51
|
Rho GTPase Signaling Activates Microtubule Severing to Promote Microtubule Ordering in Arabidopsis. Curr Biol 2013; 23:290-7. [DOI: 10.1016/j.cub.2013.01.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/16/2023]
|
52
|
Vineyard L, Elliott A, Dhingra S, Lucas JR, Shaw SL. Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells. THE PLANT CELL 2013; 25:662-76. [PMID: 23444330 PMCID: PMC3608785 DOI: 10.1105/tpc.112.107326] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 05/21/2023]
Abstract
The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell's midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces.
Collapse
Affiliation(s)
- Laura Vineyard
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Sonia Dhingra
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Jessica R. Lucas
- Department of Biology, Santa Clara University, Santa Clara, California 95053
| | - Sidney L. Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
- Address correspondence to
| |
Collapse
|
53
|
Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci U S A 2012; 109:12586-91. [PMID: 22802643 DOI: 10.1073/pnas.1202659109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many types of embryos' bodyplans exhibit consistently oriented laterality of the heart, viscera, and brain. Errors of left-right patterning present an important class of human birth defects, and considerable controversy exists about the nature and evolutionary conservation of the molecular mechanisms that allow embryos to reliably orient the left-right axis. Here we show that the same mutations in the cytoskeletal protein tubulin that alter asymmetry in plants also affect very early steps of left-right patterning in nematode and frog embryos, as well as chirality of human cells in culture. In the frog embryo, tubulin α and tubulin γ-associated proteins are required for the differential distribution of maternal proteins to the left or right blastomere at the first cell division. Our data reveal a remarkable molecular conservation of mechanisms initiating left-right asymmetry. The origin of laterality is cytoplasmic, ancient, and highly conserved across kingdoms, a fundamental feature of the cytoskeleton that underlies chirality in cells and multicellular organisms.
Collapse
|
54
|
Nakamura M, Yagi N, Kato T, Fujita S, Kawashima N, Ehrhardt DW, Hashimoto T. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:216-25. [PMID: 22404201 DOI: 10.1111/j.1365-313x.2012.04988.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Eren EC, Gautam N, Dixit R. Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:144-54. [PMID: 22266809 DOI: 10.1002/cm.21009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 11/11/2022]
Abstract
There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with quantitative data from biological experiments in order to test the validity of the models and to further improve them. It is our hope that this review will serve to provide guidelines for how to combine quantitative and experimental techniques to develop higher-level models of the plant cytoskeleton in the future.
Collapse
Affiliation(s)
- Ezgi Can Eren
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
56
|
Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D, Pastuglia M. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. THE PLANT CELL 2012; 24:178-91. [PMID: 22286137 PMCID: PMC3289559 DOI: 10.1105/tpc.111.089748] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/29/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells.
Collapse
Affiliation(s)
- Stéphanie Drevensek
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Magali Goussot
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Yann Duroc
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Anna Christodoulidou
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Sylvie Steyaert
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Estelle Schaefer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Evelyne Duvernois
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Olivier Grandjean
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | - Marylin Vantard
- Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, 38054 Grenoble, France
| | - David Bouchez
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
- Address correspondence to
| | - Martine Pastuglia
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| |
Collapse
|
57
|
Banora MY, Rodiuc N, Baldacci-Cresp F, Smertenko A, Bleve-Zacheo T, Mellilo MT, Karimi M, Hilson P, Evrard JL, Favery B, Engler G, Abad P, de Almeida Engler J. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization. PLoS Pathog 2011; 7:e1002343. [PMID: 22144887 PMCID: PMC3228788 DOI: 10.1371/journal.ppat.1002343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/15/2011] [Indexed: 01/05/2023] Open
Abstract
Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2) and two γ-tubulin complex proteins genes (GCP3 and GCP4) are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.
Collapse
Affiliation(s)
- Mohamed Youssef Banora
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Natalia Rodiuc
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Fabien Baldacci-Cresp
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Andrei Smertenko
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | | | | | - Mansour Karimi
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Pierre Hilson
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Jean-Luc Evrard
- Institut de Biologie Moléculaire des Plantes, CNRS, Strasbourg, France
| | - Bruno Favery
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Gilbert Engler
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Pierre Abad
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Janice de Almeida Engler
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, INRA-CNRS-UNS, Sophia Antipolis, France
| |
Collapse
|
58
|
Panteris E, Adamakis IDS, Voulgari G, Papadopoulou G. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants. Cytoskeleton (Hoboken) 2011; 68:401-13. [PMID: 21721142 DOI: 10.1002/cm.20522] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University, Thessaloniki, Macedonia, Greece.
| | | | | | | |
Collapse
|
59
|
Ambrose C, Wasteneys GO. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana. PLoS One 2011; 6:e27423. [PMID: 22110647 PMCID: PMC3212562 DOI: 10.1371/journal.pone.0027423] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/17/2011] [Indexed: 01/03/2023] Open
Abstract
Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3) localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey O. Wasteneys
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
60
|
Motose H, Hamada T, Yoshimoto K, Murata T, Hasebe M, Watanabe Y, Hashimoto T, Sakai T, Takahashi T. NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:993-1005. [PMID: 21605211 DOI: 10.1111/j.1365-313x.2011.04652.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates β-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of β-tubulins.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nat Struct Mol Biol 2011; 18:915-9. [PMID: 21725292 DOI: 10.1038/nsmb.2083] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/03/2011] [Indexed: 11/08/2022]
Abstract
Microtubule nucleation in all eukaryotes involves γ-tubulin small complexes (γTuSCs) that comprise two molecules of γ-tubulin bound to γ-tubulin complex proteins (GCPs) GCP2 and GCP3. In many eukaryotes, multiple γTuSCs associate with GCP4, GCP5 and GCP6 into large γ-tubulin ring complexes (γTuRCs). Recent cryo-EM studies indicate that a scaffold similar to γTuRCs is formed by lateral association of γTuSCs, with the C-terminal regions of GCP2 and GCP3 binding γ-tubulin molecules. However, the exact role of GCPs in microtubule nucleation remains unknown. Here we report the crystal structure of human GCP4 and show that its C-terminal domain binds directly to γ-tubulin. The human GCP4 structure is the prototype for all GCPs, as it can be precisely positioned within the γTuSC envelope, revealing the nature of protein-protein interactions and conformational changes regulating nucleation activity.
Collapse
|
62
|
A QTL Study for Regions Contributing to Arabidopsis thaliana Root Skewing on Tilted Surfaces. G3-GENES GENOMES GENETICS 2011; 1:105-15. [PMID: 22384323 PMCID: PMC3276130 DOI: 10.1534/g3.111.000331] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
Abstract
Plant root systems must grow in a manner that is dictated by endogenous genetic pathways, yet sensitive to environmental input. This allows them to provide the plant with water and nutrients while navigating a heterogeneous soil environment filled with obstacles, toxins, and pests. Gravity and touch, which constitute important cues for roots growing in soil, have been shown to modulate root architecture by altering growth patterns. This is illustrated by Arabidopsis thaliana roots growing on tilted hard agar surfaces. Under these conditions, the roots are exposed to both gravity and touch stimulation. Consequently, they tend to skew their growth away from the vertical and wave along the surface. This complex growth behavior is believed to help roots avoid obstacles in nature. Interestingly, A. thaliana accessions display distinct growth patterns under these conditions, suggesting the possibility of using this variation as a tool to identify the molecular mechanisms that modulate root behavior in response to their mechanical environment. We have used the Cvi/Ler recombinant inbred line population to identify quantitative trait loci that contribute to root skewing on tilted hard agar surfaces. A combination of fine mapping for one of these QTL and microarray analysis of expression differences between Cvi and Ler root tips identifies a region on chromosome 2 as contributing to root skewing on tilted surfaces, potentially by modulating cell wall composition.
Collapse
|
63
|
Nuclear behavior, cell polarity, and cell specification in the female gametophyte. ACTA ACUST UNITED AC 2011; 24:123-36. [PMID: 21336612 DOI: 10.1007/s00497-011-0161-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/15/2011] [Indexed: 12/18/2022]
Abstract
In flowering plants, the haploid gamete-forming generation comprises only a few cells and develops within the reproductive organs of the flower. The female gametophyte has become an attractive model system to study the genetic and molecular mechanisms involved in pattern formation and gamete specification. It originates from a single haploid spore through three free nuclear division cycles, giving rise to four different cell types. Research over recent years has allowed to catch a glimpse of the mechanisms that establish the distinct cell identities and suggests dynamic cell-cell communication to orchestrate not only development among the cells of the female gametophyte but also the interaction between male and female gametophytes. Additionally, cytological observations and mutant studies have highlighted the importance of nuclei migration- and positioning for patterning the female gametophyte. Here we review current knowledge on the mechanisms of cell specification in the female gametophyte, emphasizing the importance of positional cues for the establishment of distinct molecular profiles.
Collapse
|
64
|
Lloyd C. Dynamic Microtubules and the Texture of Plant Cell Walls. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:287-329. [DOI: 10.1016/b978-0-12-386043-9.00007-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
65
|
Vaughn LM, Baldwin KL, Jia G, Verdonk JC, Strohm AK, Masson PH. The Cytoskeleton and Root Growth Behavior. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
|
67
|
|
68
|
Liu B, Ho CMK, Lee YRJ. Microtubule Reorganization during Mitosis and Cytokinesis: Lessons Learned from Developing Microgametophytes in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:27. [PMID: 22639587 PMCID: PMC3355579 DOI: 10.3389/fpls.2011.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/21/2011] [Indexed: 05/13/2023]
Abstract
In angiosperms, mitosis and cytokinesis take place in the absence of structurally defined microtubule-organizing centers and the underlying mechanisms are largely unknown. In the spindle and phragmoplast, microtubule reorganization depends on microtubule-interacting factors like the γ-tubulin complex. Because of their critical functions in cell division, loss-of-function mutations in the corresponding genes are often homozygous or sporophytic lethal. However, a number of mutations like gem1, gcp2, and nedd1 can be maintained in heterozygous mutants in Arabidopsis thaliana. When mutant microspores produced by a heterozygous parent undergo pollen mitosis I, they are amenable for phenotypic characterization by fluorescence microscopy. The results would allow us to pinpoint at specific functions of particular proteins in microtubule reorganization that are characteristic to specific stages of mitosis and cytokinesis. Conclusions made in the developing microgametophytes can be extrapolated to somatic cells regarding mechanisms that regulate nuclear migration, spindle pole formation, phragmoplast assembly, and cell division plane determination.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of CaliforniaDavis, CA, USA
- *Correspondence: Bo Liu, Department of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. e-mail:
| | | | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of CaliforniaDavis, CA, USA
| |
Collapse
|
69
|
Nakamura M, Ehrhardt DW, Hashimoto T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 2010; 12:1064-70. [DOI: 10.1038/ncb2110] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
|
70
|
Soga K, Yamaguchi A, Kotake T, Wakabayashi K, Hoson T. 1-aminocyclopropane-1-carboxylic acid (ACC)-induced reorientation of cortical microtubules is accompanied by a transient increase in the transcript levels of gamma-tubulin complex and katanin genes in azuki bean epicotyls. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1165-71. [PMID: 20451287 DOI: 10.1016/j.jplph.2010.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 05/10/2023]
Abstract
The effects of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, on growth, orientation of cortical microtubules, and the transcript levels of gamma-tubulin complex (VaTUG and VaGCP3) and katanin (VaKTN1) genes in azuki bean (Vigna angularis) epicotyls were examined. ACC inhibited elongation growth and stimulated lateral growth of epicotyls dose dependently. It also reduced the percentage of cells with transverse microtubules and increased the percentage of cells with longitudinal microtubules. A significant change in elongation and lateral growth was detected within 1 and 1.5 h after the start of 10(-5) M ACC treatment, respectively. On the other hand, the reorientation of cortical microtubules from transverse to longitudinal direction began within 0.5 h, and continued until 2 h after the start of ACC treatment. ACC at 10(-5) M increased the transcript level of VaTUG, VaGCP3 and VaKTN1 within 0.5 h, and the levels of VaTUG and VaGCP3 became maximum at 1h and that of VaKTN1 at 1.5 h, followed by a decrease to the control level. These results suggest that ACC transiently increases the transcript levels of gamma-tubulin complex and katanin genes, which may facilitate reorientation of cortical microtubules and modification of growth anisotropy from elongation to lateral growth in azuki bean epicotyls.
Collapse
Affiliation(s)
- Kouichi Soga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.
| | | | | | | | | |
Collapse
|
71
|
Eren EC, Dixit R, Gautam N. A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Mol Biol Cell 2010; 21:2674-84. [PMID: 20519434 PMCID: PMC2912353 DOI: 10.1091/mbc.e10-02-0136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We use a 3D computer simulation model that is based on experimental data to understand how the noncentrosomal plant cortical microtubules self-organize into specific ordered patterns in both wild-type and mutant plants. The noncentrosomal cortical microtubules (CMTs) of plant cells self-organize into a parallel three-dimensional (3D) array that is oriented transverse to the cell elongation axis in wild-type plants and is oblique in some of the mutants that show twisted growth. To study the mechanisms of CMT array organization, we developed a 3D computer simulation model based on experimentally observed properties of CMTs. Our computer model accurately mimics transverse array organization and other fundamental properties of CMTs observed in rapidly elongating wild-type cells as well as the defective CMT phenotypes observed in the Arabidopsis mor1-1 and fra2 mutants. We found that CMT interactions, boundary conditions, and the bundling cutoff angle impact the rate and extent of CMT organization, whereas branch-form CMT nucleation did not significantly impact the rate of CMT organization but was necessary to generate polarity during CMT organization. We also found that the dynamic instability parameters from twisted growth mutants were not sufficient to generate oblique CMT arrays. Instead, we found that parameters regulating branch-form CMT nucleation and boundary conditions at the end walls are important for forming oblique CMT arrays. Together, our computer model provides new mechanistic insights into how plant CMTs self-organize into specific 3D arrangements.
Collapse
Affiliation(s)
- Ezgi Can Eren
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
72
|
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. Microtubule dynamics in plant cells. Methods Cell Biol 2010; 97:373-400. [PMID: 20719281 DOI: 10.1016/s0091-679x(10)97020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, United Kingdom
| | | | | | | | | |
Collapse
|
73
|
Kong Z, Hotta T, Lee YRJ, Horio T, Liu B. The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. THE PLANT CELL 2010; 22:191-204. [PMID: 20118227 PMCID: PMC2828712 DOI: 10.1105/tpc.109.071191] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 12/19/2009] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein gamma -tubulin, which forms a complex with GCP2-GCP6 (GCP for gamma -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with gamma -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the gamma -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of gamma -tubulin in MT nucleation and organization in plant cells.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Tetsuya Horio
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
74
|
Microtubule-severing enzymes. Curr Opin Cell Biol 2009; 22:96-103. [PMID: 19963362 DOI: 10.1016/j.ceb.2009.11.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
In 1993, an enzyme with an ATP-dependent microtubule-severing activity was purified from sea urchin eggs and named katanin, after the Japanese word for sword. Now we know that katanin, spastin, and fidgetin form a family of closely related microtubule-severing enzymes that is widely distributed in eukaryotes ranging from Tetrahymena and Chlamydomonas to humans. Here we review the diverse in vivo functions of these proteins and the recent significant advances in deciphering the biophysical mechanism of microtubule severing.
Collapse
|
75
|
Chan J, Sambade A, Calder G, Lloyd C. Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. THE PLANT CELL 2009; 21:2298-306. [PMID: 19706794 PMCID: PMC2751946 DOI: 10.1105/tpc.109.069716] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/05/2009] [Accepted: 08/13/2009] [Indexed: 05/18/2023]
Abstract
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patterns. Despite this tendency for colinearity, microtubules have been seen to branch off extant microtubules at approximately 45 degrees . To examine this paradoxical behavior, we investigated whether some microtubules may be born on and grow along extant microtubule(s). The plus-end markers Arabidopsis thaliana end binding protein 1a, AtEB1a-GFP, and Arabidopsis SPIRAL1, SPR1-GFP, allowed microtubules of known polarity to be distinguished from underlying microtubules. This showed that the majority of microtubules do branch but in a direction heavily biased toward the plus end of the mother microtubule: few grow backward, consistent with the common polarity of domains. However, we also found that a significant proportion of emergent comets do follow the axes of extant microtubules, both at sites of apparent microtubule nucleation and at cross-over points. These phenomena help explain the persistence of bundles and counterbalance the tendency to branch.
Collapse
Affiliation(s)
- Jordi Chan
- Department of Cell and Developmental Biology, John Ines Centre, Colney, Norwich, NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
76
|
Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR. Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. THE PLANT CELL 2009; 21:2090-106. [PMID: 19638477 PMCID: PMC2729594 DOI: 10.1105/tpc.108.061242] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 06/17/2009] [Accepted: 07/10/2009] [Indexed: 05/19/2023]
Abstract
Several factors regulate plant organ growth polarity. tortifolia2 (tor2), a right-handed helical growth mutant, has a conservative replacement of Arg-2 with Lys in the alpha-tubulin 4 protein. Based on a published high-resolution (2.89 A) tubulin structure, we predict that Arg-2 of alpha-tubulin forms hydrogen bonds with the GTPase domain of beta-tubulin, and structural modeling suggests that these contacts are interrupted in tor2. Consistent with this, we found that microtubule dynamicity is reduced in the tor2 background. We investigated the developmental origin of the helical growth phenotype using tor2. One hypothesis predicts that cell division patterns cause helical organ growth in Arabidopsis thaliana mutants. However, cell division patterns of tor2 root tips appear normal. Experimental uncoupling of cell division and expansion suggests that helical organ growth is based on cell elongation defects only. Another hypothesis is that twisting is due to inequalities in expansion of epidermal and cortical tissues. However, freely growing leaf trichomes of tor2 mutants show right-handed twisting and cortical microtubules form left-handed helices as early as the unbranched stage of trichome development. Trichome twisting is inverted in double mutants with tor3, a left-handed mutant. Single tor2 suspension cells also exhibit handed twisting. Thus, twisting of tor2 mutant organs appears to be a higher-order expression of the helical expansion of individual cells.
Collapse
Affiliation(s)
- Henrik Buschmann
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|