maria-Eleni Vazakidou
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Vasiliki Karavana
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, GR-11527, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, GR-11527, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M20 4QL, UK
| | - Ioannis Kalomenidis
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, 10675, Greece
| |
Collapse
|
77
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
78
|
Wright JK, Hayford K, Tran V, Al Kibria GM, Baqui A, Manajjir A, Mahmud A, Begum N, Siddiquee M, Kain KC, Farzin A. Biomarkers of endothelial dysfunction predict sepsis mortality in young infants: a matched case-control study. BMC Pediatr 2018; 18:118. [PMID: 29571293 PMCID: PMC5866512 DOI: 10.1186/s12887-018-1087-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/07/2018] [Indexed: 02/15/2023] Open
Abstract
Background Reducing death due to neonatal sepsis is a global health priority, however there are limited tools to facilitate early recognition and treatment. We hypothesized that measuring circulating biomarkers of endothelial function and integrity (i.e. Angiopoietin-Tie2 axis) would identify young infants with sepsis and predict their clinical outcome. Methods We conducted a matched case-control (1:3) study of 98 young infants aged 0–59 days of life presenting to a referral hospital in Bangladesh with suspected sepsis. Plasma levels of Ang-1, Ang-2, sICAM-1, and sVCAM-1 concentrations were measured at admission. The primary outcome was mortality (n = 18); the secondary outcome was bacteremia (n = 10). Results Ang-2 concentrations at presentation were higher among infants who subsequently died of sepsis compared to survivors (aOR 2.50, p = 0.024). Compared to surviving control infants, the Ang-2:Ang-1 ratio was higher among infants who died (aOR 2.29, p = 0.016) and in infants with bacteremia (aOR 5.72, p = 0.041), and there was an increased odds of death across Ang-2:Ang-1 ratio tertiles (aOR 4.82, p = 0.013). Conclusions This study provides new evidence linking the Angiopoietin-Tie2 pathway with mortality and bacteremia in young infants with suspected sepsis. If validated in additional studies, markers of the angiopoietin-Tie2 axis may have clinical utility in risk stratification of infants with suspected sepsis. Electronic supplementary material The online version of this article (10.1186/s12887-018-1087-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Korol Wright
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kyla Hayford
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Tran
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gulam Muhammed Al Kibria
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Abdullah Baqui
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Manajjir
- Department of Pediatrics, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| | - Arif Mahmud
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nazma Begum
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mashuk Siddiquee
- Dhaka Shishu (Children's) Hospital, Sher-E-Bangla Nagar, Dhaka, Bangladesh
| | - Kevin C Kain
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Azadeh Farzin
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. .,Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
79
|
Abstract
Immunotherapies have revolutionized medical oncology following the remarkable and, in some cases, unprecedented outcomes observed in certain groups of patients with cancer. Combination with other therapeutic modalities, including anti-angiogenic agents, is one of the many strategies currently under investigation to improve the response rates and duration of immunotherapies. Such a strategy might seem counterintuitive given that anti-angiogenic agents can increase tumour hypoxia and reduce the number of blood vessels within tumours. Herein, we review the additional effects mediated by drugs targeting VEGF-dependent signalling and other pathways, such as those mediated by angiopoietin 2 or HGF, which might increase the efficacy of immunotherapies. In addition, we discuss the seldom considered possibility that immunotherapies, and immune-checkpoint inhibitors in particular, might increase the efficacy of anti-angiogenic or other types of antivascular therapies and/or promote changes in the tumour vasculature. In short, we propose that interactions between both therapeutic modalities could be considered a 'two-way street'.
Collapse
|
80
|
La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, Qu X, Adams RH, Baldwin HS, Savant S, Augustin HG. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest 2018; 128:834-845. [PMID: 29355844 DOI: 10.1172/jci94674] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
The endothelial tyrosine kinase receptor Tie1 remains poorly characterized, largely owing to its orphan receptor status. Global Tie1 inactivation causes late embryonic lethality, thereby reflecting its importance during development. Tie1 also plays pivotal roles during pathologies such as atherosclerosis and tumorigenesis. In order to study the contribution of Tie1 to tumor progression and metastasis, we conditionally deleted Tie1 in endothelial cells at different stages of tumor growth and metastatic dissemination. Tie1 deletion during primary tumor growth in mice led to a decrease in microvessel density and an increase in mural cell coverage with improved vessel perfusion. Reduced angiogenesis and enhanced vascular normalization resulted in a progressive increase of intratumoral necrosis that caused a growth delay only at later stages of tumor progression. Concomitantly, surgical removal of the primary tumor decreased the number of circulating tumor cells, reduced metastasis, and prolonged overall survival. Additionally, Tie1 deletion in experimental murine metastasis models prevented extravasation of tumor cells into the lungs and reduced metastatic foci. Taken together, the data support Tie1 as a therapeutic target by defining its regulatory functions during angiogenesis and vascular abnormalization and identifying its role during metastasis.
Collapse
Affiliation(s)
- Silvia La Porta
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lise Roth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Munich, Germany
| | - Carleen Spegg
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Benjamin Schieb
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xianghu Qu
- Department of Pediatrics, Division of Cardiology, and.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - H Scott Baldwin
- Department of Pediatrics, Division of Cardiology, and.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Soniya Savant
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW As a subset of the organism-wide reaction to severe infection, the host vascular response has received increasing attention in recent years. The transformation that small blood vessels undergo to facilitate the clearance of pathogens may become harmful to the host if it occurs too broadly or if it is sustained too long. Adverse clinical manifestations of leaky and inflamed blood vessels include edema impairing the function of critical organs and circulatory shock. RECENT FINDINGS The study suggests that this host vascular response may be both measurable and potentially targetable. Tie2 is a receptor tyrosine kinase (RTK) heavily enriched in the vascular endothelium whose tonic signaling actively maintains vascular quiescence. When Tie2 becomes inactivated, important molecular brakes are released in the endothelium, which in turn potentiate inflammation and vascular leakage. The ligands of Tie2, Angiopoietin-1 and Angiopoietin-2, regulate its activation status. Genetic and molecular studies spanning thousands of humans link Tie2 and imbalance of the Angiopoietins to major adverse clinical events arising from bacterial sepsis, other severe infections, and even acute sterile inflammation. SUMMARY The Tie2 signaling axis may constitute a molecular switch in systemic inflammation that can be measured and manipulated to target the host vascular response therapeutically.
Collapse
|
82
|
Monickaraj F, McGuire P, Das A. Cathepsin D plays a role in endothelial-pericyte interactions during alteration of the blood-retinal barrier in diabetic retinopathy. FASEB J 2017; 32:2539-2548. [PMID: 29263022 DOI: 10.1096/fj.201700781rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inflammation plays an important role in the pathogenesis of diabetic retinopathy. We have previously demonstrated the effect of cathepsin D (CD) on the mechanical disruption of retinal endothelial cell junctions and increased vasopermeability, as well as increased levels of CD in retinas of diabetic mice. Here, we have also examined the effect of CD on endothelial-pericyte interactions, as well as the effect of dipeptidyl peptidase-4 (DPP4) inhibitor on CD in endothelial-pericyte interactions in vitro and in vivo. Cocultured cells that were treated with pro-CD demonstrated a significant decrease in the expression of platelet-derived growth factor receptor-β, a tyrosine kinase receptor that is required for pericyte cell survival; N-cadherin, the key adherens junction protein between endothelium and pericytes; and increases in the vessel destabilizing agent, angiopoietin-2. The effect was reversed in cells that were treated with DPP4 inhibitor along with pro-CD. With pro-CD treatment, there was a significant increase in the phosphorylation of the downstream signaling protein, PKC-α, and Ca2+/calmodulin-dependent protein kinase II in endothelial cells and pericytes, which disrupts adherens junction structure and function, and this was significantly reduced with DPP4 inhibitor treatment. Increased CD levels, vasopermeability, and alteration in junctional-related proteins were observed in the retinas of diabetic rats, which were significantly changed with DPP4 inhibitor treatment. Thus, DPP4 inhibitors may be used as potential adjuvant therapeutic agents to treat increased vascular leakage observed in patients with diabetic macular edema.-Monickaraj, F., McGuire, P., Das, A. Cathepsin D plays a role in endothelial-pericyte interactions during alteration of the blood-retinal barrier in diabetic retinopathy.
Collapse
Affiliation(s)
- Finny Monickaraj
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Paul McGuire
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Arup Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
83
|
Kenig-Kozlovsky Y, Scott RP, Onay T, Carota IA, Thomson BR, Gil HJ, Ramirez V, Yamaguchi S, Tanna CE, Heinen S, Wu C, Stan RV, Klein JD, Sands JM, Oliver G, Quaggin SE. Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. J Am Soc Nephrol 2017; 29:1097-1107. [PMID: 29237738 DOI: 10.1681/asn.2017090962] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.
Collapse
Affiliation(s)
- Yael Kenig-Kozlovsky
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rizaldy P Scott
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tuncer Onay
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Isabel Anna Carota
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Benjamin R Thomson
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hyea Jin Gil
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Veronica Ramirez
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shinji Yamaguchi
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christine E Tanna
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefan Heinen
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Christine Wu
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Radu V Stan
- Departments of Biochemistry and Cell Biology and.,Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and
| | - Janet D Klein
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeff M Sands
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Guillermo Oliver
- Division of Nephrology and Hypertension and.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susan E Quaggin
- Division of Nephrology and Hypertension and .,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
84
|
Pelzer N, Bijkerk R, Reinders ME, van Zonneveld AJ, Ferrari MD, van den Maagdenberg AM, Eikenboom J, Terwindt GM. Circulating Endothelial Markers in Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke 2017; 48:3301-3307. [DOI: 10.1161/strokeaha.117.018556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Nadine Pelzer
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Roel Bijkerk
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Marlies E.J. Reinders
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Anton Jan van Zonneveld
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Michel D. Ferrari
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Arn M.J.M. van den Maagdenberg
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Jeroen Eikenboom
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| | - Gisela M. Terwindt
- From the Department of Neurology (N.P., M.D.F., A.M.J.M.v.d.M., G.M.T.), Department of Internal Medicine (Nephrology) (R.B., M.E.J.R., A.J.v.Z.), Einthoven Laboratory for Vascular and Regenerative Medicine (R.B., A.J.v.Z., J.E.), Department of Human Genetics (A.M.J.M.v.d.M.), and Department of Internal Medicine, Section Thrombosis and Hemostasis (J.E.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
85
|
Gutbier B, Jiang X, Dietert K, Ehrler C, Lienau J, Van Slyke P, Kim H, Hoang VC, Maynes JT, Dumont DJ, Gruber AD, Weissmann N, Mitchell TJ, Suttorp N, Witzenrath M. Vasculotide reduces pulmonary hyperpermeability in experimental pneumococcal pneumonia. Crit Care 2017; 21:274. [PMID: 29132435 PMCID: PMC5683375 DOI: 10.1186/s13054-017-1851-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/28/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality worldwide. Despite effective antimicrobial therapy, CAP can induce pulmonary endothelial hyperpermeability resulting in life-threatening lung failure due to an exaggerated host-pathogen interaction. Treatment of acute lung injury is mainly supportive because key elements of inflammation-induced barrier disruption remain undetermined. Angiopoietin-1 (Ang-1)-mediated Tie2 activation reduces, and the Ang-1 antagonist Ang-2 increases, inflammation and endothelial permeability in sepsis. Vasculotide (VT) is a polyethylene glycol-clustered Tie2-binding peptide that mimics the actions of Ang-1. The aim of our study was to experimentally test whether VT is capable of diminishing pneumonia-induced lung injury. METHODS VT binding and phosphorylation of Tie2 were analyzed using tryptophan fluorescence spectroscopy and phospho-Tie-2 enzyme-linked immunosorbent assay. Human and murine lung endothelial cells were investigated by immunofluorescence staining and electric cell-substrate impedance sensing. Pulmonary hyperpermeability was quantified in VT-pretreated, isolated, perfused, and ventilated mouse lungs stimulated with the pneumococcal exotoxin pneumolysin (PLY). Furthermore, Streptococcus pneumoniae-infected mice were therapeutically treated with VT. RESULTS VT showed dose-dependent binding and phosphorylation of Tie2. Pretreatment with VT protected lung endothelial cell monolayers from PLY-induced disruption. In isolated mouse lungs, VT decreased PLY-induced pulmonary permeability. Likewise, therapeutic treatment with VT of S. pneumoniae-infected mice significantly reduced pneumonia-induced hyperpermeability. However, effects by VT on the pulmonary or systemic inflammatory response were not observed. CONCLUSIONS VT promoted pulmonary endothelial stability and reduced lung permeability in different models of pneumococcal pneumonia. Thus, VT may provide a novel therapeutic perspective for reduction of permeability in pneumococcal pneumonia-induced lung injury.
Collapse
Affiliation(s)
- Birgitt Gutbier
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiaohui Jiang
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Kristina Dietert
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Carolin Ehrler
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Jasmin Lienau
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Paul Van Slyke
- Vasomune Therapeutics, 661 University Avenue, Suite 465, Toronto, ON M5G 1M1 Canada
| | - Harold Kim
- Vasomune Therapeutics, 661 University Avenue, Suite 465, Toronto, ON M5G 1M1 Canada
| | - Van C. Hoang
- Vasomune Therapeutics, 661 University Avenue, Suite 465, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Departments of Anesthesia and Biochemistry, University of Toronto, Toronto, ON M5S 2J7 Canada
| | - Daniel J. Dumont
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, 35392 Germany
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Norbert Suttorp
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
86
|
E Silva FB, Carrijo-Carvalho LC, Teixeira A, de Freitas D, Carvalho FRDS. Toxicity of Intracameral Injection of Fourth-Generation Fluoroquinolones on the Corneal Endothelium. Cornea 2017; 35:1631-1637. [PMID: 27490050 DOI: 10.1097/ico.0000000000000967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The aim of this study was to compare the cellular susceptibility patterns and morphologic changes in the corneal endothelium associated with the use of fourth-generation fluoroquinolones. METHOD Endothelial susceptibility was assessed through intracameral injection of besifloxacin, gatifloxacin, and moxifloxacin. Human umbilical vein endothelial cells (HUVECs) were used as the standard cellular lineage to assess the quantitative toxicity of each antibiotic solution. Qualitative changes in the morphologic character of the corneal structure and the endothelial layer were generated using a combination of ex vivo and in vivo assays. Experimental assays were conducted in triplicate, and the results were statistically analyzed. RESULTS At 1 hour of exposure, all HUVECs exposed to antibiotics showed viability above 85%, after 3 hours of exposure to besifloxacin, gatifloxacin, and moxifloxacin, the percentages of viable cells were 68.3 ± 4.0 (P < 0.001), 90.7 ± 4.2 (P < 0.05), and 93.3 ± 1.5 (P > 0.05), respectively. All fluoroquinolones tested showed toxicity to HUVECs, resulting in significant (P < 0.001) loss of cellular viability after 24 hours of drug exposure. Giant endothelial cells were observed in animals treated with the 3 fluoroquinolones in contrast to the absence of these abnormal cells in the untreated group. Early cellular detachment was seen in the endothelial layer after exposure to gatifloxacin and moxifloxacin. CONCLUSIONS We concluded that injection of fourth-generation fluoroquinolones in the aqueous humor did not adversely affect the corneal endothelium. However, these results suggested that prophylactic intracameral injection of besifloxacin, gatifloxacin, or moxifloxacin, if needed, should be administered as a last therapeutic resource in clinical practice, with careful and constant monitoring of corneal endothelium.
Collapse
Affiliation(s)
- Francisco Bandeira E Silva
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
87
|
Nowicki M, Wierzbowska A, Małachowski R, Robak T, Grzybowska-Izydorczyk O, Pluta A, Szmigielska-Kapłon A. VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment. Ann Hematol 2017; 96:2103-2112. [PMID: 28956132 DOI: 10.1007/s00277-017-3133-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
As a site of complicated interactions among cytokines, bone marrow niche has been the subject of many scientific studies, mainly in the context of the proteins influencing damage or recovery of endothelium after allogeneic hematopoietic stem cell transplantation (HSCT). In this study, we aimed at exploring mutual correlations of bone marrow niche cytokines involved in the homing and mobilization of hematopoietic stem cells, as well as in angiogenesis. The aim of our study was to evaluate levels of cytokines: VEGF, angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), and matrix metalloproteinase 9 (MMP-9) during autologous HSCT and to examine their influence on hematological recovery. Forty-three patients with hematological malignancies (33 multiple myeloma, 10 lymphoma) were enrolled in the study. Plasma samples were taken at five time points: before conditioning treatment (BC), on transplantation day (0) and 7 (+7), 14 (+14), and 21 (+21) days after HSCT. The cytokine levels were evaluated by ELISA method. Our study revealed decreased levels of VEGF, ANGPT1, and MMP-9 in the early post-transplant period as compared to the baseline (BC). ANGPT2 was decreased after conditioning treatment, but tended to increase from day +7. On day +7, positive correlations between ANGPT1 level as well as MMP-9 and the time to engraftment were observed. As opposite to ANGPT1, negative correlation between ANGPT2 level on day +7 after HSCT and the time to hematological recovery was noticed. Our study suggests that investigated cytokines are an important part of bone marrow environment and significantly influence the time to engraftment after HSCT.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.
| | - Agnieszka Wierzbowska
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Roman Małachowski
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Olga Grzybowska-Izydorczyk
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Anna Szmigielska-Kapłon
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
88
|
Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget 2017; 8:20394-20409. [PMID: 28099912 PMCID: PMC5386771 DOI: 10.18632/oncotarget.14610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Despite the advent of many therapeutic agents, such as bortezomib and lenalidomide that have significantly improved the overall survival, multiple myeloma remains an incurable disease. Failure to cure is multifactorial and can be attributed to the underlying genetic heterogeneity of the cancer and to the surrounding micro-environment. Understanding the mutual interaction between myeloma cells and micro-environment may lead to the development of novel treatment strategies able to eradicate this disease. In this review we discuss the principal molecules involved in the micro-environment network in multiple myeloma and the currently available therapies targeting them.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Mian
- Department of Hematology and Center of Bone Marrow Transplantation, Hospital of Bolzano, Bolzano/Bozen, Italy.,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
89
|
Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol Med Rep 2017; 16:4393-4402. [PMID: 28791360 PMCID: PMC5646999 DOI: 10.3892/mmr.2017.7179] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumour angiogenesis, VEGF, Notch and Ang signalling, have been identified to block the vascular supply to the tumour. However, phenomena of toxicity, development of primary and secondary resistance and hypoxia significantly blunted the effects of anti-angiogenic drugs in several tumour types. Thus, different strategies aimed to overcome these problems are imperative. The focus of the present review was some principal 'alternative' approaches to classic antiangiogenic therapies, including the cyclooxygenase-2 (COX-2) blockade, the use of oligonucleotide complementary to the miRNA to compete with the mRNA target (antimiRs) and the inhibition of matrix metalloproteinases (MMPs). The role of blood soluble VEGFA as a predictive biomarker during antiangiogenic therapy in gastric, ovarian and colorectal cancer was also examined.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
90
|
Kim H, Ahn TS, Kim CJ, Bae SB, Kim HJ, Lee CS, Kim TH, Im J, Lee SH, Son MW, Lee MS, Baek MJ, Jeong D. Oncogenic function of angiopoietin-2 in vitro and its modulation of tumor progression in colorectal carcinoma. Oncol Lett 2017; 14:553-560. [PMID: 28693205 PMCID: PMC5494651 DOI: 10.3892/ol.2017.6203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-2 (Ang-2) has been investigated in cancer primarily in terms of its angiogenic function, and its role as an oncogene has yet to be elucidated. The current study hypothesized that Ang-2 may be an oncogene and have a function in tumor progression. An investigation of the function of Ang-2 in the LoVo colorectal cancer (CRC) cell line in vitro, which expresses a high level of Ang-2, was performed by knocking down endogenous expression with a targeted short hairpin RNA. The aggressive phenotypic effects of Ang-2 on experimental and control group cells were assessed using cell proliferation, migration and invasion assays. The association between Ang-2 expression levels and clinicopathological factors was evaluated in 415 CRC tissues using immunohistochemistry. Suppressing Ang-2 expression decreased cellular proliferation, invasion and migration in an in vitro study. Ang-2 overexpression was observed in 46% of patients with CRC and was significantly associated with pT (P=0.048), pN (P<0.001), venous invasion (P=0.023), lymphatic invasion (P<0.001) and tumor-node-metastasis stage (P=0.022). Furthermore, Ang-2 overexpression was an independent prognostic factor in pN stages 1 and 2. These results reveal that Ang-2 may be an oncogene in colorectal carcinogenesis and its expression may exert aggressive phenotypic effects during tumor progression. In addition, Ang-2 expression may serve as a prognostic marker and a potential drug target.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Tae Sung Ahn
- Department of Surgery, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Chang-Jin Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Sang Byung Bae
- Department of Oncology, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Han Jo Kim
- Department of Oncology, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Chang-Seuk Lee
- Department of Chemistry, Soonchunhyang University, Shinchang-myeon, Asansi, Chungcheongnam-do 336-745, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Shinchang-myeon, Asansi, Chungcheongnam-do 336-745, Republic of Korea
| | - Jungkyun Im
- Department of Nanochemical Engineering, Soonchunhyang University, Shinchang-myeon, Asansi, Chungcheongnam-do 336-745, Republic of Korea
| | - Sang Hun Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Myoung Won Son
- Department of Surgery, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Moon Soo Lee
- Department of Surgery, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Moo Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan, Chungcheongnam-do 330-721, Republic of Korea
| |
Collapse
|
91
|
Moritz F, Schniering J, Distler JHW, Gay RE, Gay S, Distler O, Maurer B. Tie2 as a novel key factor of microangiopathy in systemic sclerosis. Arthritis Res Ther 2017; 19:105. [PMID: 28545512 PMCID: PMC5445339 DOI: 10.1186/s13075-017-1304-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The angiopoietin(Ang)/Tie2 system is a key regulator of vascular biology. The expression of membrane bound (mb) Tie2 and Ang-1 ensures vessel stability, whereas Ang-2, inducible by vascular endothelial growth factor (VEGF), hypoxia, and inflammation, acts as an antagonist. Tie2 signalling is also attenuated by soluble Tie2 (sTie2), the extracellular domain of the receptor, which is shed upon stimulation with VEGF. Herein, we investigate the role of Ang/Tie2 in the peripheral vasculopathy in systemic sclerosis (SSc) including animal models. METHODS The expression of Ang-1/-2 and Tie2 in skin/serum of SSc patients was compared with healthy controls by immunohistochemistry (IHC)/ELISA. Expression of Ang/Tie2 was analysed in different animal models: VEGF transgenic (tg) mice, hypoxia model, bleomycin-induced skin fibrosis, and tight skin 1 (TSK1) mice. RESULTS In SSc, dermal microvessels abundantly expressed Ang-2, but not Ang-1 compared with healthy controls. The percentage of mbTie2+ microvessels was profoundly decreased whereas the levels of sTie2 were increased already in early disease. Both in skin and sera of SSc patients, the Ang1/2 ratio was reduced, being lowest in patients with digital ulcers indicating vessel destabilizing conditions. We next studied potential influencing factors in animal models. The VEGF tg mouse model, the hypoxia, and the inflammation-dependent bleomycin model all showed a similar dysregulation of Ang/Tie2 as in SSc, which did not apply for the non-inflammatory TSK1 model. CONCLUSION Peripheral microvasculopathy in SSc results from a complex dysregulation of angiogenic signalling networks including the VEGF and the Ang/Tie2 system. The profoundly disturbed Ang-/Tie-2 balance might represent an important target for vascular therapeutic approaches in SSc.
Collapse
Affiliation(s)
- Falk Moritz
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.,Department of Oncology, St. Georg Hospital, Leipzig, Germany
| | - Janine Schniering
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine 3, University Hospital, Erlangen, Germany
| | - Renate E Gay
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Steffen Gay
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.
| |
Collapse
|
92
|
Kang ML, Kim EA, Jeong SY, Im GI. Angiopoietin-2 Enhances Osteogenic Differentiation of Bone Marrow Stem Cells. J Cell Biochem 2017; 118:2896-2908. [PMID: 28214341 DOI: 10.1002/jcb.25940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/16/2017] [Indexed: 12/24/2022]
Abstract
Our previous studies revealed that co-transplantation of bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) can enhance bone regeneration and angiogenesis. However, it is unclear which genes are involved in the regulation of osteogenesis and/or angiogenesis during the co-culturing of BMSCs and ADSCs. The expression patterns of genes associated with osteogenesis and/or angiogenesis were analyzed in osteogenesis-induced BMSCs and ADSCs using an oligonucleotide microarray. Significant difference in the expression patterns of several genes were identified from hierarchical clustering and analyzed on co-cultured BMSCs and ADSCs. Angiopoietin-2 (ANGPT2) and activin receptor-like kinase-1 were significantly down-regulated in co-culture than culture of either BMSCs or ADSCs, while fibroblast growth factor-9 was significantly up-regulated in co-culture. The effect of ANGPT2 in osteogenesis-induced BMSCs was validated using recombinant protein and siRNA of ANGPT2. Treatment of the ANGPT2 protein significantly increased the expressions of osteogenic makers and the intensity of Alizarin red-S staining in BMSCs. Down-regulation of ANGPT2 significantly decreased the expression of osteogenic makers. The treatment of ANGPT2 protein to BMSCs induced significantly increased tube formation in Transwell-co-cultured human umbilical vein endothelial cells (HUVECs) compared with untreated control. ANGPT2 siRNA transfection showed the opposite effects. These results suggest that the treatment of ANGPT2 in BMSCs increase osteogenesis and angiogenesis in vitro, and that the enhancement of osteogenesis and angiogenesis in the co-cultured BMSCs and ADSCs seems to be mediated by a mechanism that makes the activation of ANGPT2 unnecessary. These observations provide the first evidence for positive regulation of osteogenesis by ANGPT2 in vitro. J. Cell. Biochem. 118: 2896-2908, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mi-Lan Kang
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Eun-Ah Kim
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Se-Young Jeong
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
93
|
Abstract
Systemic inflammation is a hallmark of commonly encountered diseases ranging from bacterial sepsis to sterile syndromes such as major trauma. Derangements in the host vasculature contribute to the cardinal manifestations of sepsis in profound ways. Recent studies of control pathways regulating the vascular endothelium have illuminated how this single cell layer toggles between quiescence and activation to affect the development of shock and multiorgan dysfunction. This article focuses on one such control pathway, the Tie2 receptor and its ligands the angiopoietins, to describe a growing body of genetic, biochemical, mechanistic, and human studies that implicate Tie2 as a critical switch. In health, activated Tie2 maintains the endothelium in a quiescent state characterized by dynamic barrier function and antiadhesion against circulating leukocytes. In sepsis and related diseases, expression of the angiopoietins becomes markedly imbalanced and Tie2 signaling is greatly attenuated. These rapid molecular changes potentiate pathophysiologic responses throughout the body, resulting in injurious vascular leakage and organ inflammation. The Tie2 axis, therefore, may be a promising avenue for future translational studies.
Collapse
Affiliation(s)
- Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
94
|
The role of laser Doppler flowmetry tests, serum angiopoietin-2, asymmetric and symmetric dimethylarginine to predict outcome in chronic kidney disease. J Hypertens 2017; 35:1109-1118. [DOI: 10.1097/hjh.0000000000001256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
95
|
Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant 2017; 7:117-128. [PMID: 28507914 PMCID: PMC5409911 DOI: 10.5500/wjt.v7.i2.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The intra-islet microvasculature is a critical interface between the blood and islet endocrine cells governing a number of cellular and pathophysiological processes associated with the pancreatic tissue. A growing body of evidence indicates a strong functional and physical interdependency of β-cells with endothelial cells (ECs), the building blocks of islet microvasculature. Intra-islet ECs, actively regulate vascular permeability and appear to play a role in fine-tuning blood glucose sensing and regulation. These cells also tend to behave as “guardians”, controlling the expression and movement of a number of important immune mediators, thereby strongly contributing to the physiology of islets. This review will focus on the molecular signalling and crosstalk between the intra-islet ECs and β-cells and how their relationship can be a potential target for intervention strategies in islet pathology and islet transplantation.
Collapse
|
96
|
Aktaş SH, Akbulut Yazici HO, Zengin N, Akgün HN, Üstüner Z, Içli F. A new angiogenesis prognostic index with VEGFA, PlGF, and angiopoietin1 predicts survival in patients with advanced gastric cancer. Turk J Med Sci 2017; 47:399-406. [PMID: 28425270 DOI: 10.3906/sag-1509-80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/05/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM The role of angiogenic factors in gastric cancer is not clear. We aimed to assess the role of vascular endothelial growth factor A (VEGFA), angiopoietin 1 (Ang-1), and placental growth factor (PlGF) in the prognosis of patients with advanced gastric cancer. MATERIALS AND METHODS Thirty consecutive patients treated with a modified DCF (docetaxel, cisplatin, and fluorouracil) regimen were included in the study. The plasma VEGFA, Ang-1, and PlGF levels of the patients before treatment and following two cycles of chemotherapy were measured and evaluated as prognostic factors. RESULTS Poor performance status and lower Ang-1 levels were correlated with poor overall survival (OS). No significant correlation between VEGFA or PlGF and OS was found. An angiogenesis prognostic index (API) based on the levels of VEGFA, Ang-1, and PlGF was found to be highly correlated with OS. Performance status and API were found as independent prognostic factors for OS. Furthermore, a decrease in VEGFA by 25% from the pretreatment level was also found as a prognostic factor for OS independent of response to DCF regimen. CONCLUSION Our results support the use of the new API including VEGFA, Ang-1, and PlGF levels in patients with advanced gastric cancer as a predictor of survival.
Collapse
Affiliation(s)
- Sedef Hande Aktaş
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Nurullah Zengin
- Department of Medical Oncology, Numune Hospital, Ankara, Turkey
| | - Halime Nalan Akgün
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Zeki Üstüner
- Department of Medical Oncology, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| | - Fikri Içli
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
97
|
Bohn KA, Adkins CE, Nounou MI, Lockman PR. Inhibition of VEGF and Angiopoietin-2 to Reduce Brain Metastases of Breast Cancer Burden. Front Pharmacol 2017; 8:193. [PMID: 28443023 PMCID: PMC5387068 DOI: 10.3389/fphar.2017.00193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
For metastases in the central nervous system, angiogenesis enhances metastatic potential and promotes progression. Primary factors which drive vessel growth are vascular endothelial growth factor (VEGF) and angiopoietin-2. Preclinical models show inhibition of either factor reduces metastases spread and inhibits growth. This work sets out to answer two questions in a preclinical mouse model. First, whether the combined inhibition of VEGF and angiopoietin-2, reduces passive permeability and limits drug uptake into brain metastases; and second, whether this inhibition reduces metastases burden in brain. We observed combinatorial inhibition of VEGF and angiopoietin-2, decreased (p < 0.05) angiogenesis and vascular branching in an aortic ring assay and decreased (p < 0.05) endothelial wound closure times. Using a brain metastases of breast cancer model (induced by intracardiac injections of brain seeking MDA-MB-231Br cells or 4T1Br cells), we observed, similar to VEGF, angiopoetin-2 expression correlates to increased angiogenesis (p < 0.05) and increased lesion permeability. To determine efficacy, animals were administered bevacizumab plus L1-10 (angiopoietin inhibitor) twice per week until neurological symptoms developed. Lesion permeability significantly decreased by ∼50% (p < 0.05) compared to untreated lesions, but remained ∼25% greater (p < 0.0%) than brain. In subsequent experiments, animals were administered similar regimens but sacrificed on day 32. The number of metastatic lesions developed was significantly (p < 0.001) reduced in the bevacizumab group (56%) and combination group (86%). Lesions’ size was reduced in bevacizumab treated lesions (∼67%) and bevacizumab and L1-10 treated lesions (∼78%) developing area < 0.5 mm2. In summary, combinatorial inhibition of VEGF and angiopoietin reduces lesion permeability and brain metastatic burden.
Collapse
Affiliation(s)
- Kaci A Bohn
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, AmarilloTX, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Harding University, SearcyAR, USA
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, AmarilloTX, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, MorgantownWV, USA.,Department of Pharmaceutical Sciences, South University, SavannahGA, USA
| | - Mohamed I Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, AmarilloTX, USA.,Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, OakwoodVA, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, HartfordCT, USA
| | - Paul R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, AmarilloTX, USA
| |
Collapse
|
98
|
Serum Concentrations of Angiopoietin-2 and Soluble fms-Like Tyrosine Kinase 1 (sFlt-1) Are Associated with Coagulopathy among Patients with Acute Pancreatitis. Int J Mol Sci 2017; 18:ijms18040753. [PMID: 28368336 PMCID: PMC5412338 DOI: 10.3390/ijms18040753] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
In severe acute pancreatitis (SAP), systemic inflammation leads to endothelial dysfunction and activation of coagulation. Thrombotic disorders in acute pancreatitis (AP) include disseminated intravascular coagulation (DIC). Recently, angiopoietin-2 and soluble fms-like tyrosine kinase 1 (sFlt-1) were proposed as markers of endothelial dysfunction in acute states. Our aim was to assess the frequency of coagulation abnormalities in the early phase of AP and evaluate the relationships between serum angiopoietin-2 and sFlt-1 and severity of coagulopathy. Sixty-nine adult patients with AP were recruited: five with SAP, 15 with moderately severe AP (MSAP) and 49 with mild AP. Six patients were diagnosed with DIC according to International Society on Thrombosis and Haemostasis (ISTH) score. All patients had at least one abnormal result of routine tests of hemostasis (low platelet count, prolonged clotting times, decreased fibrinogen, and increased D-dimer). The severity of coagulopathy correlated with AP severity according to 2012 Atlanta criteria, bedside index of severity in AP and duration of hospital stay. D-dimers correlated independently with C-reactive protein and studied markers of endothelial dysfunction. Angiopoietin-2, D-dimer, and ISTH score were best predictors of SAP, while sFlt-1 was good predictor of MSAP plus SAP. In clinical practice, routine tests of hemostasis may assist prognosis of AP.
Collapse
|
99
|
Kim E, Na S, An B, Yang SR, Kim WJ, Ha KS, Han ET, Park WS, Lee CM, Lee JY, Lee SJ, Hong SH. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:161-168. [PMID: 28280409 PMCID: PMC5343049 DOI: 10.4196/kjpp.2017.21.2.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.
Collapse
Affiliation(s)
- Eunbi Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sunghun Na
- Department of Obstetrics & Gynecology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island 02912, US
| | - Ji Yoon Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Sanji University, Wonju 26339, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
100
|
Logothetidou A, De Spiegelaere W, Van den Broeck W, Vandecasteele T, Couck L, Simoens P, Cornillie P. Stereological and immunogold studies on TIE1 and TIE2 localization in glomeruli indicate angiopoietin signaling in podocytes. Micron 2017; 97:6-10. [PMID: 28288344 DOI: 10.1016/j.micron.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Abstract
Angiopoietins and their TIE receptors are important regulators of vascular stability and remodeling. These molecules are involved not only in the normal development of kidney glomeruli, but also in disease, thus making them promising targets for therapies. Although TIE receptors are mainly found in endothelial cells, some reports observed TIE2 expression in glomerular podocytes as well. This suggests a role of angiopoietins in the regulation of podocytes. In the present study, we aimed to map the subcellular localization of TIE receptors in metanephric glomeruli of fetal pigs using high-resolution immunogold electron microscopy and the relative labeling index stereological approach. TIE1 and TIE2 antibody labeling was detected on the abluminal side of endothelial cell membranes. In endothelial cells, 4.5% of TIE2 was observed close to cell-cell contacts and 11.9% of TIE2 was found in closely associated pairs, which suggests the presence of homodimers. Interestingly, both receptors were also expressed in podocyte foot processes indicating that TIE1 and TIE2 may play a similar role in podocytes as in endothelial cells.
Collapse
Affiliation(s)
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Tim Vandecasteele
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Liesbeth Couck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Paul Simoens
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|