51
|
Li D, Li C, Wu M, Chen Q, Wang Q, Ren J, Zhang Y. PKCδ stabilizes TAp63 to promote cell apoptosis. FEBS Lett 2015; 589:2094-9. [PMID: 26112605 DOI: 10.1016/j.febslet.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/25/2022]
Abstract
PKCδ and p63 are respectively reported to play important roles in cell apoptosis. But there is no report on interaction between them in regulation of apoptosis. In the present study, we found that PKCδ can directly associate and up-regulate TA isoforms of p63 (TAp63) proteins via increasing their stability. PKCδ kinase activity and Thr157 site in TAp63 are crucial for this PKCδ-induced accumulation of TAp63. PKCδ can also enhance TAp63-mediated transcription and cell apoptosis. Taken together, our data indicate that PKCδ phosphorylates TAp63 proteins at Thr157 to stabilize them and promote cell apoptosis.
Collapse
Affiliation(s)
- Decai Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Min Wu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Qiongqiong Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Qiao Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Jian Ren
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China.
| |
Collapse
|
52
|
Ryvkin V, Rashel M, Gaddapara T, Ghazizadeh S. Opposing growth regulatory roles of protein kinase D isoforms in human keratinocytes. J Biol Chem 2015; 290:11199-208. [PMID: 25802335 PMCID: PMC4409276 DOI: 10.1074/jbc.m115.643742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Indexed: 12/19/2022] Open
Abstract
PKD is a family of three serine/threonine kinases (PKD-1, -2, and -3) involved in the regulation of diverse biological processes including proliferation, migration, secretion, and cell survival. We have previously shown that despite expression of all three isoforms in mouse epidermis, PKD1 plays a unique and critical role in wound healing, phorbol ester-induced hyperplasia, and tumor development. In translating our findings to the human, we discovered that PKD1 is not expressed in human keratinocytes (KCs) and there is a divergence in the expression and function of other PKD isoforms. Contrary to mouse KCs, treatment of cultured human KCs with pharmacological inhibitors of PKDs resulted in growth arrest. We found that PKD2 and PKD3 are expressed differentially in proliferating and differentiating human KCs, with the former uniformly present in both compartments whereas the latter is predominantly expressed in the proliferating compartment. Knockdown of individual PKD isoforms in human KCs revealed contrasting growth regulatory roles for PKD2 and PKD3. Loss of PKD2 enhanced KC proliferative potential while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity and diminished tissue regenerative ability. This proliferation defect was correlated with up-regulation of CDK4/6 inhibitor p15(INK4B) and induction of a p53-independent G1 cell cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating KCs. These data underline the importance and complexity of PKD signaling in human epidermis and suggest a central role for PKD3 signaling in maintaining human epidermal homeostasis.
Collapse
Affiliation(s)
| | - Mohammad Rashel
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| | - Trivikram Gaddapara
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| | - Soosan Ghazizadeh
- From the Graduate Program in Molecular and Cell Biology and Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
53
|
Restelli M, Molinari E, Marinari B, Conte D, Gnesutta N, Costanzo A, Merlo GR, Guerrini L. FGF8, c-Abl and p300 participate in a pathway that controls stability and function of the ΔNp63α protein. Hum Mol Genet 2015; 24:4185-97. [PMID: 25911675 PMCID: PMC4492388 DOI: 10.1093/hmg/ddv151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
The p63 transcription factor, homolog to the p53 tumor suppressor gene, plays a crucial role in epidermal and limb development, as its mutations are associated to human congenital syndromes characterized by skin, craniofacial and limb defects. While limb and skin-specific p63 transcriptional targets are being discovered, little is known of the post-translation modifications controlling ΔNp63α functions. Here we show that the p300 acetyl-transferase physically interacts in vivo with ΔNp63α and catalyzes its acetylation on lysine 193 (K193) inducing ΔNp63α stabilization and activating specific transcriptional functions. Furthermore we show that Fibroblast Growth Factor-8 (FGF8), a morphogenetic signaling molecule essential for embryonic limb development, increases the binding of ΔNp63α to the tyrosine kinase c-Abl as well as the levels of ΔNp63α acetylation. Notably, the natural mutant ΔNp63α-K193E, associated to the Split-Hand/Foot Malformation-IV syndrome, cannot be acetylated by this pathway. This mutant ΔNp63α protein displays promoter-specific loss of DNA binding activity and consequent altered expression of development-associated ΔNp63α target genes. Our results link FGF8, c-Abl and p300 in a regulatory pathway that controls ΔNp63α protein stability and transcriptional activity. Hence, limb malformation-causing p63 mutations, such as the K193E mutation, are likely to result in aberrant limb development via the combined action of altered protein stability and altered promoter occupancy.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisa Molinari
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Barbara Marinari
- Dermatology Unit, NESMOS Department, Università di Roma La Sapienza, I-00189 Rome, Italy and
| | - Daniele Conte
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, I-10126 Torino, Italy
| | - Nerina Gnesutta
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Antonio Costanzo
- Dermatology Unit, NESMOS Department, Università di Roma La Sapienza, I-00189 Rome, Italy and
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, I-10126 Torino, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy,
| |
Collapse
|
54
|
Vivo M, Matarese M, Sepe M, Di Martino R, Festa L, Calabrò V, Mantia GL, Pollice A. MDM2-mediated degradation of p14ARF: a novel mechanism to control ARF levels in cancer cells. PLoS One 2015; 10:e0117252. [PMID: 25723571 PMCID: PMC4344200 DOI: 10.1371/journal.pone.0117252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/19/2014] [Indexed: 01/22/2023] Open
Abstract
We here show a new relationship between the human p14ARF oncosuppressor and the MDM2 oncoprotein. MDM2 overexpression in various cancer cell lines causes p14ARF reduction inducing its degradation through the proteasome. The effect does not require the ubiquitin ligase activity of MDM2 and preferentially occurs in the cytoplasm. Interestingly, treatment with inhibitors of the PKC (Protein Kinase C) pathway and use of p14ARF phosphorylation mutants indicate that ARF phosphorylation could play a role in MDM2 mediated ARF degradation reinforcing our previous observations that ARF phosphorylation influences its stability and biological activity. Our study uncovers a new potentially important mechanism through which ARF and MDM2 can counterbalance each other during the tumorigenic process.
Collapse
Affiliation(s)
- Maria Vivo
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Maria Matarese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- Istituto di Genetica e Biofisica (IGB)—Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Maria Sepe
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche- Università di Napoli Federico II, Naples, Italy
| | - Rosaria Di Martino
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- Istituto di Biochimica delle Proteine (IBP)—Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Luisa Festa
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- Diagnostica e Farmaceutica Molecolare- Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Girolama La Mantia
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Alessandra Pollice
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
55
|
Sartini D, Lo Muzio L, Morganti S, Pozzi V, Di Ruscio G, Rocchetti R, Rubini C, Santarelli A, Emanuelli M. Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis. Oral Dis 2015; 21:462-9. [DOI: 10.1111/odi.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
- D Sartini
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
| | - L Lo Muzio
- Dipartimento di Medicina Clinica e Sperimentale; Università degli Studi di Foggia; Foggia Italy
| | - S Morganti
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
| | - V Pozzi
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
| | - G Di Ruscio
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
| | - R Rocchetti
- Dipartimento di Scienze Biomediche e Sanità Pubblica; Università Politecnica delle Marche; Ancona Italy
| | - C Rubini
- Dipartimento di Scienze Biomediche e Sanità Pubblica; Università Politecnica delle Marche; Ancona Italy
| | - A Santarelli
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
- I.R.C.C.S. - I.N.R.C.A.; Ancona Italy
| | - M Emanuelli
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
56
|
Schülein-Völk C, Wolf E, Zhu J, Xu W, Taranets L, Hellmann A, Jänicke LA, Diefenbacher ME, Behrens A, Eilers M, Popov N. Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep 2014; 9:1099-109. [PMID: 25437563 DOI: 10.1016/j.celrep.2014.09.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/11/2014] [Accepted: 09/28/2014] [Indexed: 01/06/2023] Open
Abstract
Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28.
Collapse
Affiliation(s)
- Christina Schülein-Völk
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jing Zhu
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Wenshan Xu
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Andreas Hellmann
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Laura A Jänicke
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus E Diefenbacher
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany.
| |
Collapse
|
57
|
Studying p53 family proteins in yeast: induction of autophagic cell death and modulation by interactors and small molecules. Exp Cell Res 2014; 330:164-77. [PMID: 25265062 DOI: 10.1016/j.yexcr.2014.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/08/2023]
Abstract
In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions.
Collapse
|
58
|
Costanzo A, Pediconi N, Narcisi A, Guerrieri F, Belloni L, Fausti F, Botti E, Levrero M. TP63 and TP73 in cancer, an unresolved "family" puzzle of complexity, redundancy and hierarchy. FEBS Lett 2014; 588:2590-9. [PMID: 24983500 DOI: 10.1016/j.febslet.2014.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022]
Abstract
TP53 belongs to a small gene family that includes, in mammals, two additional paralogs, TP63 and TP73. The p63 and p73 proteins are structurally and functionally similar to p53 and their activity as transcription factors is regulated by a wide repertoire of shared and unique post-translational modifications and interactions with regulatory cofactors. p63 and p73 have important functions in embryonic development and differentiation but are also involved in tumor suppression. The biology of p63 and p73 is complex since both TP63 and TP73 genes are transcribed into a variety of different isoforms that give rise to proteins with antagonistic properties, the TA-isoforms that act as tumor-suppressors and DN-isoforms that behave as proto-oncogenes. The p53 family as a whole behaves as a signaling "network" that integrates developmental, metabolic and stress signals to control cell metabolism, differentiation, longevity, proliferation and death. Despite the progress of our knowledge, the unresolved puzzle of complexity, redundancy and hierarchy in the p53 family continues to represent a formidable challenge.
Collapse
Affiliation(s)
- Antonio Costanzo
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Natalia Pediconi
- Laboratory of Molecular Oncology, Department of Molecular Medicine, Sapienza University of Rome, Italy; Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy
| | - Alessandra Narcisi
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Francesca Guerrieri
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Laura Belloni
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Francesca Fausti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Massimo Levrero
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy.
| |
Collapse
|
59
|
Zhang Y, Xiong S, Li Q, Hu S, Tashakori M, Van Pelt C, You MJ, Pageon L, Lozano G. Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol 2014; 233:380-91. [PMID: 24789767 DOI: 10.1002/path.4368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/04/2014] [Accepted: 04/24/2014] [Indexed: 12/28/2022]
Abstract
Mdm2, an E3 ubiquitin ligase, negatively regulates the tumour suppressor p53. In this study we utilized a conditional Mdm2 allele, Mdm2(FM) , and a CAG-CreER tamoxifen-inducible recombination system to examine the effects of global Mdm2 loss in adult mice. Two different tamoxifen injection regimens caused 100% lethality of Mdm2(FM) (/-) ;CAG-CreER mice; both radio-sensitive and radio-insensitive tissues were impaired. Strikingly, a large number of radio-insensitive tissues, including the kidney, liver, heart, retina and hippocampus, exhibited various pathological defects. Similar tamoxifen injections in older (16-18 month-old) Mdm2(FM) (/-) ;CAG-CreER mice yielded abnormalities only in the kidney. In addition, transcriptional activation of Cdkn1a (p21), Bbc3 (Puma) and multiple senescence markers in young (2-4 month-old) mice following loss of Mdm2 was dampened in older mice. All phenotypes were p53-dependent, as Mdm2(FM) (/-) ;Trp53(-/-) ;CAG-CreER mice subjected to the same tamoxifen regimens were normal. Our findings implicate numerous possible toxicities in many normal tissues upon use of cancer therapies that aim to inhibit Mdm2 in tumours with wild-type p53.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Luan Y, Wang P. FBW7-mediated ubiquitination and degradation of KLF5. World J Biol Chem 2014; 5:216-223. [PMID: 24921010 PMCID: PMC4050114 DOI: 10.4331/wjbc.v5.i2.216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factor (KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others’ have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons (CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mouse models, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.
Collapse
|
61
|
Regulation of p63 protein stability via ubiquitin-proteasome pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175721. [PMID: 24822180 PMCID: PMC4009111 DOI: 10.1155/2014/175721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
The p53-related p63 gene encodes multiple protein isoforms, which are involved in a variety of biological activities. p63 protein stability is mainly regulated by the ubiquitin-dependent proteasomal degradation pathway. Several ubiquitin E3 ligases have been identified and some protein kinases as well as other kinds of proteins are involved in regulation of p63 protein stability. These regulators are responsive to diverse extracellular signaling, resulting in changes of the p63 protein levels and impacting different biological processes.
Collapse
|
62
|
TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep 2014; 4:4663. [PMID: 24722541 PMCID: PMC3983616 DOI: 10.1038/srep04663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Collapse
|
63
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
64
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
65
|
Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35:702-14. [PMID: 24488880 DOI: 10.1002/humu.22523] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/12/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (ΔN isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ΔN proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | | | | |
Collapse
|
66
|
Restelli M, Lopardo T, Lo Iacono N, Garaffo G, Conte D, Rustighi A, Napoli M, Del Sal G, Perez-Morga D, Costanzo A, Merlo GR, Guerrini L. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Hum Mol Genet 2014; 23:3830-42. [PMID: 24569166 PMCID: PMC4065156 DOI: 10.1093/hmg/ddu096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Teresa Lopardo
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Nadia Lo Iacono
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Giulia Garaffo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Daniele Conte
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | | | - Marco Napoli
- Department of Biochemistry and Molecular Biology, Center for Genetics & Genomics, and Center for Stem Cell & Developmental Biology, MD Anderson, Houston, TX, USA
| | - Giannino Del Sal
- Molecular Oncology Unit, LNCIB Area Science Park, Trieste I-34149, Italy
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, Gosselies B-6041, Belgium and
| | - Antonio Costanzo
- Department of Dermatology, University of Rome 'Tor Vergata', Rome I-00133, Italy
| | - Giorgio Roberto Merlo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| |
Collapse
|
67
|
Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX. Pin1 modulates p63α protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 2013; 4:e943. [PMID: 24309930 PMCID: PMC3877541 DOI: 10.1038/cddis.2013.468] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022]
Abstract
The homolog of p53 gene, p63, encodes multiple p63 protein isoforms. TAp63 proteins contain an N-terminal transactivation domain similar to that of p53 and function as tumor suppressors; whereas ΔNp63 isoforms, which lack the intact N-terminal transactivation domain, are associated with human tumorigenesis. Accumulating evidence demonstrating the important roles of p63 in development and cancer development, the regulation of p63 proteins, however, is not fully understood. In this study, we show that peptidyl-prolyl isomerase Pin1 directly binds to and stabilizes TAp63α and ΔNp63α via inhibiting the proteasomal degradation mediated by E3 ligase WWP1. We further show that Pin1 specifically interacts with T538P which is adjacent to the P550PxY543 motif, and disrupts p63α–WWP1 interaction. In addition, while Pin1 enhances TAp63α-mediated apoptosis, it promotes ΔNp63α-induced cell proliferation. Furthermore, knockdown of Pin1 in FaDu cells inhibits tumor formation in nude mice, which is rescued by simultaneous knockdown of WWP1 or ectopic expression of ΔNp63α. Moreover, overexpression of Pin1 correlates with increased expression of ΔNp63α in human oral squamous cell carcinoma samples. Together, these results suggest that Pin1-mediated modulation of ΔNp63α may have a causative role in tumorigenesis.
Collapse
Affiliation(s)
- C Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Lee CJ, Lee MH, Lee JY, Song JH, Lee HS, Cho YY. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity. Biochem Biophys Res Commun 2013; 440:112-8. [PMID: 24055036 DOI: 10.1016/j.bbrc.2013.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/30/2022]
Abstract
Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2(-/-) MEFs compared with RSK2(+/+) MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2(+/+) MEFs. In contrast, GSK3β(-/-) MEFs induced the cell proliferation compared with GSK3β(+/+) MEFs. Importantly, RSK2(-/-) MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2(+/+) MEFs. The sub-G1 induction in RSK2(-/-) MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2(+/+) MEFs. Notably, return back of RSK2 into RSK2(-/-) MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2(-/-)/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- Integrated Research Institute of Pharmaceutical Sciencies, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | | | | | | | | | | |
Collapse
|
69
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
70
|
Yan W, Chen X, Zhang Y, Zhang J, Jung YS, Chen X. Arsenic suppresses cell survival via Pirh2-mediated proteasomal degradation of ΔNp63 protein. J Biol Chem 2012; 288:2907-13. [PMID: 23271742 DOI: 10.1074/jbc.m112.428607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcription factor p63, a member of the p53 family, shares a high degree of sequence similarity with p53. Because of transcription from two distinct promoters, the p63 gene encodes two isoforms, TAp63 and ΔNp63. Although TAp63 acts as a tumor suppressor, ΔNp63 functions as an oncogene and is often overexpressed in squamous cell carcinomas. Thus, therapeutic agents targeting ΔNp63 might be used to manage tumors that overexpress ΔNp63. Here we found that arsenic trioxide, a frontline agent for acute promyelocytic leukemia, inhibits ΔNp63 but not TAp63 expression in time- and dose-dependent manners. In addition, we found that arsenic trioxide decreases the stability of ΔNp63 protein via a proteasome-dependent pathway but has little effect on the level of ΔNp63 transcript. Furthermore, we found that arsenic trioxide activates the Pirh2 promoter and consequently induces Pirh2 expression. Consistent with this, we found that knockdown of Pirh2 inhibits, whereas ectopic expression of Pirh2 enhances, arsenic-induced degradation of ΔNp63 protein. Importantly, we found that knockdown of ΔNp63 sensitizes, whereas ectopic expression of ΔNp63 inhibits, growth suppression induced by arsenic. Together, these data suggest that arsenic degrades ΔNp63 protein at least in part via Pirh2-dependent proteolysis and that inhibition of ΔNp63 expression facilitates tumor cells to arsenic-induced death.
Collapse
Affiliation(s)
- Wensheng Yan
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
p63, a homologue of the tumor suppressor p53, is essential for the development of epidermis and limb. p63 is highly expressed in epithelial cell layer and acts as a molecular switch that initiates epithelial stratification. However, the mechanisms controlling p63 protein level is still far from fully understood. Here, we demonstrate a regulatory protein for the p63 activity. We found that Pirh2 E3 ubiquitin ligase physically interacts with p63 and targets p63 for polyubiquitination and subsequently proteasomal degradation. We also found that ectopic expression of Pirh2 in HaCaT cells suppresses cell proliferation. Consistent with this, we found that along with altered expression of ΔNp63 protein, ectopic expression of Pirh2 promotes, whereas knockdown of Pirh2 inhibits, keratinocyte differentiation. Collectively, our data suggest that Pirh2 plays a physiologically relevant role in keratinocyte differentiation through posttranslational modification of p63 protein.
Collapse
|
72
|
Abstract
Fbw7 is a member of F-box family proteins, which constitute one subunit of Skp1, Cul1, and F-box protein (SCF) ubiquitin ligase complex. SCF(Fbw7) targets a set of well-known oncoproteins, including c-Myc, cyclin E, Notch, c-Jun, and Mcl-1, for ubiquitylation and degradation. Fbw7 provides specificity of the ubiquitylation of these substrate proteins via recognition of a consensus phosphorylated degron. Through regulation of several important proteins, Fbw7 controls diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and neural cell stemness. As reduced Fbw7 expression level and loss-of-function mutations are found in a wide range of human cancers, Fbw7 is generally considered as a tumor suppressor. However, the exact mechanisms underlying Fbw7-induced tumor suppression is unclear. This review focuses on regulation network, biological functions, and genetic alteration of Fbw7 in connection with its role in cancer development.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | | |
Collapse
|
73
|
Li X, Chen J, Yi Y, Li C, Zhang Y. DNA damage down-regulates ΔNp63α and induces apoptosis independent of wild type p53. Biochem Biophys Res Commun 2012; 423:338-343. [PMID: 22659744 DOI: 10.1016/j.bbrc.2012.05.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is pivotal in cell growth arrest and apoptosis upon cellular stresses including DNA damage. Mounting evidence indicates that p63 proteins, which are homologs of p53, are also involved in apoptosis under certain circumstances. In this study, we found that treatment with DNA damage agents leads to down-regulation of ΔNp63α and induces apoptosis in FaDu and HaCat cells carrying mutant p53. Further study shows that DNA damage reduces steady-state mRNA level of ΔNp63α, but has little effect on its protein stability. In addition, knockdown of endogenous ΔNp63α directly induces apoptosis and sensitizes cells to DNA damage, while exogenous expression of ΔNp63α partially confers cellular resistance to DNA damage. Together, these data suggest that DNA damage down-regulates ΔNp63α, which may directly contribute to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Xiaorong Li
- Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | |
Collapse
|
74
|
Zhang Y, Cheng Y, Ren X, Hori T, Huber-Keener KJ, Zhang L, Yap KL, Liu D, Shantz L, Qin ZH, Zhang S, Wang J, Wang HG, Shih IM, Yang JM. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis. Cancer Res 2012; 72:4262-75. [PMID: 22665267 DOI: 10.1158/0008-5472.can-12-0139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Soochow University, Suzhou, JiangSu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sullivan KD, Gallant-Behm CL, Henry RE, Fraikin JL, Espinosa JM. The p53 circuit board. Biochim Biophys Acta Rev Cancer 2012; 1825:229-44. [PMID: 22333261 DOI: 10.1016/j.bbcan.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/28/2012] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor is embedded in a large gene network controlling diverse cellular and organismal phenotypes. Multiple signaling pathways converge onto p53 activation, mostly by relieving the inhibitory effects of its repressors, MDM2 and MDM4. In turn, signals originating from increased p53 activity diverge into distinct effector pathways to deliver a specific cellular response to the activating stimuli. Much attention has been devoted to dissecting how the various input pathways trigger p53 activation and how the activity of the p53 protein itself can be modulated by a plethora of co-factors and post-translational modifications. In this review we will focus instead on the multiple configurations of the effector pathways. We will discuss how p53-generated signals are transmitted, amplified, resisted and eventually integrated by downstream gene circuits operating at the transcriptional, post-transcriptional and post-translational levels. We will also discuss how context-dependent variations in these gene circuits define the cellular response to p53 activation and how they may impact the clinical efficacy of p53-based targeted therapies.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | | | | | | | |
Collapse
|
76
|
Sepe M, Festa L, Tolino F, Bellucci L, Sisto L, Alfano D, Ragno P, Calabrò V, de Franciscis V, La Mantia G, Pollice A. A regulatory mechanism involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the control of cell proliferation. PLoS One 2011; 6:e22800. [PMID: 21991300 PMCID: PMC3186787 DOI: 10.1371/journal.pone.0022800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 07/06/2011] [Indexed: 11/18/2022] Open
Abstract
TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell proliferation also in the absence of ARF, raising the question of what are the molecular pathways involved. Herein we demonstrate that stable knock-down of TBP-1 in human immortalized fibroblasts increases cell proliferation, migration and resistance to apoptosis induced by serum deprivation. We observe that TBP-1 silencing causes activation of the Akt/PKB kinase and that in turn TBP-1, itself, is a downstream target of Akt/PKB. Moreover, MDM2, a known Akt target, plays a major role in this regulation. Altogether, our data suggest the existence of a negative feedback loop involving Akt/PKB that might act as a sensor to modulate TBP-1 levels in proliferating cells.
Collapse
Affiliation(s)
- Maria Sepe
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, Bartolazzi A, Costanzo A, Sacchi A, Guerrini L, Soddu S. HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene 2011; 30:4802-13. [PMID: 21602882 DOI: 10.1038/onc.2011.182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is an emerging player in cell response to genotoxic agents that senses damage intensity and contributes to the cell's choice between cell cycle arrest and apoptosis. Phosphorylation of p53 at S46, an apoptosis-specific p53 posttranslational modification, is the most characterized HIPK2 function in response to lethal doses of ultraviolet (UV), ionizing radiation or different anticancer drugs, such as cisplatin, roscovitine and doxorubicin (DOX). Indeed, like p53, HIPK2 has been shown to contribute to the effectiveness of these treatments. Interestingly, p53-independent mechanisms of HIPK2-induced apoptosis were described for UV and tumor growth factor-β treatments; however, it is unknown whether these mechanisms are relevant for the responses to anticancer drugs. Because of the importance of the so-called 'p53-independent apoptosis and drug response' in human cancer chemotherapy, we asked whether p53-independent factor(s) might be involved in HIPK2-mediated chemosensitivity. Here, we show that HIPK2 depletion by RNA interference induces resistance to different anticancer drugs even in p53-null cells, suggesting the involvement of HIPK2 targets other than p53 in response to chemotherapy. In particular, we found that HIPK2 phosphorylates and promotes proteasomal degradation of ΔNp63α, a prosurvival ΔN isoform of the p53 family member, p63. Indeed, effective cell response to different genotoxic agents was shown to require phosphorylation-induced proteasomal degradation of ΔNp63α. In DOX-treated cells, we show that HIPK2 depletion interferes with ΔNp63α degradation, and expression of a HIPK2-resistant ΔNp63α-Δ390 mutant induces chemoresistance. We identify T397 as the ΔNp63α residue phosphorylated by HIPK2, and show that the non-phosphorylatable ΔNp63α-T397A mutant is not degraded in the face of either HIPK2 overexpression or DOX treatment. These results indicate ΔNp63α as a novel target of HIPK2 in response to genotoxic drugs.
Collapse
Affiliation(s)
- C Lazzari
- Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Guerrini L, Costanzo A, Merlo GR. A symphony of regulations centered on p63 to control development of ectoderm-derived structures. J Biomed Biotechnol 2011; 2011:864904. [PMID: 21716671 PMCID: PMC3118300 DOI: 10.1155/2011/864904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/25/2011] [Accepted: 03/16/2011] [Indexed: 12/27/2022] Open
Abstract
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies.
Collapse
Affiliation(s)
- Luisa Guerrini
- Department of Biomolecular Science and Biotechnology, University of Milan, 20133 Milano, Italy
| | - Antonio Costanzo
- Department of Dermatology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Rome Oncogenomic Centre, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Giorgio R. Merlo
- Molecular Biotechnology Center, Dulbecco Telethon Institute, University of Torino, 10126 Torino, Italy
| |
Collapse
|
79
|
McDade SS, Patel D, McCance DJ. p63 maintains keratinocyte proliferative capacity through regulation of Skp2-p130 levels. J Cell Sci 2011; 124:1635-43. [PMID: 21511729 DOI: 10.1242/jcs.084723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p63 is a master regulator of proliferation and differentiation in stratifying epithelia, and its expression is frequently altered in carcinogenesis. However, its role in maintaining proliferative capacity remains unclear. Here, we demonstrate that hypoproliferation and loss of differentiation in organotypic raft cultures of primary neonatal human foreskin keratinocytes (HFKs) depleted of the α and β isoforms of p63 result from p53-p21-mediated accumulation of retinoblastoma (Rb) family member p130. Hypoproliferation in p63-depleted HFKs can be rescued by depletion of p53, p21(CIP1) or p130. Furthermore, we identified the gene encoding S-phase kinase-associated protein 2 (Skp2), the recognition component of the SCF(Skp2) E3 ubiquitin ligase, as a novel target of p63, potentially influencing p130 levels. Expression of Skp2 is maintained by p63 binding to a site in intron 2 and mRNA levels are downregulated in p63-depleted cells. Hypoproliferation in p63-depleted cells can be restored by re-expression of Skp2. Taken together, these results indicate that p63 plays a multifaceted role in maintaining proliferation in the mature regenerating epidermis, in addition to being required for differentiation.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
80
|
The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett 2011; 16:296-327. [PMID: 21442444 PMCID: PMC6275999 DOI: 10.2478/s11658-011-0009-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.
Collapse
|
81
|
Matsunaga N, Kohno Y, Kakimoto K, Hayashi A, Koyanagi S, Ohdo S. Influence of CLOCK on cytotoxicity induced by diethylnitrosamine in mouse primary hepatocytes. Toxicology 2010; 280:144-51. [PMID: 21167249 DOI: 10.1016/j.tox.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
The Clock gene is a core clock factor that plays an essential role in generating circadian rhythms. In the present study, it was investigated whether the Clock gene affects the response to diethylnitrosamine (DEN)-induced cytotoxicity using mouse primary hepatocytes. DEN-induced cytotoxicity, after 24h exposure, was caused by apoptosis in hepatocytes isolated from wild-type mouse. On the other hand, Clock mutant mouse (Clk/Clk) hepatocytes showed resistance to apoptosis. Because apoptosis is an important pathway for suppressing carcinogenesis after genomic DNA damage, the mechanisms that underlie resistance to DEN-induced apoptosis were examined in Clk/Clk mouse hepatocytes. The mRNA levels of metabolic enzymes bioactivating DEN and apoptosis-inducing factors before DEN exposure were lower in Clk/Clk cells than in wild-type cells. The accumulation of p53 and Ser15 phosphorylated p53 after 8h DEN exposure was seen in wild-type cells but not in Clk/Clk cells. Caspase-3/7 activity was elevated during 24h DEN exposure in wild-type cells but not in Clk/Clk cells. In addition, resistance to DEN-induced apoptosis in Clk/Clk cells affected the cell viability. These studies suggested that the lower expression levels of metabolic enzymes bioactivating DEN and apoptosis inducing factors affected the resistance to DEN-induced apoptosis in Clk/Clk cells, and the Clock gene plays an important role in cytotoxicity induced by DEN.
Collapse
Affiliation(s)
- Naoya Matsunaga
- Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|