51
|
Pharmaco-Genetic Screen To Uncover Actin Regulators Targeted by Prostaglandins During Drosophila Oogenesis. G3-GENES GENOMES GENETICS 2019; 9:3555-3565. [PMID: 31506320 PMCID: PMC6829128 DOI: 10.1534/g3.119.400704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostaglandins (PGs) are lipid signaling molecules with numerous physiologic functions, including pain/inflammation, fertility, and cancer. PGs are produced downstream of cyclooxygenase (COX) enzymes, the targets of non-steroidal anti-inflammatory drugs (NSAIDs). In numerous systems, PGs regulate actin cytoskeletal remodeling, however, their mechanisms of action remain largely unknown. To address this deficiency, we undertook a pharmaco-genetic interaction screen during late-stage Drosophila oogenesis. Drosophila oogenesis is as an established model for studying both actin dynamics and PGs. Indeed, during Stage 10B, cage-like arrays of actin bundles surround each nurse cell nucleus, and during Stage 11, the cortical actin contracts, squeezing the cytoplasmic contents into the oocyte. Both of these cytoskeletal properties are required for follicle development and fertility, and are regulated by PGs. Here we describe a pharmaco-genetic interaction screen that takes advantage of the fact that Stage 10B follicles will mature in culture and COX inhibitors, such as aspirin, block this in vitro follicle maturation. In the screen, aspirin was used at a concentration that blocks 50% of the wild-type follicles from maturing in culture. By combining this aspirin treatment with heterozygosity for mutations in actin regulators, we quantitatively identified enhancers and suppressors of COX inhibition. Here we present the screen results and initial follow-up studies on three strong enhancers – Enabled, Capping protein, and non-muscle Myosin II Regulatory Light Chain. Overall, these studies provide new insight into how PGs regulate both actin bundle formation and cellular contraction, properties that are not only essential for development, but are misregulated in disease.
Collapse
|
52
|
Billault-Chaumartin I, Martin SG. Capping Protein Insulates Arp2/3-Assembled Actin Patches from Formins. Curr Biol 2019; 29:3165-3176.e6. [PMID: 31495586 PMCID: PMC6864609 DOI: 10.1016/j.cub.2019.07.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
How actin structures of distinct identities and functions coexist within the same environment is a critical self-organization question. Fission yeast cells have a simple actin cytoskeleton made of four structures: Arp2/3 assembles actin patches around endocytic pits, and the formins For3, Cdc12, and Fus1 assemble actin cables, the cytokinetic ring during division, and the fusion focus during sexual reproduction, respectively. The focus concentrates the delivery of hydrolases by myosin V to digest the cell wall for cell fusion. We discovered that cells lacking capping protein (CP), a heterodimer that blocks barbed-end dynamics and associates with actin patches, exhibit a delay in fusion. Consistent with CP-formin competition for barbed-end binding, Fus1, F-actin, and the linear filament marker tropomyosin hyper-accumulate at the fusion focus in cells lacking CP. CP deletion also rescues the fusion defect of a mutation in the Fus1 knob region. However, myosin V and exocytic cargoes are reduced at the fusion focus and diverted to ectopic foci, which underlies the fusion defect. Remarkably, the ectopic foci coincide with Arp2/3-assembled actin patches, which now contain low levels of Fus1. We further show that CP localization to actin patches is required to prevent the formation of ectopic foci and promote efficient cell fusion. During mitotic growth, actin patches lacking CP similarly display a dual identity, as they accumulate the formins For3 and Cdc12, normally absent from patches, and are co-decorated by the linear filament-binding protein tropomyosin and the patch marker fimbrin. Thus, CP serves to protect Arp2/3-nucleated structures from formin activity.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
53
|
Rachubik P, Piwkowska A. The role of vasodilator‐stimulated phosphoprotein in podocyte functioning. Cell Biol Int 2019; 43:1092-1101. [DOI: 10.1002/cbin.11149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| |
Collapse
|
54
|
Ma Q, Gao FF, He X, Li K, Gao Y, Xu XL, Jiang NH, Ding L, Song WJ, He YQ, Pan WT, Wei L, Zhang JW. Antitumor effects of saikosaponin b2 on breast cancer cell proliferation and migration. Mol Med Rep 2019; 20:1943-1951. [PMID: 31257464 DOI: 10.3892/mmr.2019.10385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
Saikosaponin b2 (SSb2) can be extracted from Bupleurum spp. roots (Radix Bupleuri), which belongs to the Umbelliferae family. The current study aimed to explore the effects of SSb2 on proliferation of breast cancer cells and to identify the mechanism by which SSb2 affects breast cancer cell migration. mRNA expression levels of STAT3 and vasodilator‑stimulated phosphoprotein (VASP) were determined and increased expression was observed in 16 breast cancer tissues compared with the paracancerous tissues. MTT, wound healing, colony formation assays and western blot suggested that SSb2 inhibited MCF‑7 proliferation and migration. It was further identified by western blot analysis that SSb2 treatment reduced levels of phosphorylated STAT3, VASP, matrix metallopeptidase (MMP) 2 and MMP9 in MCF‑7 compared with the untreated cells. In addition, it was demonstrated that inhibition of STAT3 phosphorylation decreased VASP expression levels and induction of STAT3 phosphorylation increased VASP levels. Furthermore, it was observed that the treatment of Kunming mice with SSb2 at 30 mg/kg/day for 30 days induced no obvious changes in the liver or kidney tissues, as determined by haematoxylin and eosin staining. In conclusion, these results indicated that SSb2 may be a potential antitumor drug for the treatment of breast cancer, which acts by suppressing proliferation and migration by downregulating the STAT3 signalling pathway and inhibiting the expression of VASP, MMP2 and MMP9 expression.
Collapse
Affiliation(s)
- Qing Ma
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang-Fang Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin He
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yang Gao
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Long Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Nan-Hui Jiang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liang Ding
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wen-Jing Song
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan-Qi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wen-Ting Pan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumour Biological Behaviours, Hubei Cancer Clinical Study Centre, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
55
|
Myat MM, Louis D, Mavrommatis A, Collins L, Mattis J, Ledru M, Verghese S, Su TT. Regulators of cell movement during development and regeneration in Drosophila. Open Biol 2019; 9:180245. [PMID: 31039676 PMCID: PMC6544984 DOI: 10.1098/rsob.180245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cell migration is a fundamental cell biological process essential both for normal development and for tissue regeneration after damage. Cells can migrate individually or as a collective. To better understand the genetic requirements for collective migration, we expressed RNA interference (RNAi) against 30 genes in the Drosophila embryonic salivary gland cells that are known to migrate collectively. The genes were selected based on their effect on cell and membrane morphology, cytoskeleton and cell adhesion in cell culture-based screens or in Drosophila tissues other than salivary glands. Of these, eight disrupted salivary gland migration, targeting: Rac2, Rab35 and Rab40 GTPases, MAP kinase-activated kinase-2 (MAPk-AK2), RdgA diacylglycerol kinase, Cdk9, the PDSW subunit of NADH dehydrogenase (ND-PDSW) and actin regulator Enabled (Ena). The same RNAi lines were used to determine their effect during regeneration of X-ray-damaged larval wing discs. Cells translocate during this process, but it remained unknown whether they do so by directed cell divisions, by cell migration or both. We found that RNAi targeting Rac2, MAPk-AK2 and RdgA disrupted cell translocation during wing disc regeneration, but RNAi against Ena and ND-PDSW had little effect. We conclude that, in Drosophila, cell movements in development and regeneration have common as well as distinct genetic requirements.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Dheveline Louis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Andreas Mavrommatis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Latoya Collins
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Jamal Mattis
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA
| | - Michelle Ledru
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Shilpi Verghese
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
- University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
56
|
Li S, Shen L, Huang L, Lei S, Cai X, Breitzig M, Zhang B, Yang A, Ji W, Huang M, Zheng Q, Sun H, Wang F. PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:858-869. [PMID: 31075540 DOI: 10.1016/j.bbagrm.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) events occur in the majority of human genes. AS in a single gene can give rise to different functions among multiple isoforms. Human ortholog of mammalian enabled (Mena) is a conserved regulator of actin dynamics that plays an important role in metastasis. Mena has been shown to have multiple splice variants in human tumor cells due to AS. However, the mechanism mediated Mena AS has not been elucidated. Here we showed that polypyrimidine tract-binding protein 1 (PTBP1) could modulate Mena AS. First, PTBP1 levels were elevated in metastatic lung cancer cells as well as during epithelial-mesenchymal transition (EMT) process. Then, knockdown of PTBP1 using shRNA inhibited migration and invasion of lung carcinoma cells and decreased the Mena exon11a skipping, whereas overexpression of PTBP1 had the opposite effects. The results of RNA pull-down assays and mutation analyses demonstrated that PTBP1 functionally targeted and physically interacted with polypyrimidine sequences on both upstream intron11 (TTTTCCCCTT) and downstream intron11a (TTTTTTTTTCTTT). In addition, the results of migration and invasion assays as well as detection of filopodia revealed that the effect of PTBP1 was reversed by knockdown of Mena but not Mena11a+. Overexpressed MenaΔ11a also rescued the PTBP1-induced migration and invasion. Taken together, our study provides a novel mechanism that PTBP1 modulates Mena exon11a skipping, and indicates that PTBP1 depends on the level of Mena11a- to promote lung cancer cells migration and invasion. The regulation of Mena AS may be a potential prognostic marker and a promising target for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Shuaiguang Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Lianghua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Luyuan Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sijia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Xingdong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mason Breitzig
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 19, Tampa, FL 33612, USA
| | - Bin Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Annan Yang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenzuo Ji
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Meiyan Huang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
57
|
Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine 2019; 14:2157-2169. [PMID: 30992663 PMCID: PMC6445231 DOI: 10.2147/ijn.s191878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The investigation of agents promoting recovery of nerve regeneration following neurodegenerative diseases has been the most important issue in neuroscience. Nerve growth factor (NGF) and quercetin as potential flavonoids could possibly have therapeutic applications in the field of degenerative diseases such as Parkinson and Alzheimer. Materials and methods The MTT assay was done at 24, 48, and 72 hours to examine the cytotoxicity of superparamagnetic iron oxide nanoparticles (SPIONs) and quercetin. We combined NGF and quercetin with different concentrations of SPIONs as novel compounds to study their effect on neuronal branching morphogenesis of PC12 cells. Results Morphological analysis showed a significant growth (P<0.001) in neurite length when PC12 cells were incubated in quercetin solution. We found a significant neurite outgrowth promotion and an increase in the complexity of the neuronal branching trees after exposing PC12 cells to both quercetin and SPIONs. In addition, a higher level of β3-tubulin expression was observed in these cells when treated with both quercetin and SPIONs. Conclusion Different photographic analyses indicated that iron oxide nanoparticles function as an important factor in order to improve the efficiency of NGF through improving cell viability, cell attachment, and neurite outgrowth in the shelter of quercetin as an accelerator of these phenomena. The use of the quercetin–SPION complex as a suitable method for improving NGF efficacy and activity opens a novel window for substantial neuronal repair therapeutics.
Collapse
Affiliation(s)
- Samira Katebi
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Abolghasem Esmaeili
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Kamran Ghaedi
- Cell, Molecular Biology, and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
58
|
Gau D, Veon W, Shroff SG, Roy P. The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem 2019; 294:6972-6985. [PMID: 30814249 DOI: 10.1074/jbc.ra118.005255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.
Collapse
Affiliation(s)
- David Gau
- From the Department of Bioengineering, University of Pittsburgh and
| | - William Veon
- From the Department of Bioengineering, University of Pittsburgh and
| | - Sanjeev G Shroff
- From the Department of Bioengineering, University of Pittsburgh and
| | - Partha Roy
- From the Department of Bioengineering, University of Pittsburgh and .,the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
59
|
Focus on Cdc42 in Breast Cancer: New Insights, Target Therapy Development and Non-Coding RNAs. Cells 2019; 8:cells8020146. [PMID: 30754684 PMCID: PMC6406589 DOI: 10.3390/cells8020146] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common malignant tumors in females. Although the conventional treatment has demonstrated a certain effect, some limitations still exist. The Rho guanosine triphosphatase (GTPase) Cdc42 (Cell division control protein 42 homolog) is often upregulated by some cell surface receptors and oncogenes in breast cancer. Cdc42 switches from inactive guanosine diphosphate (GDP)-bound to active GTP-bound though guanine-nucleotide-exchange factors (GEFs), results in activation of signaling cascades that regulate various cellular processes such as cytoskeletal changes, proliferation and polarity establishment. Targeting Cdc42 also provides a strategy for precise breast cancer therapy. In addition, Cdc42 is a potential target for several types of non-coding RNAs including microRNAs and lncRNAs. These non-coding RNAs is extensively involved in Cdc42-induced tumor processes, while many of them are aberrantly expressed. Here, we focus on the role of Cdc42 in cell morphogenesis, proliferation, motility, angiogenesis and survival, introduce the Cdc42-targeted non-coding RNAs, as well as present current development of effective Cdc42-targeted inhibitors in breast cancer.
Collapse
|
60
|
Harker AJ, Katkar HH, Bidone TC, Aydin F, Voth GA, Applewhite DA, Kovar DR. Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin. Mol Biol Cell 2019; 30:851-862. [PMID: 30601697 PMCID: PMC6589784 DOI: 10.1091/mbc.e18-08-0500] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ena/VASP tetramers are processive actin elongation factors that localize to diverse F-actin networks composed of filaments bundled by different cross-linking proteins, such as filopodia (fascin), lamellipodia (fimbrin), and stress fibers (α-actinin). Previously, we found that Ena takes approximately threefold longer processive runs on trailing barbed ends of fascin-bundled F-actin. Here, we used single-molecule TIRFM (total internal reflection fluorescence microscopy) and developed a kinetic model to further dissect Ena/VASP’s processive mechanism on bundled filaments. We discovered that Ena’s enhanced processivity on trailing barbed ends is specific to fascin bundles, with no enhancement on fimbrin or α-actinin bundles. Notably, Ena/VASP’s processive run length increases with the number of both fascin-bundled filaments and Ena “arms,” revealing avidity facilitates enhanced processivity. Consistently, Ena tetramers form more filopodia than mutant dimer and trimers in Drosophila culture cells. Moreover, enhanced processivity on trailing barbed ends of fascin-bundled filaments is an evolutionarily conserved property of Ena/VASP homologues, including human VASP and Caenorhabditis elegans UNC-34. These results demonstrate that Ena tetramers are tailored for enhanced processivity on fascin bundles and that avidity of multiple arms associating with multiple filaments is critical for this process. Furthermore, we discovered a novel regulatory process whereby bundle size and bundling protein specificity control activities of a processive assembly factor.
Collapse
Affiliation(s)
- Alyssa J Harker
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Harshwardhan H Katkar
- Department of Chemistry, cThe James Franck Institute, and dInstitute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,Department of Biology, Reed College, Portland, OR 97202
| | - Tamara C Bidone
- Department of Chemistry, cThe James Franck Institute, and dInstitute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,Department of Biology, Reed College, Portland, OR 97202
| | - Fikret Aydin
- Department of Chemistry, cThe James Franck Institute, and dInstitute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,Department of Biology, Reed College, Portland, OR 97202
| | - Gregory A Voth
- Department of Chemistry, cThe James Franck Institute, and dInstitute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.,Department of Biology, Reed College, Portland, OR 97202
| | | | - David R Kovar
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
61
|
|
62
|
hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis. Oncogene 2018; 37:5605-5617. [PMID: 29907768 PMCID: PMC6193944 DOI: 10.1038/s41388-018-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
We demonstrated previously that the splicing of the actin regulator, hMENA, generates two alternatively expressed isoforms, hMENA11a and hMENAΔv6, which have opposite functions in cell invasiveness. Their mechanisms of action have remained unclear. Here we report two major findings: (i) hMENA regulates β1 integrin expression. This was shown by depleting total hMENA, which led to loss of nuclear expression of serum response factor (SRF)-coactivator myocardin-related transcription factor 1 (MRTF-A), leading to an increase in the G-actin/F-actin ratio crucial for MRTF-A localization. This in turn inhibited SRF activity and the expression of its target gene β1 integrin. (ii) hMENA11a reduces and hMENAΔv6 increases β1 integrin activation and signaling. Moreover, exogenous expression of hMENA11a in hMENAΔv6-positive cancer cells dramatically reduces secretion of extracellular matrix (ECM) components, including β1 integrin ligands and metalloproteinases. On the other hand, overexpression of the pro-invasive hMENAΔv6 increases fibronectin production. In primary tumors high hMENA11a correlates with low stromal fibronectin and a favorable clinical outcome of early node-negative non-small-cell lung cancer patients. These data provide new insights into the roles of hMENA11a and hMENAΔv6 in the druggable β1 integrin-ECM signaling axis and allow stratification of patient risk, guiding their clinical management.
Collapse
|
63
|
Actin Cross-Linking Toxin Is a Universal Inhibitor of Tandem-Organized and Oligomeric G-Actin Binding Proteins. Curr Biol 2018; 28:1536-1547.e9. [PMID: 29731300 DOI: 10.1016/j.cub.2018.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022]
Abstract
Delivery of bacterial toxins to host cells is hindered by host protective barriers. This obstruction dictates a remarkable efficiency of toxins, a single copy of which may kill a host cell. Efficiency of actin-targeting toxins is further hampered by an overwhelming abundance of their target. The actin cross-linking domain (ACD) toxins of Vibrio species and related bacterial genera catalyze the formation of covalently cross-linked actin oligomers. Recently, we reported that the ACD toxicity can be amplified via a multivalent inhibitory association of actin oligomers with actin assembly factors formins, suggesting that the oligomers may act as secondary toxins. Importantly, many proteins involved in nucleation, elongation, severing, branching, and bundling of actin filaments contain G-actin-binding Wiskott-Aldrich syndrome protein (WASP)-homology motifs 2 (WH2) organized in tandem and therefore may act as a multivalent platform for high-affinity interaction with the ACD-cross-linked actin oligomers. Using live-cell single-molecule speckle (SiMS) microscopy, total internal reflection fluorescence (TIRF) microscopy, and actin polymerization assays, we show that, in addition to formins, the oligomers bind with high affinity and potently inhibit several families of actin assembly factors: Ena/vasodilator-stimulated phosphorprotein (VASP); Spire; and the Arp2/3 complex, both in vitro and in live cells. As a result, ACD blocks the actin retrograde flow and membrane dynamics and disrupts association of Ena/VASP with adhesion complexes. This study defines ACD as a universal inhibitor of tandem-organized G-actin binding proteins that overcomes the abundance of actin by redirecting the toxicity cascade toward less abundant targets and thus leading to profound disorganization of the actin cytoskeleton and disruption of actin-dependent cellular functions.
Collapse
|
64
|
Laban H, Weigert A, Zink J, Elgheznawy A, Schürmann C, Günther L, Abdel Malik R, Bothur S, Wingert S, Bremer R, Rieger MA, Brüne B, Brandes RP, Fleming I, Benz PM. VASP regulates leukocyte infiltration, polarization, and vascular repair after ischemia. J Cell Biol 2018; 217:1503-1519. [PMID: 29507126 PMCID: PMC5881493 DOI: 10.1083/jcb.201702048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/06/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023] Open
Abstract
In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. The study of Laban et al. provides evidence that VASP is a major regulator of leukocyte recruitment and polarization and vascular repair after ischemia. Mechanistically, the study supports a novel role of VASP in chemokine receptor trafficking. In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. We investigated the role of vasodilator-stimulated phosphoprotein (VASP) in vascular repair. After hindlimb ischemia induction, blood flow recovery, angiogenesis, arteriogenesis, and leukocyte infiltration into ischemic muscles in VASP−/− mice were accelerated. VASP deficiency also elevated the polarization of the macrophages through increased signal transducer and activator of transcription (STAT) signaling, which augmented the release of chemokines, cytokines, and growth factors to promote leukocyte recruitment and vascular repair. Importantly, VASP deletion in bone marrow–derived cells was sufficient to mimic the increased blood flow recovery of global VASP−/− mice. In chemotaxis experiments, VASP−/− neutrophils/monocytes were significantly more responsive to M1-related chemokines than wild-type controls. Mechanistically, VASP formed complexes with the chemokine receptor CCR2 and β-arrestin-2, and CCR2 receptor internalization was significantly reduced in VASP−/− leukocytes. Our data indicate that VASP is a major regulator of leukocyte recruitment and polarization in postischemic revascularization and support a novel role of VASP in chemokine receptor trafficking.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Amro Elgheznawy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Lea Günther
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sabrina Bothur
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Rolf Bremer
- HBB Datenkommunikation and Abrechnungssysteme, Hannover, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ralf P Brandes
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany .,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
65
|
Xiang X, Wang Y, Zhang H, Piao J, Muthusamy S, Wang L, Deng Y, Zhang W, Kuang R, Billadeau DD, Huang S, Lai J, Urrutia R, Kang N. Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a β1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol 2018; 2:2. [PMID: 29872721 PMCID: PMC5871906 DOI: 10.1038/s41698-017-0045-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/06/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022] Open
Abstract
Extracellular matrix (ECM)-induced β1-integrin-FAK signaling promotes cell attachment, survival, and migration of cancer cells in a distant organ so as to enable cancer metastasis. However, mechanisms governing activation of the β1-integrin-FAK signaling remain incompletely understood. Here, we report that vasodilator-stimulated phosphoprotein (VASP), an actin binding protein, is required for ECM-mediated β1-integrin-FAK-YAP1/TAZ signaling in gastrointestinal (GI) cancer cells and their liver metastasis. In patient-derived samples, VASP is upregulated in 53 of 63 colorectal cancers and 43 of 53 pancreatic ductal adenocarcinomas and high VASP levels correlate with liver metastasis and reduced patient survival. In a Matrigel-based 3-dimensional (3D) culture model, short hairpin RNA (shRNA)-mediated VASP knockdown in colorectal cancer cells (KM12L4, HCT116, and HT29) and pancreatic cancer cells (L3.6 and MIA PaCa-1) suppresses the growth of 3D cancer spheroids. Mechanistic studies reveal that VASP knockdown suppresses FAK phosphorylation and YAP1/TAZ protein levels, but not Akt or Erk-related pathways and that YAP1/TAZ proteins are enhanced by the β1-integrin-FAK signaling. Additionally, VASP regulates the β1-integrin-FAK-YAP1/TAZ signaling by at least two mechanisms: (1) promoting ECM-mediated β1-integrin activation and (2) regulating YAP1/TAZ dephosphorylation at downstream of RhoA to enhance the stability of YAP1/TAZ proteins. In agreement with these, preclinical studies with two experimental liver metastasis mouse models demonstrate that VASP knockdown suppresses GI cancer liver metastasis, β1-integrin activation, and YAP1/TAZ levels of metastatic cancer cells. Together, our data support VASP as a treatment target for liver metastasis of colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Hongbin Zhang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Jinhua Piao
- Department of Pathology, St. Louis University, School of Medicine, St. Louis, MO 63104 USA
| | - Selvaraj Muthusamy
- Department of Pathology, St. Louis University, School of Medicine, St. Louis, MO 63104 USA
| | - Lei Wang
- Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Yibin Deng
- Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Wei Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | | | | | - Jinping Lai
- Department of Pathology, St. Louis University, School of Medicine, St. Louis, MO 63104 USA
| | - Raul Urrutia
- GI Research Unit, Mayo Clinic, Rochester, MN 55905 USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| |
Collapse
|
66
|
Forest E, Logeay R, Géminard C, Kantar D, Frayssinoux F, Heron-Milhavet L, Djiane A. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs. J Cell Biol 2018; 217:1047-1062. [PMID: 29326287 PMCID: PMC5839784 DOI: 10.1083/jcb.201705107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/05/2022] Open
Abstract
During development, cell proliferation is regulated, ensuring that tissues reach their correct size and shape. Forest et al. show that the Drosophila melanogaster scaffold protein big bang (Bbg) controls epithelial tissue growth without affecting epithelial polarity and architecture. Bbg interacts with spectrins at the apical cortex and promotes Yki signaling and actomyosin contractility. During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg-mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy–Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth.
Collapse
Affiliation(s)
- Elodie Forest
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Rémi Logeay
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Charles Géminard
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Diala Kantar
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | | | | | - Alexandre Djiane
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| |
Collapse
|
67
|
Sato Y, Nagatoshi K, Hamano A, Imamura Y, Huss D, Uchida S, Lansford R. Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 2017; 144:281-291. [PMID: 28096216 DOI: 10.1242/dev.141259] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022]
Abstract
Cells may exchange information with other cells and tissues by exerting forces on the extracellular matrix (ECM). Fibronectin (FN) is an important ECM component that forms fibrils through cell contacts and creates directionally biased geometry. Here, we demonstrate that FN is deposited as pillars between widely separated germ layers, namely the somitic mesoderm and the endoderm, in quail embryos. Alongside the FN pillars, long filopodia protrude from the basal surfaces of somite epithelial cells. Loss-of-function of Ena/VASP, α5β1-integrins or talin in the somitic cells abolished the FN pillars, indicating that FN pillar formation is dependent on the basal filopodia through these molecules. The basal filopodia and FN pillars are also necessary for proper somite morphogenesis. We identified a new mechanism contributing to FN pillar formation by focusing on cyclic expansion of adjacent dorsal aorta. Maintenance of the directional alignment of the FN pillars depends on pulsatile blood flow through the dorsal aortae. These results suggest that the FN pillars are specifically established through filopodia-mediated and pulsating force-related mechanisms.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kei Nagatoshi
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Hamano
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Yuko Imamura
- Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - David Huss
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Seiichi Uchida
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
68
|
Acevedo LA, Greenwood AI, Nicholson LK. A Noncanonical Binding Site in the EVH1 Domain of Vasodilator-Stimulated Phosphoprotein Regulates Its Interactions with the Proline Rich Region of Zyxin. Biochemistry 2017; 56:4626-4636. [PMID: 28783324 DOI: 10.1021/acs.biochem.7b00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a processive actin polymerase with roles in the control of cell shape and cell migration. Through interaction with the cytoskeletal adaptor protein Zyxin, VASP can localize to damaged stress fibers where it serves to repair and reinforce these structures. VASP localization is mediated by its N-terminal Ena/VASP homology (EVH1) domain, which binds to the (W/F)PxφP motif (most commonly occurring as FPPPP) found in cytoskeletal proteins such as vinculin, lamellipodin, and Zyxin. Sequentially close clusters of four or five of these motifs frequently occur, as in the proline rich region of Zyxin with four such motifs. This suggests that tetrameric VASP might bind very tightly to Zyxin through avidity, with all four EVH1 domains binding to a single Zyxin molecule. Here, quantitative nuclear magnetic resonance titration analysis reveals a dominant bivalent 1:1 (Zyxin:EVH1) interaction between the Zyxin proline rich region and the VASP EVH1 domain that utilizes the EVH1 canonical binding site and a novel secondary binding site on the opposite face of the EVH1 domain. We further show that binding to the secondary binding site is specifically inhibited by mutation of VASP EVH1 domain residue Y39 to E, which mimics Abl-induced phosphorylation of Y39. On the basis of these findings, we propose a model in which phosphorylation of Y39 acts as a stoichiometry switch that governs binding partner selection by the constitutive VASP tetramer. These results have broader implications for other multivalent VASP EVH1 domain binding partners and for furthering our understanding of the role of Y39 phosphorylation in regulating VASP localization and cellular function.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary , Williamsburg, Virginia 23185, United States
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
69
|
Tomatis VM, Josh P, Papadopulos A, Gormal RS, Lanoue V, Martin S, Meunier FA. ENA/VASP proteins regulate exocytosis by mediating myosin VI-dependent recruitment of secretory granules to the cortical actin network. Mol Cell Neurosci 2017; 84:100-111. [PMID: 28784263 DOI: 10.1016/j.mcn.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 10/24/2022] Open
Abstract
In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the ENA/VASP family, as a myosin VI binding partner in PC12 cells, and confirmed that Mena colocalized with myosin VI on SGs. Using a knock-sideways approach to inactivate the ENA/VASP family members by mitochondrial relocation, we revealed a concomitant redistribution of myosin VI. This was ensued by a reduction in the association of myosin VI with SGs, a decreased SG mobility and density in proximity to the plasma membrane as well as decreased evoked exocytosis. These data demonstrate that ENA/VASP proteins regulate SG exocytosis through modulating the activity of myosin VI.
Collapse
Affiliation(s)
- Vanesa M Tomatis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Josh
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
70
|
Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, Burge CB, Wang ET, Gertler FB. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons. Neuron 2017; 95:608-622.e5. [PMID: 28735747 DOI: 10.1016/j.neuron.2017.06.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation.
Collapse
Affiliation(s)
- Marina Vidaki
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Frauke Drees
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanvi Saxena
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erwin Lanslots
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antonios Tatarakis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric T Wang
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
71
|
Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ, Tam ZY, Luo W, Kan S, Viasnoff V, Roca-Cusachs P, Tucker-Kellogg L, Gauthier NC. Membrane tension controls adhesion positioning at the leading edge of cells. J Cell Biol 2017; 216:2959-2977. [PMID: 28687667 PMCID: PMC5584154 DOI: 10.1083/jcb.201611117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/04/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022] Open
Abstract
Pontes et al. show that plasma membrane mechanics exerts an upstream control during cell motility. Variations in plasma membrane tension orchestrate the behavior of the cell leading edge, with increase–decrease cycles in tension promoting adhesion row positioning. Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.
Collapse
Affiliation(s)
- Bruno Pontes
- Mechanobiology Institute, National University of Singapore, Singapore.,Laboratório de Pinças Óticas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore.,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| | - Laurent Gole
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zhi Yang Tam
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Sophie Kan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles Paristech, Paris, France
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Lisa Tucker-Kellogg
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore .,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| |
Collapse
|
72
|
Yu-Kemp HC, Kemp JP, Brieher WM. CRMP-1 enhances EVL-mediated actin elongation to build lamellipodia and the actin cortex. J Cell Biol 2017. [PMID: 28630144 PMCID: PMC5551698 DOI: 10.1083/jcb.201606084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CRMP proteins regulate the cytoskeleton, but the underlying mechanisms are poorly understood. Yu-Kemp et al. show that CRMP-1 helps Ena/VASP proteins elongate actin filaments to assemble actin networks that are necessary for the integrity of epithelial sheets. Cells can control actin polymerization by nucleating new filaments or elongating existing ones. We recently identified CRMP-1 as a factor that stimulates the formation of Listeria monocytogenes actin comet tails, thereby implicating it in actin assembly. We now show that CRMP-1 is a major contributor to actin assembly in epithelial cells, where it works with the Ena/VASP family member EVL to assemble the actin cytoskeleton in the apical cortex and in protruding lamellipodia. CRMP-1 and EVL bind to one another and together accelerate actin filament barbed-end elongation. CRMP-1 also stimulates actin assembly in the presence of VASP and Mena in vitro, but CRMP-1–dependent actin assembly in MDCK cells is EVL specific. Our results identify CRMP-1 as a novel regulator of actin filament elongation and reveal a surprisingly important role for CRMP-1, EVL, and actin polymerization in maintaining the structural integrity of epithelial sheets.
Collapse
Affiliation(s)
- Hui-Chia Yu-Kemp
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - James P Kemp
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
73
|
Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun 2017; 8:15237. [PMID: 28508872 PMCID: PMC5440822 DOI: 10.1038/ncomms15237] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
Studies of the role of actin in tumour progression have highlighted its key contribution in cell softening associated with cell invasion. Here, using a human breast cell line with conditional Src induction, we demonstrate that cells undergo a stiffening state prior to acquiring malignant features. This state is characterized by the transient accumulation of stress fibres and upregulation of Ena/VASP-like (EVL). EVL, in turn, organizes stress fibres leading to transient cell stiffening, ERK-dependent cell proliferation, as well as enhancement of Src activation and progression towards a fully transformed state. Accordingly, EVL accumulates predominantly in premalignant breast lesions and is required for Src-induced epithelial overgrowth in Drosophila. While cell softening allows for cancer cell invasion, our work reveals that stress fibre-mediated cell stiffening could drive tumour growth during premalignant stages. A careful consideration of the mechanical properties of tumour cells could therefore offer new avenues of exploration when designing cancer-targeting therapies. When cells acquire a malignant phenotype they become less stiff and this helps migration and invasion favouring metastasis. Here the authors show that Src-driven cell transformation and transition to a less stiff state follows an event of membrane stiffening due to stress fibres accumulation.
Collapse
|
74
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
75
|
Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T, Freise A, Brühmann S, Kollasser J, Block J, Dimchev G, Geyer M, Schnittler HJ, Brakebusch C, Stradal TEB, Carlier MF, Sixt M, Käs J, Faix J, Rottner K. FMNL formins boost lamellipodial force generation. Nat Commun 2017; 8:14832. [PMID: 28327544 PMCID: PMC5364437 DOI: 10.1038/ncomms14832] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 01/16/2023] Open
Abstract
Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Vanessa Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan Mueller
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tobias Thalheim
- Soft Matter Physics Group, Institut für experimentelle Physik I, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Anika Freise
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jana Kollasser
- Biomedical Institute, BRIC, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jennifer Block
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Matthias Geyer
- Institute of Innate Immunity, Department of Structural Immunology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Cord Brakebusch
- Biomedical Institute, BRIC, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility Group, Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette 91198, France
| | - Michael Sixt
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Josef Käs
- Soft Matter Physics Group, Institut für experimentelle Physik I, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
76
|
Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration. Proc Natl Acad Sci U S A 2017; 114:E2901-E2910. [PMID: 28320969 DOI: 10.1073/pnas.1701886114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.
Collapse
|
77
|
Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 2017; 13:3253-3260. [PMID: 28521432 DOI: 10.3892/ol.2017.5825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
Interleukin-17 (IL-17) and tumor necrosis factor (TNF)-α are able to cooperatively alter the expression levels of a number of genes. In the present study, the mRNA expression levels of hypoxia-inducible factor (HIF)-1α were analyzed in MDA-MB-231 breast cancer cells following treatment with IL-17, TNF-α or the combination of IL-17 and TNF-α. The protein expression levels of HIF-1α and vasodilator-stimulated phosphoprotein (VASP) were evaluated using western blot analysis. The adhesive ability of the cells was determined using an MTT assay following treatment with HIF-1α-small interfering RNA and short hairpin RNA-VASP that were used to suppress the expression levels of HIF-1α and VASP protein, respectively. These results demonstrated that IL-17 augmented TNF-α-induced gene expression of HIF-1α. The combination of IL-17 and TNF-α promoted an increase in HIF-1α expression and a decrease in VASP expression and a reduction in the adhesive ability of cells. These results demonstrated that IL-17 effectively enhanced the TNF-α-induced increase in HIF-1α and inhibited VASP expression, thus reducing the adhesion of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Kuang Changchun
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hu Pengchao
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Su Ke
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wang Ying
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Lei
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
78
|
Gkretsi V, Stylianou A, Stylianopoulos T. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA). Exp Cell Res 2017; 352:281-292. [PMID: 28209486 DOI: 10.1016/j.yexcr.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 11/18/2022]
Abstract
A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM. We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP's involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus.
| |
Collapse
|
79
|
Qu Y, Hahn I, Webb SED, Pearce SP, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 2016; 28:296-308. [PMID: 27881663 PMCID: PMC5231898 DOI: 10.1091/mbc.e16-10-0727] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced rings of cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization. Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.
Collapse
Affiliation(s)
- Yue Qu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen E D Webb
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Simon P Pearce
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom.,School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andreas Prokop
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
80
|
Mena INV dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci Rep 2016; 6:36142. [PMID: 27824079 PMCID: PMC5099927 DOI: 10.1038/srep36142] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023] Open
Abstract
Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B.
Collapse
|
81
|
Tu WW, Ji LD, Qian HX, Zhou M, Zhao JS, Xu J. Tributyltin induces disruption of microfilament in HL7702 cells via MAPK-mediated hyperphosphorylation of VASP. ENVIRONMENTAL TOXICOLOGY 2016; 31:1530-1538. [PMID: 26018654 DOI: 10.1002/tox.22157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/02/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Tributyltin (TBT) has been widely used for various industrial purposes, and it has toxic effects on multiple organs and tissues. Previous studies have found that TBT could induce cytoskeletal disruption, especially of the actin filaments. However, the underlying mechanisms remain unclear. The aim of the present study was to determine whether TBT could induce microfilament disruption using HL7702 cells and then to assess for the total levels of various microfilament-associated proteins; finally, the involvement of the MAPK pathway was investigated. The results showed that after TBT treatment, F-actin began to depolymerize and lost its characteristic filamentous structure. The protein levels of Ezrin and Cofilin remained unchanged, the actin-related protein (ARP) 2/3 levels decreased slightly, and the vasodilator-stimulated phosphoprotein (VASP) decreased dramatically. However, the phosphorylation levels of VASP increased 2.5-fold, and the ratio of phosphorylated-VASP/unphosphorylated-VASP increased 31-fold. The mitogen-activated protein kinases (MAPKs) ERK and JNK were discovered to be activated. Inhibition of ERK and JNK not only largely diminished the TBT-induced hyperphosphorylation of VASP but also recovered the cellular morphology and rescued the cells from death. In summary, this study demonstrates that TBT-induced disruption of actin filaments is caused by the hyperphosphorylation of VASP through MAPK pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1530-1538, 2016.
Collapse
Affiliation(s)
- Wei-Wei Tu
- Department of Preventive Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Hai-Xia Qian
- Department of Preventive Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Mi Zhou
- Department of Preventive Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Jin-Shun Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
| |
Collapse
|
82
|
Balsamo M, Mondal C, Carmona G, McClain LM, Riquelme DN, Tadros J, Ma D, Vasile E, Condeelis JS, Lauffenburger DA, Gertler FB. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 2016; 6:35298. [PMID: 27748415 PMCID: PMC5066228 DOI: 10.1038/srep35298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.
Collapse
Affiliation(s)
- Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chandrani Mondal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Carmona
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leslie M McClain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daisy N Riquelme
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
83
|
Abstract
Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."
Collapse
|
84
|
Du Z, Wang X. Pathology and Pathogenesis of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:193-222. [DOI: 10.1007/978-94-024-0890-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
85
|
Choe JE, Welch MD. Actin-based motility of bacterial pathogens: mechanistic diversity and its impact on virulence. Pathog Dis 2016; 74:ftw099. [PMID: 27655913 DOI: 10.1093/femspd/ftw099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A diverse spectrum of intracellular bacterial pathogens that inhabit the cytosol have evolved the ability to polymerize actin on their surface to power intracellular actin-based motility (ABM). These include species of Listeria, Burkholderia and Rickettsia, as well as Shigella and Mycobacteria Here, we provide an overview of the roles of bacterial ABM in survival and virulence. Moreover, we survey the molecular mechanisms of actin polymerization in host cells and describe how bacterial pathogens mimic or harness the full diversity of these mechanisms for ABM. Finally, we present ABM through a new lens by comparing motility mechanisms between related species of Listeria, Burkholderia, and Rickettsia Through these comparisons, we hope to illuminate how exploitation of different actin polymerization mechanisms influences ABM as well as pathogenicity and virulence in humans and other animals.
Collapse
Affiliation(s)
- Julie E Choe
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| |
Collapse
|
86
|
Rajadurai CV, Havrylov S, Coelho PP, Ratcliffe CDH, Zaoui K, Huang BH, Monast A, Chughtai N, Sangwan V, Gertler FB, Siegel PM, Park M. 5'-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion. J Cell Biol 2016; 214:719-34. [PMID: 27597754 PMCID: PMC5021089 DOI: 10.1083/jcb.201501003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
Invadopodia are membrane protrusions used by cancer cells to remodel and invade the extracellular matrix. Here, Rajadurai et al. show that the lipid phosphatase SHIP2 recruits the Ena/VASP-family actin regulatory protein Mena to stabilize invadopodia membrane protrusions and promote cell invasion. Invadopodia are specialized membrane protrusions that support degradation of extracellular matrix (ECM) by cancer cells, allowing invasion and metastatic spread. Although early stages of invadopodia assembly have been elucidated, little is known about maturation of invadopodia into structures competent for ECM proteolysis. The localized conversion of phosphatidylinositol(3,4,5)-triphosphate and accumulation of phosphatidylinositol(3,4)-bisphosphate at invadopodia is a key determinant for invadopodia maturation. Here we investigate the role of the 5′-inositol phosphatase, SHIP2, and reveal an unexpected scaffold function of SHIP2 as a prerequisite for invadopodia-mediated ECM degradation. Through biochemical and structure-function analyses, we identify specific interactions between SHIP2 and Mena, an Ena/VASP-family actin regulatory protein. We demonstrate that SHIP2 recruits Mena, but not VASP, to invadopodia and that disruption of SHIP2–Mena interaction in cancer cells leads to attenuated capacity for ECM degradation and invasion in vitro, as well as reduced metastasis in vivo. Together, these findings identify SHIP2 as a key modulator of carcinoma invasiveness and a target for metastatic disease.
Collapse
Affiliation(s)
- Charles V Rajadurai
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Serhiy Havrylov
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Colin D H Ratcliffe
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kossay Zaoui
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Bruce H Huang
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Anie Monast
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Naila Chughtai
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Veena Sangwan
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Frank B Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada Department of Medicine, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A1, Canada Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada Department of Medicine, McGill University, Montréal, Québec H3A 1A1, Canada Department of Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
87
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
88
|
Oudin MJ, Miller MA, Klazen JAZ, Kosciuk T, Lussiez A, Hughes SK, Tadros J, Bear JE, Lauffenburger DA, Gertler FB. MenaINV mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis. Mol Biol Cell 2016; 27:3085-3094. [PMID: 27559126 PMCID: PMC5063616 DOI: 10.1091/mbc.e16-04-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Directed cell migration, a key process in metastasis, arises from the combined influence of multiple processes, including chemotaxis-the directional movement of cells to soluble cues-and haptotaxis-the migration of cells on gradients of substrate-bound factors. However, it is unclear how chemotactic and haptotactic pathways integrate with each other to drive overall cell behavior. MenaINV has been implicated in metastasis by driving chemotaxis via dysregulation of phosphatase PTP1B and more recently in haptotaxis via interaction with integrin α5β1. Here we find that MenaINV-driven haptotaxis on fibronectin (FN) gradients requires intact signaling between α5β1 integrin and the epidermal growth factor receptor (EGFR), which is influenced by PTP1B. Furthermore, we show that MenaINV-driven haptotaxis and ECM reorganization both require the Rab-coupling protein RCP, which mediates α5β1 and EGFR recycling. Finally, MenaINV promotes synergistic migratory response to combined EGF and FN in vitro and in vivo, leading to hyperinvasive phenotypes. Together our data demonstrate that MenaINV is a shared component of multiple prometastatic pathways that amplifies their combined effects, promoting synergistic cross-talk between RTKs and integrins.
Collapse
Affiliation(s)
- Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Miles A Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Joelle A Z Klazen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tatsiana Kosciuk
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Alisha Lussiez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Shannon K Hughes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jenny Tadros
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - James E Bear
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, NC 27514
| | - Douglas A Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
89
|
Sakuma C, Saito Y, Umehara T, Kamimura K, Maeda N, Mosca TJ, Miura M, Chihara T. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses. Cell Rep 2016; 16:2289-97. [PMID: 27545887 DOI: 10.1016/j.celrep.2016.07.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 06/05/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo) pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization.
Collapse
Affiliation(s)
- Chisako Sakuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Tropical Medicine, Center for Medical Entomology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | - Yoshie Saito
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoki Umehara
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Kamimura
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Nobuaki Maeda
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Timothy J Mosca
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Building 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takahiro Chihara
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Building 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
90
|
Döppler H, Bastea L, Borges S, Geiger X, Storz P. The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma. Oncotarget 2016; 6:29740-52. [PMID: 26336132 PMCID: PMC4745759 DOI: 10.18632/oncotarget.4965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) signaling is critical for dynamic actin reorganization processes that define the motile phenotype of cells. Here we show that VASP is generally highly expressed in normal breast tissue and breast cancer. We also show that the phosphorylation status of VASP at S322 can be predictive for breast cancer progression to an aggressive phenotype. Our data indicate that phosphorylation at S322 is gradually decreased from normal breast to DCIS, luminal/ER+, HER2+ and basal-like/TN phenotypes. Similarly, the expression levels of PKD2, the kinase that phosphorylates VASP at this site, are decreased in invasive ductal carcinoma samples of all three groups. Overall, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
91
|
Göttgens EL, Span PN, Zegers MM. Roles and Regulation of Epithelial Splicing Regulatory Proteins 1 and 2 in Epithelial-Mesenchymal Transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:163-194. [PMID: 27692175 DOI: 10.1016/bs.ircmb.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transformation of polarized epithelial cells into cells with mesenchymal characteristics by the morphogenetic process of epithelial-mesenchymal transition (EMT) is a well-characterized process essential for embryonic development and associated with cancer progression. EMT is a program driven by changes in gene expression induced by several EMT-specific transcription factors, which inhibit the expression of cell-cell adhesion proteins and other epithelial markers, causing a characteristic loss of cell-cell adhesion, a switch to mesenchymal cell morphology, and increased migratory capabilities. Recently, it has become apparent that in addition to these transcriptionally regulated changes, EMT may also be regulated posttranscriptionally, that is, by alternative splicing. Specifically, the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) have been described as epithelial-specific splicing master regulators specifically involved in EMT-associated alternative splicing. Here, we discuss the regulation of ESRP activity, as well as the evidence supporting a causal role of ESRPs in EMT.
Collapse
Affiliation(s)
- E-L Göttgens
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
92
|
Jodoin JN, Martin AC. Abl suppresses cell extrusion and intercalation during epithelium folding. Mol Biol Cell 2016; 27:2822-32. [PMID: 27440923 PMCID: PMC5025269 DOI: 10.1091/mbc.e16-05-0336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.
Collapse
Affiliation(s)
- Jeanne N Jodoin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
93
|
Abstract
Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Theil Hansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Copenhagen, Denmark
| | - Jan Christiansen
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
94
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
95
|
Krol A, Henle SJ, Goodrich LV. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development 2016; 143:2172-82. [PMID: 27122175 DOI: 10.1242/dev.133678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
Neurons exhibit asymmetric morphologies throughout development - from migration to the elaboration of axons and dendrites - that are correctly oriented for the flow of information. For instance, retinal amacrine cells migrate towards the inner plexiform layer (IPL) and then retract their trailing processes, thereby acquiring a unipolar morphology with a single dendritic arbor restricted to the IPL. Here, we provide evidence that the Fat-like cadherin Fat3 acts during multiple stages of amacrine cell development in mice to orient overall changes in cell shape towards the IPL. Using a time-lapse imaging assay, we found that developing amacrine cells are less directed towards the IPL in the absence of Fat3, during both migration and retraction. Consistent with its predicted role as a cell-surface receptor, Fat3 functions cell-autonomously and is able to influence the cytoskeleton directly through its intracellular domain, which can bind and localize Ena/VASP family actin regulators. Indeed, a change in Ena/VASP protein distribution is sufficient to recapitulate the Fat3 mutant amacrine cell phenotype. Thus, Fat-like proteins might control the polarized development of tissues by sculpting the cytoskeleton of individual cells.
Collapse
Affiliation(s)
- Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
96
|
McConnell RE, Edward van Veen J, Vidaki M, Kwiatkowski AV, Meyer AS, Gertler FB. A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion. J Cell Biol 2016; 213:261-74. [PMID: 27091449 PMCID: PMC5084274 DOI: 10.1083/jcb.201509062] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.
Collapse
Affiliation(s)
- Russell E McConnell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - J Edward van Veen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Marina Vidaki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Adam V Kwiatkowski
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Aaron S Meyer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| |
Collapse
|
97
|
Mariani L, Lussi YC, Vandamme J, Riveiro A, Salcini AE. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1. Development 2016; 143:851-63. [PMID: 26811384 DOI: 10.1242/dev.132985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/16/2016] [Indexed: 12/25/2022]
Abstract
The dynamic regulation of histone modifications is important for modulating transcriptional programs during development. Aberrant H3K4 methylation is associated with neurological disorders, but how the levels and the recognition of this modification affect specific neuronal processes is unclear. Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1, with concomitant higher wsp-1 expression responsible for defective axon guidance. In agreement, overexpression of WSP-1 mimics rbr-2 loss, and its depletion restores normal axon guidance in rbr-2 mutants. NURF-1, an H3K4me3-binding protein and member of the chromatin-remodeling complex NURF, is required for promoting aberrant wsp-1 transcription in rbr-2 mutants and its ablation restores wild-type expression of wsp-1 and axon guidance. Thus, our results establish a precise role for epigenetic regulation in neuronal development by demonstrating a functional link between RBR-2 activity, H3K4me3 levels, the NURF complex and the expression of WSP-1.
Collapse
Affiliation(s)
- Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yvonne C Lussi
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alba Riveiro
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
98
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
99
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
100
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|