51
|
Voronov D, Gromova A, Liu D, Zoukhri D, Medvinsky A, Meech R, Makarenkova HP. Transcription factors Runx1 to 3 are expressed in the lacrimal gland epithelium and are involved in regulation of gland morphogenesis and regeneration. Invest Ophthalmol Vis Sci 2013; 54:3115-25. [PMID: 23532528 DOI: 10.1167/iovs.13-11791] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Lacrimal gland (LG) morphogenesis and repair are regulated by a complex interplay of intrinsic factors (e.g., transcription factors) and extrinsic signals (e.g., soluble growth/signaling factors). Many of these interconnections remain poorly characterized. Runt-related (Runx) factors belong to a small family of heterodimeric transcription factors known to regulate lineage-specific proliferation and differentiation of stem cells. The purpose of this study was to define the expression pattern and the role of Runx proteins in LG development and regeneration. METHODS Expression of epithelial-restricted transcription factors in murine LG was examined using immunostaining, qRT-PCR, and RT(2)Profiler PCR microarrays. The role of Runx transcription factors in LG morphogenesis was studied using siRNA and ex vivo LG cultures. Expression of Runx transcription factors during LG regeneration was assessed using in vivo model of LG regeneration. RESULTS We found that Runx factors are expressed in the epithelial compartment of the LG; in particular, Runx1 was restricted to the epithelium with highest level of expression in ductal and centroacinar cells. Downregulation of Runx1 to 3 expression using Runx-specific siRNAs abolished LG growth and branching and our data suggest that Runx1, 2, and 3 are partially redundant in LG development. In siRNA-treated LG, reduction of branching correlated with reduction of epithelial proliferation, as well as expression of cyclin D1 and the putative epithelial progenitor cell marker cytokeratin-5. Runx1, Runx3, and cytokeratin-5 expression increased significantly in regenerating LG and there was modest increase in Runx2 expression during LG differentiation. CONCLUSIONS Runx1 and 2 are new markers of the LG epithelial lineage and Runx factors are important for normal LG morphogenesis and regeneration.
Collapse
Affiliation(s)
- Dmitry Voronov
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
HUANG YALI, WU GUANGWEN, FAN HUAILING, YE JINXIA, LIU XIANXIANG. Electroacupuncture promotes chondrocyte proliferation via accelerated G1/S transition in the cell cycle. Int J Mol Med 2013; 31:1443-8. [DOI: 10.3892/ijmm.2013.1336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/06/2013] [Indexed: 11/06/2022] Open
|
53
|
CAI LIANGLIANG, YE HONGZHI, YU FANGRONG, LI HUITING, CHEN JIASHOU, LIU XIANXIANG. Effects of Bauhinia championii (Benth.) Benth. polysaccharides on the proliferation and cell cycle of chondrocytes. Mol Med Rep 2013; 7:1624-30. [DOI: 10.3892/mmr.2013.1368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/08/2013] [Indexed: 11/05/2022] Open
|
54
|
Cai L, Ye H, Li X, Lin Y, Yu F, Chen J, Li H, Liu X. Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 2013; 42:1452-8. [PMID: 23404045 DOI: 10.3892/ijo.2013.1816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to identify chemical constituents of volatile oil from Pyrolae herba (PHVO) and evaluate the antiproliferative activity of PHVO against SW1353 human chondrosarcoma cells. The volatile oil from Pyrolae herba was prepared by hydrodistillation and characterized by gas chromatography-mass spectroscopy (GC-MS). A total of 12 components in PHVO were identified representing 81.62% of the total integrated chromatographic peaks. The major compounds were found to be n-hexadecanoic acid (29.29%), cedrol (17.08%), 6,10,14-trimethyl-2-pentadecanone (9.59%) and cis-9-octadecadienoic acid (8.23%). The antiproliferative activity of PHVO against SW1353 cells was investigated using MTT assay, flow cytometry and western blot analysis. Our results demonstrated that PHVO inhibited SW1353 cell viability in a dose- and time-dependent manner. Furthermore, PHVO treatment decreased the number of cells entering the S phase and caused a reduction in the expression of cyclin D1, cyclin-dependent kinase (CDK)4 and CDK6, whereas it caused an increase in the expression of p21. PHVO demonstrated potent antitumor activity against SW1353 cells, suggesting its potential use as a therapeutic agent in the treatment of chondrosarcoma.
Collapse
Affiliation(s)
- Liangliang Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
55
|
YU FANGRONG, LI XIHAI, CAI LIANGLIANG, LI HUITING, CHEN JIASHOU, WONG XIAPING, XU HUIFENG, ZHENG CHUNSONG, LIU XIANXIANG, YE HONGZHI. Achyranthes bidentata polysaccharides induce chondrocyte proliferation via the promotion of the G1/S cell cycle transition. Mol Med Rep 2013; 7:935-40. [DOI: 10.3892/mmr.2013.1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/24/2012] [Indexed: 11/06/2022] Open
|
56
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
57
|
Zhang W, Chen J, Zhang S, Ouyang HW. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Res Ther 2012; 14:221. [PMID: 22971952 PMCID: PMC3580589 DOI: 10.1186/ar4025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cartilage repair tissue is usually accompanied by chondrocyte hypertrophy and osseous overgrowths, and a role for parathyroid hormone-related protein (PTHrP) in inhibiting chondrocytes from hypertrophic differentiation during the process of endochondral ossification has been demonstrated. However, application of PTHrP in cartilage repair has not been extensively considered. This review systemically summarizes for the first time the inhibitory function of PTHrP on chondrocyte hypertrophy in articular cartilage and during the process of endochondral ossification, as well as the process of mesenchymal stem cell chondrogenic differentiation. Based on the literature review, the strategy of using PTHrP for articular cartilage repair is suggested, which is instructive for clinical treatment of cartilage injuries as well as osteoarthritis.
Collapse
|
58
|
Liu Y, Zhou J, Zhao W, Li X, Jiang R, Liu C, Guo FJ. XBP1S associates with RUNX2 and regulates chondrocyte hypertrophy. J Biol Chem 2012; 287:34500-13. [PMID: 22865880 DOI: 10.1074/jbc.m112.385922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of chondrogenesis. XBP1S is differentially expressed during BMP2-stimulated chondrocyte differentiation and exhibits prominent expression in growth plate chondrocytes. This expression is probably due to the activation of the XBP1 gene by ATF6 and splicing by IRE1a. ATF6 directly binds to the 5'-flanking regulatory region of the XBP1 gene at its consensus binding elements. Overexpression of XBP1S accelerates chondrocyte hypertrophy, as revealed by enhanced expression of type II collagen, type X collagen, and RUNX2; however, knockdown of XBP1S via the RNAi approach abolishes hypertrophic chondrocyte differentiation. In addition, XBP1S associates with RUNX2 and enhances RUNX2-induced chondrocyte hypertrophy. Altered expression of XBP1S in chondrocyte hypertrophy was accompanied by altered levels of IHH (Indian hedgehog) and PTHrP (parathyroid hormone-related peptide). Collectively, XBP1S may be a novel regulator of hypertrophic chondrocyte differentiation by 1) acting as a cofactor of RUNX2 and 2) affecting IHH/PTHrP signaling.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
59
|
Gruber HE, Riley FE, Hoelscher GL, Bayoumi EM, Ingram JA, Ramp WK, Bosse MJ, Kellam JF. Osteogenic and chondrogenic potential of biomembrane cells from the PMMA-segmental defect rat model. J Orthop Res 2012; 30:1198-212. [PMID: 22246998 DOI: 10.1002/jor.22047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
A layer of cells (the "biomembrane") has been identified in large segmental defects between bone and surgically placed methacrylate spacers or antibiotic-impregnated cement beads. We hypothesize that this contains a pluripotent stem cell population with potential valuable applications in orthopedic tissue engineering. Objectives using biomembranes harvested from rat segmental defects were to: (1) Culture biomembrane cells in specialized media to direct progenitor cells along bone or cartilage cell differentiation lineages; (2) evaluate harvested biomembranes for mesenchymal stem cell markers, and (3) define relevant gene expression patterns in harvested biomembranes using microarray analysis. Culture in osteogenic media produced mineralized nodules; culture in chondrogenic media produced masses containing chondroitin sulfate/sulfated proteoglycans. Molecular analysis of biomembrane cells versus control periosteum showed significant upregulation of key genes functioning in mesenchymal stem cell differentiation, development, maintenance, and proliferation. Results identified significant upregulation of WNT receptor signaling pathway genes and significant upregulation of BMP signaling pathway genes. Findings confirm that the biomembrane has a pluripotent stem cell population. The ability to heal large bone defects is clinically challenging, and novel tissue engineering uses of the biomembrane hold great promise in treating non-unions, open fractures with large bone loss and/or infections, and defects associated with tumor resection.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Yang Z, Zou Y, Guo XM, Tan HS, Denslin V, Yeow CH, Ren XF, Liu TM, Hui JHP, Lee EH. Temporal activation of β-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated. Stem Cells Dev 2012; 21:1966-1976. [PMID: 22133004 PMCID: PMC3396140 DOI: 10.1089/scd.2011.0376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022] Open
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering. In vitro predifferentiation of MSCs has been explored as a means to enhance MSC-based articular cartilage repair. However, there remain challenges to control and prevent the premature progression of MSC-derived chondrocytes to the hypertrophy. This study investigated the temporal effect of transforming growth factor (TGF)-β and β-catenin signaling co-activation during MSC chondrogenic differentiation and evaluated the influence of these predifferentiation conditions to subsequent phenotypic development of the cartilage. MSCs were differentiated in chondrogenic medium that contained either TGFβ alone, TGFβ with transient β-catenin coactivation, or TGFβ with continuous β-catenin coactivation. After in vitro differentiation, the pellets were transplanted into SCID mice. Both coactivation protocols resulted in the enhancement of chondrogenic differentiation of MSCs. Compared with TGFβ activation, transient coactivation of TGFβ-induction with β-catenin activation resulted in heightened hypertrophy and formed highly ossified tissues with marrow-like hematopoietic tissue in vivo. The continuous coactivation of the 2 signaling pathways, however, resulted in inhibition of progression to hypertrophy, marked by the suppression of type X collagen, Runx2, and alkaline phosphatase expression, and did not result in ossified tissue in vivo. Chondrocytes of the continuous co-activation samples secreted significantly more parathyroid hormone-related protein (PTHrP) and expressed cyclin D1. Our results suggest that temporal co-activation of the TGFβ signaling pathway with β-catenin can yield cartilage of different phenotype, represents a potential MSC predifferentiation protocol before clinical implantation, and has potential applications for the engineering of cartilage tissue.
Collapse
Affiliation(s)
- Zheng Yang
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Zou
- Department of Oral Maxillo-Facial Surgery, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Xi Min Guo
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hwee San Tan
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vinitha Denslin
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chen Hua Yeow
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Xia Fei Ren
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Tong Ming Liu
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - James HP Hui
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
61
|
Abstract
Emerging evidence demonstrates that RUNX3 is a tumor suppressor in breast cancer. Inactivation of RUNX3 in mice results in spontaneous mammary gland tumors, and decreased or silenced expression of RUNX3 is frequently found in breast cancer cell lines and human breast cancer samples. However, the underlying mechanism for initiating RUNX3 inactivation in breast cancer remains elusive. Here, we identify prolyl-isomerase Pin1, which is often over-expressed in breast cancer, as a key regulator of RUNX3 inactivation. In human breast cancer cell lines and breast cancer samples, expression of Pin1 inversely correlates with the expression of RUNX3. In addition, Pin1 recognizes four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its WW domain. Binding of Pin1 to RUNX3 suppresses the transcriptional activity of RUNX3. Furthermore, Pin1 reduces the cellular levels of RUNX3 in an isomerase activity-dependent manner by inducing the ubiquitination and proteasomal degradation of RUNX3. Knocking down Pin1 enhances the cellular levels and transcriptional activity of RUNX3 by inhibiting the ubiquitination and degradation of RUNX3. Our results identify Pin1 as a new regulator of RUNX3 inactivation in breast cancer.
Collapse
|
62
|
Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Eng Part A 2011; 18:715-24. [PMID: 21988555 DOI: 10.1089/ten.tea.2011.0455] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.
Collapse
Affiliation(s)
- Liming Bian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
63
|
Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011; 211:109-21. [PMID: 21642379 DOI: 10.1530/joe-11-0048] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endochondral ossification is the process that results in both the replacement of the embryonic cartilaginous skeleton during organogenesis and the growth of long bones until adult height is achieved. Chondrocytes play a central role in this process, contributing to longitudinal growth through a combination of proliferation, extracellular matrix (ECM) secretion and hypertrophy. Terminally differentiated hypertrophic chondrocytes then die, allowing the invasion of a mixture of cells that collectively replace the cartilage tissue with bone tissue. The behaviour of growth plate chondrocytes is tightly regulated at all stages of endochondral ossification by a complex network of interactions between circulating hormones (including GH and thyroid hormone), locally produced growth factors (including Indian hedgehog, WNTs, bone morphogenetic proteins and fibroblast growth factors) and the components of the ECM secreted by the chondrocytes (including collagens, proteoglycans, thrombospondins and matrilins). In turn, chondrocytes secrete factors that regulate the behaviour of the invading bone cells, including vascular endothelial growth factor and receptor activator of NFκB ligand. This review discusses how the growth plate chondrocyte contributes to endochondral ossification, with some emphasis on recent advances.
Collapse
Affiliation(s)
- E J Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
64
|
Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011; 32:6425-34. [PMID: 21652067 PMCID: PMC3134110 DOI: 10.1016/j.biomaterials.2011.05.033] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/10/2011] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair and members of the transforming growth factor-beta (TGF-β) superfamily are a key mediator of MSC chondrogenesis. While TGF-β mediated MSC chondrogenesis is well established in in vitro pellet or hydrogel cultures, clinical translation will require effective delivery of TGF-βs in vivo. Here, we investigated the co-encapsulation of TGF-β3 containing alginate microspheres with human MSCs in hyaluronic acid (HA) hydrogels towards the development of implantable constructs for cartilage repair. TGF-β3 encapsulated in alginate microspheres with nanofilm coatings showed significantly reduced initial burst release compared to uncoated microspheres, with release times extending up to 6 days. HA hydrogel constructs seeded with MSCs and TGF-β3 containing microspheres developed comparable mechanical properties and cartilage matrix content compared to constructs supplemented with TGF-β3 continuously in culture media, whereas constructs with TGF-β3 directly encapsulated in the gels without microspheres had inferior properties. When implanted subcutaneously in nude mice, constructs containing TGF-β3 microspheres resulted in superior cartilage matrix formation when compared to groups without TGF-β3 or with TGF-β3 added directly to the gel. However, calcification was observed in implanted constructs after 8 weeks of subcutaneous implantation. To prevent this, the co-delivery of parathyroid hormone-related protein (PTHrP) with TGF-β3 in alginate microspheres was pursued, resulting in partially reduced calcification. This study demonstrates that the controlled local delivery of TGF-β3 is essential to neocartilage formation by MSCs and that further optimization is needed to avert the differentiation of chondrogenically induced MSCs towards a hypertrophic phenotype.
Collapse
Affiliation(s)
- Liming Bian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - David Y. Zhai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Elena Tous
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Reena Rai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
- McKay Orthopedic Research Laboratory, Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-3294; Fax: 215-573-2133]
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA [Tel: 215-898-8537; Fax: 215-573-2071]
| |
Collapse
|
65
|
Zou X, Shen J, Chen F, Ting K, Zheng Z, Pang S, Zara J, Adams JS, Soo C, Zhang X. NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett 2011; 585:2410-8. [PMID: 21723284 PMCID: PMC3209538 DOI: 10.1016/j.febslet.2011.06.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 11/23/2022]
Abstract
Nel-like protein 1 (NELL-1) is an osteoinductive molecule associated with premature calvarial suture closure. Here we identified apoptosis related protein 3 (APR3), a membrane protein known as a proliferation suppressor, as a binding protein of NELL-1 by biopanning. NELL-1 and APR3 colocalized on the nuclear envelope of human osteoblasts. NELL-1 significantly inhibited proliferation of osteoblasts co-transfected with APR3 through further down-regulation of Cyclin D1. The co-expression of NELL-1 and APR3 enhanced Ocn and Bsp expression and mineralization. RNAi of APR3 significantly reduced the differentiation effect of NELL-1. These findings suggest that the effects of NELL-1 on osteoblastic differentiation and proliferation are partly through binding to APR3.
Collapse
Affiliation(s)
- Xuan Zou
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310029, PR China
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jia Shen
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Feng Chen
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zhong Zheng
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Shen Pang
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Janette Zara
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - John S Adams
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chia Soo
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW To discuss the most recent findings of growth plate regulation and physiology. The mechanism of endochondrial bone growth is incompletely understood and continues to be an active area of research. RECENT FINDINGS In this review, new understandings of growth plate chondrocyte regulation of proliferation, differentiation and ossification are discussed. Through genetic studies potential signaling pathways are proposed and new insights into hormonal influences on growth are offered. New potential genetic pathways regulating growth are suggested and finally skeletal dysplasia and potential emerging treatment are considered. SUMMARY The findings discussed here continue to build the understanding of the mechanisms of growth. As our knowledge increases potential treatments for growth inhibiting conditions can be developed.
Collapse
Affiliation(s)
- Rose Marino
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
67
|
Bian L, Zhai DY, Mauck RL, Burdick JA. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 2011; 17:1137-45. [PMID: 21142648 DOI: 10.1089/ten.tea.2010.0531] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair; however, it still remains a challenge to recapitulate the functional properties of native articular cartilage using only MSCs. Additionally, MSCs may exhibit a hypertrophic phenotype under chondrogenic induction, resulting in calcification after ectopic transplantation. With this in mind, the objective of this study was to assess whether the addition of chondrocytes to MSC cultures influences the properties of tissue-engineered cartilage and MSC hypertrophy when cultured in hyaluronic acid hydrogels. Mixed cell populations (human MSCs and human chondrocytes at a ratio of 4:1) were encapsulated in the hydrogels and exhibited significantly higher Young's moduli, dynamic moduli, glycosaminoglycan levels, and collagen content than did constructs seeded with only MSCs or chondrocytes. Furthermore, the deposition of collagen X, a marker of MSC hypertrophy, was significantly lower in the coculture constructs than in the constructs seeded with MSCs alone. When MSCs and chondrocytes were cultured in distinct gels, but in the same wells, there was no improvement in biomechanical and biochemical properties of the engineered tissue, implying that a close proximity is essential. This approach can be used to improve the properties and prevent calcification of engineered cartilage formed from MSC-seeded hydrogels with the addition of lower fractions of chondrocytes, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Liming Bian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
68
|
Iwatani K, Fujimoto T, Ito T. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction. Biochem Biophys Res Commun 2010; 400:426-31. [PMID: 20801098 DOI: 10.1016/j.bbrc.2010.08.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.
Collapse
Affiliation(s)
- Kazunori Iwatani
- Division of Pathology and Experimental Medicine, Graduate School of Life Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto-shi 861-8556, Japan
| | | | | |
Collapse
|
69
|
Abstract
The homologous to the E6-associated protein carboxyl terminus (HECT) domain E3 ubiquitin ligase Smurf1 is the first E3 ligase to be implicated in regulating bone cell function. The involvement of Smurf1 in multiple signaling pathways and pathological conditions is presently an area of extensive scientific interest. This review highlights recent works exploring Smurf-regulated biological processes in bone cells and highlights recent discoveries surrounding the regulatory mechanisms modulating its catalytic activity and substrate recognition capability. Moreover, we discuss the relevance of targeting the HECT E3s through the development of small-molecule inhibitors as an anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology, University of Rochester School of Medicine, Rochester, New York 14642
- Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Ming Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
- Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, New York 14642
| | - Di Chen
- Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
- Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, New York 14642
| |
Collapse
|
70
|
Growth-plate cartilage in chronic renal failure. Pediatr Nephrol 2010; 25:643-9. [PMID: 19816714 DOI: 10.1007/s00467-009-1307-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 12/13/2022]
Abstract
Bone growth occurs in the growth-plate cartilage located at the ends of long bones. Changes in the architecture, abnormalities in matrix organization, reduction in protein staining and RNA expression of factors involved in cell signaling have been described in the growth-plate cartilage of nephrectomized animals. These changes can lead to a smaller growth plate associated with decrease in chondrocyte proliferation, delayed hypertrophy, and prolonged initiation of mineralization and vascular invasion. As a result, chronic renal failure can result in stunted body growth and skeletal deformities. Multiple etiologic factors can contribute to impaired bone growth in renal failure, including suboptimal nutrition, metabolic acidosis, and secondary hyperparathyroidism. Recent findings have also shown the tight connection between chondro/osteogenesis, hematopoiesis, and immunogenesis.
Collapse
|
71
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- J H Jonason
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
72
|
Yan Y, Tang D, Chen M, Huang J, Xie R, Jonason JH, Tan X, Hou W, Reynolds D, Hsu W, Harris SE, Puzas JE, Awad H, O'Keefe RJ, Boyce BF, Chen D. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 2009; 122:3566-78. [PMID: 19737815 DOI: 10.1242/jcs.051904] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To investigate the role of Wnt-beta-catenin signaling in bone remodeling, we analyzed the bone phenotype of female Axin2-lacZ knockout (KO) mice. We found that trabecular bone mass was significantly increased in 6- and 12-month-old Axin2 KO mice and that bone formation rates were also significantly increased in 6-month-old Axin2 KO mice compared with wild-type (WT) littermates. In vitro studies were performed using bone marrow stromal (BMS) cells isolated from 6-month-old WT and Axin2 KO mice. Osteoblast proliferation and differentiation were significantly increased and osteoclast formation was significantly reduced in Axin2 KO mice. Nuclear beta-catenin protein levels were significantly increased in BMS cells derived from Axin2 KO mice. In vitro deletion of the beta-catenin gene under Axin2 KO background significantly reversed the increased alkaline phosphatase activity and the expression of osteoblast marker genes observed in Axin2 KO BMS cells. We also found that mRNA expression of Bmp2 and Bmp4 and phosphorylated Smad1/5 protein levels were significantly increased in BMS cells derived from Axin2 KO mice. The chemical compound BIO, an inhibitor of glycogen synthase kinase 3beta, was utilized for in vitro signaling studies in which upregulated Bmp2 and Bmp4 expression was measured in primary calvarial osteoblasts. Primary calvarial osteoblasts were isolated from Bmp2(fx/fx);Bmp4(fx/fx) mice and infected with adenovirus-expressing Cre recombinase. BIO induced Osx, Col1, Alp and Oc mRNA expression in WT cells and these effects were significantly inhibited in Bmp2/4-deleted osteoblasts, suggesting that BIO-induced Osx and marker gene expression were Bmp2/4-dependent. We further demonstrated that BIO-induced osteoblast marker gene expression was significantly inhibited by Osx siRNA. Taken together, our findings demonstrate that Axin2 is a key negative regulator in bone remodeling in adult mice and regulates osteoblast differentiation through the beta-catenin-BMP2/4-Osx signaling pathway in osteoblasts.
Collapse
Affiliation(s)
- Ying Yan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|