51
|
Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:5-16. [DOI: 10.5507/bp.2013.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
|
52
|
Dai Y, Li W, Zhong M, Chen J, Liu Y, Cheng Q, Li T. Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic-ischemic encephalopathy. Brain Dev 2014; 36:228-240. [PMID: 23694759 DOI: 10.1016/j.braindev.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 02/26/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI)-induced perinatal encephalopathy is a major cause of acute mortality and chronic neurologic morbidities such as cerebral palsy, mental retardation, and epilepsy. As the essential transcription factor for the activation of hypoxia-inducible genes, hypoxia-inducible factor 1 alpha (HIF-1α) plays an important role in the pathophysiological response to the stress of HI brain damage. Whether HIF-1α activation promotes neuroprotection in HI tissues is controversial. METHODS The left common carotid artery of rats aged 7days was ligated under anesthesia. The pups were then exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2.5h. In the sham control group, the left common carotid artery was exposed but was not ligated or exposed to hypoxia. To assess the time window for effective treatment, the HIF-1α inducer cobalt chloride (CoCl2) was injected subcutaneously 1day before surgery, immediately or 1day after surgery. The brain tissues were harvested from the pups of each groups at 1, 2 and 7days after insult for HIF-1α protein ant its target genes expression and for investigating the injury. Morris water maze tests were performed at postnatal 7weeks. RESULTS HIF-1α protein levels and its target genes vascular endothelial growth factor, heme oxygenase-1, and insulin-like growth factor 1 were markedly increased after intraperitoneal injection of CoCl2 (60mg/kg). The target gene inducible nitric oxide synthase exhibited a biphasic time course. HI caused apoptosis and reduced capillary density, which were ameliorated by CoCl2. Both preconditioning with CoCl2 24h before HI and administration of CoCl2 24h after HI improved long-term reference memory compared with that in vehicle-injected littermate controls. Administration of CoCl2 immediately after HI did not improve spatial working memory. CONCLUSIONS CoCl2 activates HIF-1α and protects against brain damage in vivo. The time of administration could be used to manipulate the activity of HIF-1α pathways and promote recovery.
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, PR China
| | - Wendi Li
- Children's Nutritional Research Center, Key Laboratory of Developmental Diseases in Childhood of Education Ministry, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorder, Children's Hospital of Chongqing Medical University, PR China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jie Chen
- Children's Nutritional Research Center, Key Laboratory of Developmental Diseases in Childhood of Education Ministry, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorder, Children's Hospital of Chongqing Medical University, PR China
| | - Youxue Liu
- Children's Nutritional Research Center, Key Laboratory of Developmental Diseases in Childhood of Education Ministry, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorder, Children's Hospital of Chongqing Medical University, PR China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, PR China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, PR China; Children's Nutritional Research Center, Key Laboratory of Developmental Diseases in Childhood of Education Ministry, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorder, Children's Hospital of Chongqing Medical University, PR China.
| |
Collapse
|
53
|
Stem cell-based therapies for ischemic stroke. BIOMED RESEARCH INTERNATIONAL 2014; 2014:468748. [PMID: 24719869 PMCID: PMC3955655 DOI: 10.1155/2014/468748] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs), inducible pluripotent stem cells (iPSCs), neural stem cells (NSCs), and mesenchymal stem cell (MSCs) might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.
Collapse
|
54
|
Jeon ES, Shin JH, Hwang SJ, Moon GJ, Bang OY, Kim HH. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem Biophys Res Commun 2014; 444:581-7. [DOI: 10.1016/j.bbrc.2014.01.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/24/2023]
|
55
|
Lim HS, Joe YA. A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells. Biomol Ther (Seoul) 2014; 21:447-53. [PMID: 24404335 PMCID: PMC3879916 DOI: 10.4062/biomolther.2013.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/05/2022] Open
Abstract
Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.
Collapse
Affiliation(s)
- Hee-Suk Lim
- Cancer Research Institute and Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137- 701, Korea
| | - Young Ae Joe
- Cancer Research Institute and Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137- 701, Korea
| |
Collapse
|
56
|
Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 2013; 31:594-605. [PMID: 24012308 PMCID: PMC3825404 DOI: 10.1016/j.tibtech.2013.06.005] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
General trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, they have recently become the target of scrutiny over safety. The importance of trace elements in natural bone health is well documented. Ions, for example, lithium, zinc, magnesium, manganese, silicon, strontium, etc., have been shown to increase osteogenesis and neovascularization. Incorporation of dopants (trace metal ions) into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights the use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| | | | | | | |
Collapse
|
57
|
Park IH, Kim KH, Choi HK, Shim JS, Whang SY, Hahn SJ, Kwon OJ, Oh IH. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Exp Mol Med 2013; 45:e44. [PMID: 24071737 PMCID: PMC3789268 DOI: 10.1038/emm.2013.87] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022] Open
Abstract
With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations.
Collapse
Affiliation(s)
- In-Ho Park
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 2013; 247:25-38. [DOI: 10.1016/j.expneurol.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
59
|
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci 2013; 20:63. [PMID: 23985033 PMCID: PMC3765890 DOI: 10.1186/1423-0127-20-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/16/2022] Open
Abstract
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
60
|
Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 2013; 95:2246-56. [PMID: 23871834 DOI: 10.1016/j.biochi.2013.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden.
| | | |
Collapse
|
61
|
Muramatsu S, Tanaka S, Mogushi K, Adikrisna R, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, Nakayama K, Tanaka H, Yamaoka S, Arii S. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology 2013; 58:218-228. [PMID: 23447025 DOI: 10.1002/hep.26345] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies because of recurrence and/or metastasis even after curative resection. Emerging evidence suggests that tumor metastasis and recurrence might be driven by a small subpopulation of stemness cells, so-called cancer stem cells (CSCs). Previous investigations have revealed that glioma and breast CSCs exhibit intrinsically low proteasome activity and that breast CSCs also reportedly contain a lower reactive oxygen species (ROS) level than corresponding nontumorigenic cells. Here we visualized two stem cell features, low proteasome activity and low intracellular ROS, in HCC cells using two-color fluorescence activated cell sorting to isolate cells with stem cell features. These cells were then analyzed for their division behavior in normoxia and hypoxia, expression of stem cell markers, tumorigenicity, metastatic potential, specific gene expression signatures, and their clinical implications. A visualized small subpopulation of HCC cells demonstrated asymmetric divisions. Their remarkable tumorigenicity in nonobese diabetic/severe combined immunodeficient mice suggested the cancer initiation potential of these HCC CSCs. Comprehensive gene expression analysis revealed that chemokine-related genes were up-regulated in the CSCs subpopulation. Our identified HCC CSCs facilitated the migration of macrophages in vitro and demonstrated metastatic potential by way of recruitment of macrophages in vivo. In patients who undergo curative operation for HCC, the CSC-specific gene signature in the liver microenvironment significantly correlates with recurrence. CONCLUSION Based on these findings, the stem cell feature monitoring system proposed here is a promising tool to analyze the in vivo significance of CSC microenvironments in human HCCs.
Collapse
Affiliation(s)
- Shunsuke Muramatsu
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M, Ding X. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013; 8:e62703. [PMID: 23671625 PMCID: PMC3650042 DOI: 10.1371/journal.pone.0062703] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cell (MSC) administration is known to enhance the recovery of the kidney following injury. Here we tested the potential of hypoxic-preconditioned-MSC transplantation to enhance the efficacy of cell therapy on acute kidney injury (AKI) by improving MSC migration to the injured kidney. Cobalt was used as hypoxia mimetic preconditioning (HMP). MSC were subjected to HMP through 24 h culture in 200 µmol/L cobalt. Compared to normoxia cultured MSC (NP-MSC), HMP significantly increased the expression of HIF-1α and CXCR4 in MSC and enhanced the migration of MSC in vitro. This effect was lost when MSC were treated with siRNA targeting HIF-1α or CXCR4 antagonist. SPIO labeled MSC were administered to rats with I/R injury followed immediately by magnetic resonance imaging. Imaging clearly showed that HMP-MSC exhibited greater migration and a longer retention time in the ischemic kidney than NP-MSC. Histological evaluation showed more HMP-MSC in the glomerular capillaries of ischemic kidneys than in the kidneys receiving NP-MSC. Occasional tubules showed iron labeling in the HMP group, while no tubules had iron labeling in NP group, indicating the possibility of tubular transdifferentiation after HMP. These results were also confirmed by fluorescence microscopy study using CM-DiI labeling. The increased recruitment of HMP-MSC was associated with reduced kidney injury and enhanced functional recovery. This effect was also related to the increased paracrine action by HMP-MSC. Thus we suggest that by enhancing MSC migration and prolonging kidney retention, hypoxic preconditioning of MSC may be a useful approach for developing AKI cell therapy.
Collapse
Affiliation(s)
- Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XY)
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Liu
- Department of Nephrology, Hangzhou Hospital of TCM, Hangzhou, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaopeng Liu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew S. Greene
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Minyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XY)
| |
Collapse
|
63
|
Wang CH, Wu CC, Hsu SH, Liou JY, Li YW, Wu KK, Lai YK, Yen BL. The role of RhoA kinase inhibition in human placenta-derived multipotent cells on neural phenotype and cell survival. Biomaterials 2013; 34:3223-30. [DOI: 10.1016/j.biomaterials.2012.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/26/2012] [Indexed: 12/16/2022]
|
64
|
Wang Y, Yang J, Li H, Wang X, Zhu L, Fan M, Wang X. Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease. PLoS One 2013; 8:e54296. [PMID: 23342124 PMCID: PMC3546985 DOI: 10.1371/journal.pone.0054296] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into dopaminergic (DAergic) neurons, which is one of the major cell types damaged in Parkinson’s disease (PD). For this reason, MSCs are considered a potential cell source for PD therapy. It has been proved that hypoxia is involved in the proliferation and differentiation of stem cells. In this study, we investigated the effect of hypoxia on MSC proliferation and DAergic neuronal differentiation. Our results demonstrate that 3% O2 treatment can enhance rat MSC proliferation by upregulation of phosphorylated p38 MAPK and subsequent nuclear translocation of hypoxia inducible factor (HIF)-1α. During neural differentiation, 3% O2 treatment increases the expression of HIF-1α, phosphorylated ERK and p38 MAPK. These changes are followed by promotion of neurosphere formation and further DAergic neuronal differentiation. Furthermore, we explored the physiological function of hypoxia-induced DAergic neurons from human fetal MSCs by transplanting them into parkinsonian rats. Grafts induced with hypoxia display more survival of DAergic neurons and greater amelioration of behavioral impairments. Altogether, these results suggest that hypoxia can promote MSC proliferation and DAergic neuronal differentiation, and benefit for intrastriatal transplantation. Therefore, this study may provide new perspectives in application of MSCs to clinical PD therapy.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute, Peking University, Key Laboratory of Neuroscience (PKU), Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jian Yang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- Beijing An Ding Hospital, Beijing, China
| | - Haisheng Li
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Brain Protection, Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (XMW); (MF)
| | - Xiaomin Wang
- Department of Physiology and Neurobiology, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Education Ministry, Youanmen, Beijing, China
- * E-mail: (XMW); (MF)
| |
Collapse
|
65
|
Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation - a mini-review. Int J Artif Organs 2012; 35:323-37. [PMID: 22505200 DOI: 10.5301/ijao.5000085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have gained considerable interest due to their potential use in cell therapies and tissue engineering. They have been reported to differentiate into various anchorage-dependent cell types, including bone, cartilage, and tendon. Our focus is on the differentiation of MSCs into neuron-like cells through the use of soluble chemical stimuli or specific growth factor supplements. The resulting cells appear to adopt neural phenotypes and express some typical neuronal markers, however, their electrophysiological properties and synaptic function remains unclear. RESULTS This mini-review illustrates how particular characteristics, electrophysiological properties, and synaptic functions of MSCs change during their neuronal differentiation. In particular we focus on changes in ion currents, ion channels, synaptic communication, and neurotransmitter release. We also highlight conflicting results, caused by inconsistencies in the experimental conditions used and in the methodologies adopted. CONCLUSIONS We conclude that there is insufficient data and that further, carefully controlled investigations are required in order to ascertain whether MSC-derived neuron-like cells can exhibit the necessary neuronal functions to become clinically relevant for use in neural repairs.
Collapse
|
66
|
Shao J, Sun C, Su L, Zhao J, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C/heat shock protein 70 (Hsp70)/transcription factor B-cell translocation gene 2 signaling in rat bone marrow stromal cell differentiation to cholinergic neuron-like cells. Int J Biochem Cell Biol 2012; 44:2253-60. [PMID: 23000394 DOI: 10.1016/j.biocel.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 12/22/2022]
Abstract
Although bone marrow stromal cells (BMSCs) can differentiate into neuron-like cells, the mechanisms underlying neuronal differentiation are not well understood. We recently found that inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) by its inhibitor D609 promoted BMSCs' differentiation into cholinergic neuron-like cells. Using the effective small molecule D609 and gene microarray technology, we investigated the change of gene expression profile to identify key mediators involved in the neuronal differentiation. We selected heat shock protein 70 (Hsp70) and transcription factor B-cell translocation gene 2 (Btg2) that were maximally up-regulated for further study. We found that functional suppression of Hsp70 blocked D609-induced increase of Btg2 expression and cholinergic neuronal differentiation of BMSCs. These results demonstrated that Hsp70 was the pivotal factor in PC-PLC-medicated neuronal differentiation of BMSCs, and Btg2 might be its downstream target. Our findings provide new clues for controlling BMSCs' differentiation into cholinergic neuron-like cells and provide a putative strategy for neurodegenerative diseases therapies.
Collapse
Affiliation(s)
- Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
67
|
Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis 2012; 47:268-79. [DOI: 10.1016/j.nbd.2012.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022] Open
|
68
|
Némos C, Basciano L, Dalloul A. Effet et applications potentielles de la culture des cellules souches mésenchymateuses de moelle osseuse en condition d’hypoxie. ACTA ACUST UNITED AC 2012; 60:193-8. [DOI: 10.1016/j.patbio.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
|
69
|
Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. ScientificWorldJournal 2012; 2012:793823. [PMID: 22500143 PMCID: PMC3317548 DOI: 10.1100/2012/793823] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/15/2011] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient's body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | | | | | | |
Collapse
|
70
|
Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 2012; 46:635-45. [PMID: 22426403 DOI: 10.1016/j.nbd.2012.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/16/2012] [Accepted: 03/01/2012] [Indexed: 12/16/2022] Open
Abstract
Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O(2), N-BMSCs) or sub-lethal hypoxia (0.5% O(2). H-BMSCs). The hypoxia exposure up-regulated HIF-1α and trophic/growth factors in BMSCs, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF) and its receptor FIK-1, erythropoietin (EPO) and its receptor EPOR, stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). Meanwhile, many pro-inflammatory cytokines/chemokines were down-regulated in H-BMSCs. N-BMSCs or H-BMSCs were intravenously injected into adult rats 24h after 90-min middle cerebral artery occlusion. Comparing to N-BMSCs, transplantation of H-BMSCs showed greater effect of suppressing microglia activity in the brain. Significantly more NeuN-positive and Glut1-positive cells were seen in the ischemic core and peri-infarct regions of the animals received H-BMSC transplantation than that received N-BMSCs. Some NeuN-positive and Glut-1-positive cells showed eGFP or BrdU immunoflourescent reactivity, suggesting differentiation from exogenous BMSCs into neuronal and vascular endothelial cells. In Rotarod test performed 15days after stroke, animals received H-BMSCs showed better locomotion recovery compared with stroke control and N-BMSC groups. We suggest that hypoxic preconditioning of transplanted cells is an effective means of promoting their regenerative capability and therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
71
|
Zhang M, Wu C, Li H, Yuen J, Chang J, Xiao Y. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34395a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
72
|
Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterials 2012; 33:556-64. [DOI: 10.1016/j.biomaterials.2011.09.090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
73
|
Tan HB, Zhong YS, Cheng Y, Shen X. Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol 2011; 4:652-7. [PMID: 22553739 DOI: 10.3980/j.issn.2222-3959.2011.06.16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/29/2011] [Indexed: 01/12/2023] Open
Abstract
Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway in vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cells was also discussed.
Collapse
Affiliation(s)
- Hai-Bo Tan
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | | | | | | |
Collapse
|
74
|
Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 2011; 33:2076-85. [PMID: 22177618 DOI: 10.1016/j.biomaterials.2011.11.042] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 11/20/2011] [Indexed: 11/24/2022]
Abstract
Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co(2+) into MBG scaffolds and investigate if the addition of Co(2+) ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (<5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.
Collapse
Affiliation(s)
- Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Chung LC, Tsui KH, Feng TH, Lee SL, Chang PL, Juang HH. L-Mimosine blocks cell proliferation via upregulation of B-cell translocation gene 2 and N-myc downstream regulated gene 1 in prostate carcinoma cells. Am J Physiol Cell Physiol 2011; 302:C676-85. [PMID: 22116304 DOI: 10.1152/ajpcell.00180.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
L-Mimosine, an iron chelator and a prolyl 4-hydroxylase inhibitor, blocks many cancer cells at the late G1 phase. B-cell translocation gene 2 (Btg2) regulates the G1/S transition phases of the cell cycle. N-myc downstream regulated gene 1 (Ndrg1) is a differentiation-inducing gene upregulated by hypoxia. We evaluated the molecular mechanisms of L-mimosine on cell cycle modulation in PC-3 and LNCaP prostate carcinoma cells. The effect of L-mimosine on cell proliferation of prostate carcinoma cells was determined by the [3H]thymidine incorporation and flow cytometry assays. L-Mimosine arrested the cell cycle at the G1 phase in PC-3 cells and at the S phase in LNCaP cells, thus attenuating cell proliferation. Immunoblot assays indicated that hypoxia and L-mimosine stabilized hypoxia-inducible factor-1α (HIF-1α) and induced Btg2 and Ndrg1 protein expression, but downregulated protein levels of cyclin A in both PC-3 and LNCaP cells. L-Mimosine treatment decreased cyclin D1 protein in PC-3 cells, but not in LNCaP cells. Dimethyloxalylglycine, a pan-prolyl hydroxylase inhibitor, also induced Btg2 and Ndrg1 protein expression in LNCaP cells. The transient gene expression assay revealed that L-mimosine treatment or cotransfection with HIF-1α expression vector enhanced the promoter activities of Btg2 and Ndrg1 genes. Knockdown of HIF-1α attenuated the increasing protein levels of both Btg2 and Ndrg1 by hypoxia or L-mimosine in LNCaP cells. Our results indicated that hypoxia and L-mimosine modulated Btg2 and Ndrg1 at the transcriptional level, which is dependent on HIF-1α. L-Mimosine enhanced expression of Btg2 and Ndrg1, which attenuated cell proliferation of the PC-3 and LNCaP prostate carcinoma cells.
Collapse
Affiliation(s)
- Li-Chuan Chung
- Department of Bioengineering, Tatung University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
76
|
Milesi-Hallé A, McCullough S, Hinson JA, Kurten RC, Lamps LW, Brown A, James LP. Echinomycin decreases induction of vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity in mice. Basic Clin Pharmacol Toxicol 2011; 110:327-34. [PMID: 21985601 DOI: 10.1111/j.1742-7843.2011.00812.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Up-regulation of vascular endothelial growth factor (VEGF) is important to hepatocyte regeneration in the late stages of acetaminophen (APAP) toxicity in the mouse. This study was conducted to examine the relationship of hypoxia-inducible factor 1α (HIF-1α) to VEGF and hepatocyte regeneration in APAP toxicity using an inhibitor of HIF-1α DNA-binding activity, echinomycin (EC). B6C3F1 male mice were treated with APAP (200 mg/kg IP), followed by EC (0.15 mg IP) and killed at 4 hr. Serum alanine aminotransferase (ALT), necrosis, hepatic glutathione (GSH) and APAP protein adducts were comparable in the APAP/EC and the APAP/veh mice at 4 hr. Additional studies showed that high dose EC (0.3 mg) reduced hepatic VEGF but also lowered hepatic GSH. Subsequent studies were performed using the 0.15-mg dose of EC. Although EC 0.15 mg had no effect on hepatic VEGF levels at 8 hr, by 24 hr VEGF levels were decreased by 40%. Toxicity (ALT and histopathology) was comparable in the APAP and APAP/EC groups at 24 and 48 hr. Proliferating cell nuclear antigen expression was reduced by both Western blot analysis and immunohistochemical staining in the APAP/EC mice at 48 hr. The data support the hypothesis that induction of HIF-1α, its binding to DNA and subsequent expression of VEGF are important factors in hepatocyte regeneration in APAP toxicity in the mouse.
Collapse
|
77
|
Zeng HL, Zhong Q, Qin YL, Bu QQ, Han XA, Jia HT, Liu HW. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biol 2011; 12:32. [PMID: 21827650 PMCID: PMC3166919 DOI: 10.1186/1471-2121-12-32] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/09/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The therapeutic efficacy of human mesenchymal stem cells (hMSCs) for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. RESULTS After treatment with DFO and CoCl₂, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl₂ treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P < 0.05). This treatment also increased the number of cells in G0/G1 phase and decreased those in G2/S/M phase. CONCLUSIONS The hypoxia-mimetic agents, DFO and CoCl₂, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 126:153-94. [DOI: 10.1007/10_2011_115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
79
|
Lee HS, Kim KS, O EJ, Joe YA. A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.4.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
80
|
Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Exp Cell Res 2010; 316:2760-78. [DOI: 10.1016/j.yexcr.2010.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
|
81
|
Delcroix GJR, Curtis KM, Schiller PC, Montero-Menei CN. EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 2010; 80:213-27. [PMID: 20813449 DOI: 10.1016/j.diff.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
Abstract
AIMS Multipotent mesenchymal stromal cells raise great interest for regenerative medicine studies. Some MSC subpopulations have the potential to undergo neural differentiation, including marrow isolated adult multilineage inducible (MIAMI) cells, which differentiate into neuron-like cells in a multi-step neurotrophin 3-dependent manner. Epidermal and basic fibroblast growth factors are often used in neuronal differentiation protocols for MSCs, but with a limited understanding of their role. In this study, we thoroughly assessed for the first time the capacity of these factors to enhance the neuronal differentiation of MSCs. MATERIALS AND METHODS We have characterized MIAMI cell neuronal differentiation program in terms of stem cell molecule expression, cell cycle modifications, acquisition of a neuronal morphology and expression of neural and neuronal molecules in the absence and presence of an EGF-bFGF pre-treatment. RESULTS EGF-bFGF pre-treatment down-regulated the expression of stemness markers Oct4A, Notch1 and Hes5, whereas neural/neuronal molecules Nestin, Pax6, Ngn2 and the neurotrophin receptor tyrosine kinase 1 and 3 were up-regulated. During differentiation, a sustained Erk phosphorylation in response to NT3 was observed, cells began to exit from the cell cycle and exhibit increased neurite-like extensions. In addition, neuronal β3-tubulin and neurofilament expression was increased; an effect mediated via the Erk pathway. A slight pre-oligodendrocyte engagement was noted, and no default neurotransmitter phenotype was observed. Overall, mesodermal markers were unaffected or decreased, while neurogenic/adipogenic PPARγ2 was increased. CONCLUSION EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, further increasing their potential use in adult cell therapy of the nervous system.
Collapse
|
82
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
83
|
HA1077 enhances the cytokeratin expression of mesenchymal stem cells. J Burn Care Res 2010; 31:297-303. [PMID: 20182378 DOI: 10.1097/bcr.0b013e3181d0f4a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the study is to investigate the effect of fasudil [1-(5-isoquinolinesulfonyl) homopiperazine] (HA1077, calcium antagonist vasodilator and an inhibitor of RhoA kinase) on expression of cytokeratin (CK), DNA multiplication, and synthesis of mesenchymal stem cells (MSC). After rats were killed, MSC were separated from rats and proliferated in culture medium. The cells were randomly divided into control group, HA1077 control group, induction group, and HA1077 group. The percentage of CK19+MSC, proliferating cell nuclear antigen (PCNA), and cell cycle were determined. The test was repeated for five times. SPSS 12 software was used to analyze all the data. A P value <.05 and P < .01 were considered to be significant. The flow cytometry result showed that 1) the isolated MSC were uniformly positive for CD44, SSEA-1, CD105 but were negative for CD34, CD14, and CD45. 2) In the HA1077 control group, the percentage of CK19+MSC was similar to that in control group, which was lower than that in the induction group. In the HA1077 group, the percentage of CK19+MSC was higher than in the induction group (P < .01), in HA1077 control group (P < .01), and in control group (P < .01). 3) PCNA-positive rate in HA1077 group was highest among the groups. PCNA-positive rate of induction group was higher than that of control group and HA1077 control group. The cell cycle analysis showed that the quantity of MSC in S phase of HA1077 group was also highest. The quantity of MSC in S phase of induction group was higher than that of control group and HA1077 control group. There was no difference between the HA1077 control group and control group. HA1077 can repair burn wounds in future by promoting MSC differentiating into epidermal cell through DNA multiplication and synthesis.
Collapse
|
84
|
Genetos DC, Rao RR, Vidal MA. Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1alpha. Cell Tissue Res 2010. [PMID: 20165885 DOI: 10.1007/s00441‐010‐0929‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-alpha), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-alpha in BTC-mediated proliferation.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, 2112 Tupper Hall, Davis, CA 95616, USA.
| | | | | |
Collapse
|
85
|
Genetos DC, Rao RR, Vidal MA. Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1alpha. Cell Tissue Res 2010; 340:81-9. [PMID: 20165885 PMCID: PMC2847694 DOI: 10.1007/s00441-010-0929-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/14/2010] [Indexed: 01/28/2023]
Abstract
Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-α), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-α in BTC-mediated proliferation.
Collapse
Affiliation(s)
- Damian C. Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, 2112 Tupper Hall, Davis, CA 95616 USA
| | - Rameshwar R. Rao
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, 2112 Tupper Hall, Davis, CA 95616 USA
| | - Martin A. Vidal
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, 2112 Tupper Hall, Davis, CA 95616 USA
| |
Collapse
|
86
|
Fan W, Crawford R, Xiao Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 2010; 31:3580-9. [PMID: 20153522 DOI: 10.1016/j.biomaterials.2010.01.083] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 01/13/2010] [Indexed: 11/30/2022]
Abstract
The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.
Collapse
Affiliation(s)
- Wei Fan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld 4059, Australia
| | | | | |
Collapse
|
87
|
Chang TC, Chen YC, Yang MH, Chen CH, Hsing EW, Ko BS, Liou JY, Wu KK. Rho kinases regulate the renewal and neural differentiation of embryonic stem cells in a cell plating density-dependent manner. PLoS One 2010; 5:e9187. [PMID: 20169147 PMCID: PMC2820554 DOI: 10.1371/journal.pone.0009187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/19/2010] [Indexed: 12/02/2022] Open
Abstract
Background Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation. Methodology/Principal Findings CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 104/cm2 (“high” seeding density) or 2×103/cm2 (“low” density). However, at high seeding density, Y-27632–treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not βIII-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632–treated CCE cells seeded at 2×103 or 6.6×103 cells/cm2 did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2×103/cm2 did not change renewal factors. Conclusions/Significance We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chung Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Hua Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Hung Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - En-Wei Hsing
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Bor-Sheng Ko
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K. Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
- University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
88
|
Oxygen tension modulates neurite outgrowth in PC12 cells through a mechanism involving HIF and VEGF. J Mol Neurosci 2010; 40:360-6. [PMID: 20107925 PMCID: PMC2825316 DOI: 10.1007/s12031-009-9326-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/28/2009] [Indexed: 12/11/2022]
Abstract
Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair.
Collapse
|
89
|
Danielyan L, Schäfer R, Schulz A, Ladewig T, Lourhmati A, Buadze M, Schmitt AL, Verleysdonk S, Kabisch D, Koeppen K, Siegel G, Proksch B, Kluba T, Eckert A, Köhle C, Schöneberg T, Northoff H, Schwab M, Gleiter CH. Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differ 2009; 16:1599-614. [PMID: 19609278 DOI: 10.1038/cdd.2009.95] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can ameliorate symptoms in several neurodegenerative diseases. However, the toxic environment of a degenerating central nervous system (CNS) characterized by hypoxia, glutamate (Glu) excess and amyloid beta (Abeta) pathology may hamper the survival and regenerative/replacing capacities of engrafted stem cells. Indeed, human MSC (hMSC) exposed to hypoxia were disabled in (i) the capacity of their muscarinic receptors (mAChRs) to respond to acetylcholine (ACh) with a transient increase in intracellular [Ca(2+)], (ii) their capacity to metabolize Glu, reflected by a strong decrease in glutamine synthetase activity, and (iii) their survival on exposure to Glu. Cocultivation of MSC with PC12 cells expressing the amyloid precursor protein gene (APPsw-PC12) increased the release of IL-6 from MSC. HMSC exposed to erythropoietin (EPO) showed a cholinergic neuron-like phenotype reflected by increased cellular levels of choline acetyltransferase, ACh and mAChR. All their functional deficits observed under hypoxia, Glu exposure and APPsw-PC12 cocultivation were reversed by the application of EPO, which increased the expression of Wnt3a. EPO also enhanced the metabolism of Abeta in MSC by increasing their neprilysin content. Our data show that cholinergic neuron-like differentiation of MSC, their functionality and resistance to a neurotoxic environment is regulated and can be improved by EPO, highlighting its potential for optimizing cellular therapies of the CNS.
Collapse
Affiliation(s)
- L Danielyan
- Department of Clinical Pharmacology, University Hospital of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Papis E, Gornati R, Ponti J, Prati M, Sabbioni E, Bernardini G. Gene expression in nanotoxicology: A search for biomarkers of exposure to cobalt particles and ions. Nanotoxicology 2009. [DOI: 10.1080/17435390701644399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Liu S, Tian Z, Yin F, Zhao Q, Fan M. Generation of dopaminergic neurons from human fetal mesencephalic progenitors after co-culture with striatal-conditioned media and exposure to lowered oxygen. Brain Res Bull 2009; 80:62-8. [PMID: 19463914 DOI: 10.1016/j.brainresbull.2009.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Mature dopaminergic neurons were generated from human fetal mesencephalic progenitors by co-culture with human fetal striatal-conditioned media (SCM) and exposure to lowered oxygen. Immunofluorescence analysis showed that cells cultured in differentiation media with embryonic SCM had a greater number of TH-positive neurons than those cultured in traditional media without SCM addition. The TH-positive neurons cultured in lowered oxygen (3-5% O(2)) had more branches and those branches were longer than those of neurons cultured under 20% O(2) culture conditions. Furthermore, more TH-positive cells with mature morphology were observed in the culture containing combined SCM addition and lowered oxygen. We also observed higher levels of dopamine release under the combined media conditions than observed under any individual media condition when depolarized by high K+ as determined by high-performance liquid chromatography (HPLC). Reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that mRNA expressions of sonic hedgehog (SHH), glial cell derived neurotrophic factor (GDNF) and tyrosine hydroxylase (TH), which are linked to the generation of dopaminergic neurons, were increased after co-culture with SCM. Lowered O(2) significantly induced mRNA expression of erythropoietin (EPO) and P27, which affect neuronal differentiation, and was accompanied by upregulation of Nurr1, Pitx3 and dopamine transporter (DAT) mRNAs, which are correlated to the maturation of dopaminergic neurons. This study makes an important contribution to understanding the effects of hypoxia and SCM on the differentiation and maturation of TH-positive neurons derived from human fetal mesencephalic progenitors in vitro.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery, Navy General Hospital, 6# Fucheng Road, Haidian District, Beijing, China.
| | | | | | | | | |
Collapse
|
92
|
Non-hypoxic Stabilization of Hypoxia-Inducible Factor Alpha (HIF-α): Relevance in Neural Progenitor/Stem Cells. Neurotox Res 2009; 15:367-80. [DOI: 10.1007/s12640-009-9043-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
93
|
Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue Cell 2009; 41:376-80. [PMID: 19261317 DOI: 10.1016/j.tice.2009.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/18/2009] [Accepted: 01/24/2009] [Indexed: 11/23/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (MSC) have previously been reported to be susceptible to cryopreservation-induced apoptosis. A significant fraction of MSC lose their viability during freeze-thawing, which represent a major technical barrier in attaining adequate viable cell numbers for optimal efficacy in transplantation therapy. Recently, it was reported that a Rho-associated kinase (ROCK) inhibitor Y-27632 could enhance the post-thaw viability and physiological function of cryopreserved human embryonic stem cells (hESC). Hence, this study attempted to investigate whether Y-27632 can exert a similar beneficial effect on the post-thaw viability of cryopreserved MSC. A concentration range of 1-100 microM Y-27632 was supplemented in both the cryopreservation medium (10% (v/v) dimethyl sulfoxide), as well as the post-thaw culture medium. The supplementation of Y-27632 had no significant effect on the immediate post-thaw viability, as assessed by trypan blue exclusion. However, 24h after the frozen-thawed cell suspensions were re-plated on new cell culture dishes (with varying concentrations of Y-27632 within the post-thaw culture media); the MTT assay subsequently showed significant differences in the proportion of adherent viable cells over the concentration range of Y-27632 examined, with a peak at between 5 and 10 microM. At zero concentration of Y-27632, the proportion of viable adherent cells was 39.8+/-0.9%; and this value peaked at 48.5+/-1.7% with 5 microM Y-27632 and 48.4+/-1.8% with 10 microM Y-27632, prior to decreasing to 36.0+/-0.6% with 100 microM Y-27632. Additionally, it was observed that Y-27632 induced morphological changes in the frozen-thawed MSC. With increasing Y-27632 concentration, the cells displayed more extensive branching of cytoplasmic extensions that gave a 'web-like' appearance. This is consistent with previous reports of Y-27632 stimulating neuronal differentiation of MSC.
Collapse
|
94
|
Valable S, Eddi D, Constans JM, Guillamo JS, Bernaudin M, Roussel S, Petit E. MRI assessment of hemodynamic effects of angiopoietin-2 overexpression in a brain tumor model. Neuro Oncol 2009; 11:488-502. [PMID: 19168695 DOI: 10.1215/15228517-2008-117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite treatment efforts, the median survival in patients with glioblastoma multiforme, the most aggressive form of glioma, does not extend beyond 12-15 months. One of the major pathophysiological characteristics of these tumors is their ability to induce active angiogenesis. Thus, based on the lack of efficient therapies, agents that inhibit angiogenesis are particularly attractive as a therapeutic option. However, it has been recently proposed that although specifically targeting vascular endothelial growth factor, the main angiogenic factor, certainly leads to significant tumor regression, it could also be followed by tumor relapses. In this case, angiogenesis is driven by alternate pathways that include other angiogenic factors. One possible strategy to overcome this therapeutic obstacle is to overexpress antivascular factors such as angiopoietin-2 (Ang2). Here, by using MRI and histological analysis, we studied the vascular events involved in glioma growth impairment induced by Ang2 overexpression. Our results show that an increase in Ang2 expression, during the tumor growth, leads to a significant decrease in tumor growth ( approximately 86%) along with an increase in the survival median ( approximately 70%) but does not modify the tumor vascular area or cerebral blood volume. However, tumor Ang2-derived blood vessels display an abnormal, enlarged morphology. We show that the presence of Ang2 leads to an enhancement of tumor perfusion and a decrease in tumor vessel permeability. Based on our MR image evaluations of hemodynamic tumor vessel changes, we propose that Ang2-derived tumor vessels lead to an inadequate oxygenation of the tumor tissue, leading to impairment in tumor growth.
Collapse
|
95
|
Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage. Biochem Biophys Res Commun 2008; 377:400-406. [DOI: 10.1016/j.bbrc.2008.09.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 11/19/2022]
|
96
|
Deng X, Liguori MJ, Sparkenbaugh EM, Waring JF, Blomme EAG, Ganey PE, Roth RA. Gene expression profiles in livers from diclofenac-treated rats reveal intestinal bacteria-dependent and -independent pathways associated with liver injury. J Pharmacol Exp Ther 2008; 327:634-44. [PMID: 18801949 DOI: 10.1124/jpet.108.140335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Diclofenac (DCLF) is a nonsteroidal anti-inflammatory drug that is associated with idiosyncratic adverse drug reactions in humans. Previous studies revealed a crucial role for intestine-derived bacteria and/or lipopolysaccharide (LPS) in DCLF-induced hepatotoxicity. We further explored this mechanism by conducting gene expression analysis of livers from rats treated with a hepatotoxic dose of DCLF (100 mg/kg) with or without oral antibiotic pretreatment. Genes for which expression was altered by DCLF were divided into two groups: genes with expression altered by antibiotic treatment and those unaffected by antibiotics. The former group of genes represented the ones for which DCLF-induced alterations in expression depended on intestinal bacteria. The expression of the latter group of genes was probably changed by direct effect of DCLF rather than by intestinal bacteria. Functional analysis of genes in the former group revealed LPS-related signaling, further suggesting a role for bacterial endotoxin in the liver injury. Functional analysis of genes in the latter group revealed changes in signaling pathways related to inflammation, hypoxia, oxidative stress, the aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor alpha. Neutrophil depletion failed to protect from DCLF-induced hepatotoxicity, suggesting that intestinal bacteria contribute to liver injury in a neutrophil-independent manner. Hypoxia occurred in the livers of rats treated with DCLF, and hypoxia in vitro rendered hepatocytes sensitive to DCLF-induced cytotoxicity. These results support the hypothesis that intestinal bacteria are required for DCLF-induced hepatotoxicity and suggest that hypoxia plays an important role in the pathogenesis.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Kim TS, Misumi S, Jung CG, Masuda T, Isobe Y, Furuyama F, Nishino H, Hida H. Increase in dopaminergic neurons from mouse embryonic stem cell-derived neural progenitor/stem cells is mediated by hypoxia inducible factor-1α. J Neurosci Res 2008; 86:2353-62. [DOI: 10.1002/jnr.21687] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
Tixier E, Leconte C, Touzani O, Roussel S, Petit E, Bernaudin M. Adrenomedullin protects neurons against oxygen glucose deprivation stress in an autocrine and paracrine manner. J Neurochem 2008; 106:1388-403. [DOI: 10.1111/j.1471-4159.2008.05494.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Schäfer R, Northoff H. Characteristics of Mesenchymal Stem Cells - New Stars in Regenerative Medicine or Unrecognized Old Fellows in Autologous Regeneration? ACTA ACUST UNITED AC 2008; 35:154-159. [PMID: 21547113 DOI: 10.1159/000135634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/02/2008] [Indexed: 12/13/2022]
Abstract
SUMMARY: For years mesenchymal stem cells (MSC) have been in the focus of research in the emerging field of regenerative medicine. Due to the heterogeneity of cells with MSC-like properties their comprehensive characterization is necessary. In the following, issues of nomenclature, basic characterization, sources, sternness, and therapeutic potential of MSC are discussed, highlighting some aspects in the rapidly expanding field of MSC research.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Germany
| | | |
Collapse
|
100
|
Granero-Molto F, Weis JA, Longobardi L, Spagnoli A. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 2008; 8:255-68. [PMID: 18294098 DOI: 10.1517/14712598.8.3.255] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSC) are multipotent cells with the ability to differentiate into mesenchyme-derived cells including osteoblasts and chondrocytes. OBJECTIVE To provide an overview and expert opinion on the in vivo ability of MSC to home into tissues, their regenerative properties and potential applications for cell-based therapies to treat bone and cartilage disorders. METHODS Data sources including the PubMed database, abstract booklets and conference proceedings were searched for publications pertinent to MSC and their properties with emphasis on the in vivo studies and clinical use in cartilage and bone regeneration and repair. The search included the most current information possible. CONCLUSION MSC can migrate to injured tissues and some of their reparative properties are mediated by paracrine mechanisms including their immunomodulatory actions. MSC possess a critical potential in regenerative medicine for the treatment of skeletal diseases, such as osteoarthritis or fracture healing failure, where treatments are partially effective or palliative.
Collapse
Affiliation(s)
- Froilan Granero-Molto
- University of North Carolina at Chapel Hill, Division of Endocrinology, Department of Pediatrics, 3341 Medical Biomolecular Research Building, 103 Mason Farm Road Campus Box: 7039, Chapel Hill North Carolina 27599-7239, USA
| | | | | | | |
Collapse
|