51
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
52
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
53
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
54
|
Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev Cell 2017; 42:498-513.e6. [PMID: 28867487 DOI: 10.1016/j.devcel.2017.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2-/-) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2-/- macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/β2 integrin localization are compromised in Arpc2-/- cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2-/- monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility.
Collapse
Affiliation(s)
- Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Craig
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P Ting
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
55
|
McMillan KJ, Korswagen HC, Cullen PJ. The emerging role of retromer in neuroprotection. Curr Opin Cell Biol 2017; 47:72-82. [PMID: 28399507 PMCID: PMC5677836 DOI: 10.1016/j.ceb.2017.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Hendrick C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
56
|
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family function as nucleation-promoting factors for the ubiquitously expressed Arp2/3 complex, which drives the generation of branched actin filaments. Arp2/3-generated actin regulates diverse cellular processes, including the formation of lamellipodia and filopodia, endocytosis and/or phagocytosis at the plasma membrane, and the generation of cargo-laden vesicles from organelles including the Golgi, endoplasmic reticulum (ER) and the endo-lysosomal network. Recent studies have also identified roles for WASP family members in promoting actin dynamics at the centrosome, influencing nuclear shape and membrane remodeling events leading to the generation of autophagosomes. Interestingly, several WASP family members have also been observed in the nucleus where they directly influence gene expression by serving as molecular platforms for the assembly of epigenetic and transcriptional machinery. In this Cell Science at a Glance article and accompanying poster, we provide an update on the subcellular roles of WHAMM, JMY and WASH (also known as WASHC1), as well as their mechanisms of regulation and emerging functions within the cell.
Collapse
Affiliation(s)
- Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Thomason PA, King JS, Insall RH. Mroh1, a lysosomal regulator localized by WASH-generated actin. J Cell Sci 2017; 130:1785-1795. [PMID: 28424231 PMCID: PMC5450189 DOI: 10.1242/jcs.197210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
The steps leading to constitutive exocytosis are poorly understood. In Dictyostelium WASH complex mutants, exocytosis is blocked, so cells that take up fluorescent dextran from the medium retain it and remain fluorescent. Here, we establish a FACS-based method to select cells that retain fluorescent dextran, allowing identification of mutants with disrupted exocytosis. Screening a pool of random mutants identified members of the WASH complex, as expected, and multiple mutants in the conserved HEAT-repeat-containing protein Mroh1. In mroh1 mutants, endosomes develop normally until the stage where lysosomes neutralize to postlysosomes, but thereafter the WASH complex is recycled inefficiently, and subsequent exocytosis is substantially delayed. Mroh1 protein localizes to lysosomes in mammalian and Dictyostelium cells. In Dictyostelium, it accumulates on lysosomes as they mature and is removed, together with the WASH complex, shortly before the postlysosomes are exocytosed. WASH-generated F-actin is required for correct subcellular localization; in WASH complex mutants, and immediately after latrunculin treatment, Mroh1 relocalizes from the cytoplasm to small vesicles. Thus, Mroh1 is involved in a late and hitherto undefined actin-dependent step in exocytosis.
Collapse
Affiliation(s)
- Peter A Thomason
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jason S King
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
58
|
Li T, Zheng HM, Deng NM, Jiang YJ, Wang J, Zhang DL. Clinicopathological and prognostic significance of aberrant Arpin expression in gastric cancer. World J Gastroenterol 2017; 23:1450-1457. [PMID: 28293092 PMCID: PMC5330830 DOI: 10.3748/wjg.v23.i8.1450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/20/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of Arpin, and determine its correlation with clinicopathological characteristics and the prognosis of gastric cancer (GC) patients.
METHODS A total of 176 GC patients were enrolled as study subjects and classified into groups according to different clinicopathological variables. GC mucosal tissues were obtained via surgery. Another 43 paraffin-embedded tissue blocks of normal gastric epithelium (> 5 cm away from the edge of the tumor) were included in the control group. Immunohistochemistry (IHC) for the Arpin and Arp3 proteins was performed on the formalin-fixed, paraffin-embedded GC tissues. Additionally, expression of the Arpin protein in 43 normal gastric tissues was also determined using IHC.
RESULTS Expression of the Arpin protein in GC was lower than that in normal gastric mucosa (30.68% vs 60.47%, P < 0.001). A χ2 test of the 176 GC samples used for IHC showed that decreased Arpin expression was associated with advanced TNM stage (P < 0.01) and the presence or absence of lymph node metastasis (80.92% vs 35.56%, P < 0.001). Additionally, a significant correlation was observed between the expression of Arpin and the presence of the Arp2/3 complex in GC tissues (χ2 = 30.535, P < 0.001). Moreover, a multivariate Cox regression analysis revealed that Arpin expression [hazard ratio (HR) = 0.551, P = 0.029] and TNM stage (HR = 5.344, P = 0.001) were independent prognostic markers for overall survival of GC patients. Regarding the 3-year disease-free survival (DFS), the recurrence rate of GC patients with low Arpin expression levels (median DFS 19 mo) was higher than that in the high-Arpin-expression group (median DFS 34 mo, P = 0.022).
CONCLUSION Low Arpin levels are associated with clinicopathological variables and a poor prognosis in GC patients. Arpin may be regarded as a potential prognostic indicator in GC.
Collapse
|
59
|
Kvainickas A, Orgaz AJ, Nägele H, Diedrich B, Heesom KJ, Dengjel J, Cullen PJ, Steinberg F. Retromer- and WASH-dependent sorting of nutrient transporters requires a multivalent interaction network with ANKRD50. J Cell Sci 2017; 130:382-395. [PMID: 27909246 PMCID: PMC5278674 DOI: 10.1242/jcs.196758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Retromer and the associated actin-polymerizing WASH complex are essential for the endocytic recycling of a wide range of integral membrane proteins. A hereditary Parkinson's-disease-causing point mutation (D620N) in the retromer subunit VPS35 perturbs retromer's association with the WASH complex and also with the uncharacterized protein ankyrin-repeat-domain-containing protein 50 (ANKRD50). Here, we firmly establish ANKRD50 as a new and essential component of the SNX27-retromer-WASH super complex. Depletion of ANKRD50 in HeLa or U2OS cells phenocopied the loss of endosome-to-cell-surface recycling of multiple transmembrane proteins seen upon suppression of SNX27, retromer or WASH-complex components. Mass-spectrometry-based quantification of the cell surface proteome of ANKRD50-depleted cells identified amino acid transporters of the SLC1A family, among them SLC1A4, as additional cargo molecules that depend on ANKRD50 and retromer for their endocytic recycling. Mechanistically, we show that ANKRD50 simultaneously engages multiple parts of the SNX27-retromer-WASH complex machinery in a direct and co-operative interaction network that is needed to efficiently recycle the nutrient transporters GLUT1 (also known as SLC2A1) and SLC1A4, and potentially many other surface proteins.
Collapse
Affiliation(s)
- Arunas Kvainickas
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Ana Jimenez Orgaz
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Heike Nägele
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Britta Diedrich
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Kate J Heesom
- School of Biochemistry, Bristol University, University Walk, Bristol BS81TD, UK
| | - Jörn Dengjel
- Department of Biology, Fribourg University, Chemin du Musee 10, Fribourg CH-1700, Switzerland
| | - Peter J Cullen
- School of Biochemistry, Bristol University, University Walk, Bristol BS81TD, UK
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Albert Ludwigs Universitaet Freiburg, Habsburgerstrasse 49, Freiburg 79104, Germany
- Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| |
Collapse
|
60
|
Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. J Nutr Biochem 2016; 41:109-116. [PMID: 28068557 DOI: 10.1016/j.jnutbio.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/15/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
Cordycepin, a nucleoside-derivative-isolated form Cordyceps militaris, has been reported to suppress tumor cell proliferation and cause apoptosis. This study investigates the effect of cordycepin on the migration of human glioblastoma cells. Cordycepin suppressed the migration of the human glioblastoma cell lines U87MG and LN229 in transwell and wound healing assays. Cordycepin decreased protein expression of integrin α1, focal adhesion kinase (FAK), p-FAK, paxillin and p-paxillin. The lysosomal inhibitor NH4Cl blocked the ability of cordycepin to inhibit focal adhesion protein expression and glioma cell migration. In addition, the protein phosphatase inhibitors calyculin A and okadaic acid blocked the cordycepin-mediated reduction in p-Akt, p-FAK and migration. Hematoxylin and eosin staining of mouse xenografts demonstrated that cordycepin reduced brain tumor size in vivo. In conclusion, cordycepin inhibited migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. This pathway may be a useful target for clinical therapy in the future.
Collapse
|
61
|
Nagel BM, Bechtold M, Rodriguez LG, Bogdan S. Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J Cell Sci 2016; 130:344-359. [PMID: 27884932 DOI: 10.1242/jcs.193086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH; also known as Washout in flies) is a conserved actin-nucleation-promoting factor controlling Arp2/3 complex activity in endosomal sorting and recycling. Previous studies have identified WASH as an essential regulator in Drosophila development. Here, we show that homozygous wash mutant flies are viable and fertile. We demonstrate that Drosophila WASH has conserved functions in integrin receptor recycling and lysosome neutralization. WASH generates actin patches on endosomes and lysosomes, thereby mediating both aforementioned functions. Consistently, loss of WASH function results in cell spreading and cell migration defects of macrophages, and an increased lysosomal acidification that affects efficient phagocytic and autophagic clearance. WASH physically interacts with the vacuolar (V)-ATPase subunit Vha55 that is crucial to establish and maintain lysosome acidification. As a consequence, starved flies that lack WASH function show a dramatic increase in acidic autolysosomes, causing a reduced lifespan. Thus, our data highlight a conserved role for WASH in the endocytic sorting and recycling of membrane proteins, such as integrins and the V-ATPase, that increase the likelihood of survival under nutrient deprivation.
Collapse
Affiliation(s)
- Benedikt M Nagel
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| | - Meike Bechtold
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | | | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany .,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
62
|
Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun 2016; 7:13305. [PMID: 27827364 PMCID: PMC5105194 DOI: 10.1038/ncomms13305] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Retromer is a membrane coat complex that is recruited to endosomes by the small GTPase Rab7 and sorting nexin 3. The timing of this interaction and consequent endosomal dynamics are thought to be regulated by the guanine nucleotide cycle of Rab7. Here we demonstrate that TBC1d5, a GTPase-activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective complex VPS26/VPS29/VPS35. The crystal structure of the TBC1d5 GAP domain bound to VPS29 and complementary biochemical and cellular data show that a loop from TBC1d5 binds to a conserved hydrophobic pocket on VPS29 opposite the VPS29-VPS35 interface. Additional data suggest that a distinct loop of the GAP domain may contact VPS35. Loss of TBC1d5 causes defective retromer-dependent trafficking of receptors. Our findings illustrate how retromer recruits a GAP, which is likely to be involved in the timing of Rab7 inactivation leading to membrane uncoating, with important consequences for receptor trafficking.
Collapse
Affiliation(s)
- Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jin-San Zhang
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhihui Deng
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mark A. White
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Douglas G. Osborne
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christine Phillips-Krawczak
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Timothy S. Gomez
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Haiying Li
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel D. Billadeau
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael K. Rosen
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
63
|
Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 2016; 5. [PMID: 27718357 PMCID: PMC5089861 DOI: 10.7554/elife.20417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Damaris N Lorenzo
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rebecca Brooks
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
64
|
Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, King JS. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci U S A 2016; 113:E5906-E5915. [PMID: 27647881 PMCID: PMC5056073 DOI: 10.1073/pnas.1524532113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macropinocytosis is an ancient mechanism that allows cells to harvest nutrients from extracellular media, which also allows immune cells to sample antigens from their surroundings. During macropinosome formation, bulk plasma membrane is internalized with all its integral proteins. It is vital for cells to salvage these proteins before degradation, but the mechanisms for sorting them are not known. Here we describe the evolutionarily conserved recruitment of the WASH (WASP and SCAR homolog) complex to both macropinosomes and phagosomes within a minute of internalization. Using Dictyostelium, we demonstrate that WASH drives protein sorting and recycling from macropinosomes and is thus essential to maintain surface receptor levels and sustain phagocytosis. WASH functionally interacts with the retromer complex at both early and late phases of macropinosome maturation, but mediates recycling via retromer-dependent and -independent pathways. WASH mutants consequently have decreased membrane levels of integrins and other surface proteins. This study reveals an important pathway enabling cells to sustain macropinocytosis without bulk degradation of plasma membrane components.
Collapse
Affiliation(s)
- Catherine M Buckley
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Navin Gopaldass
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Simon A Johnston
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; Department of Infection, Immunity and Cardiovascular Sciences, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robert H Insall
- Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
65
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
66
|
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res 2016; 29:559-71. [PMID: 27390154 PMCID: PMC5082549 DOI: 10.1111/pcmr.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
Abstract
The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.
Collapse
Affiliation(s)
- Benjamin J Tyrrell
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heather J Spence
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
67
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
68
|
Verboon JM, Sugumar B, Parkhurst SM. Wiskott-Aldrich syndrome proteins in the nucleus: aWASH with possibilities. Nucleus 2016; 6:349-59. [PMID: 26305109 PMCID: PMC4915506 DOI: 10.1080/19491034.2015.1086051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin and proteins that regulate its dynamics or interactions have well-established roles in the cytoplasm where they function as key components of the cytoskeleton to control diverse processes, including cellular infrastructure, cellular motility, cell signaling, and vesicle transport. Recent work has also uncovered roles for actin and its regulatory proteins in the nucleus, primarily in mechanisms governing gene expression. The Wiskott Aldrich Syndrome (WAS) family of proteins, comprising the WASP/N-WASP, SCAR/WAVE, WHAMM/JMY/WHAMY, and WASH subfamilies, function in the cytoplasm where they activate the Arp2/3 complex to form branched actin filaments. WAS proteins are present in the nucleus and have been implicated as transcriptional regulators. We found that Drosophila Wash, in addition to transcriptional effects, is involved in global nuclear architecture. Here we summarize the regulation and function of nuclear WAS proteins, and highlight how our work with Wash expands the possibilities for the functions of these proteins in the nucleus.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | - Bina Sugumar
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | - Susan M Parkhurst
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| |
Collapse
|
69
|
FAM21 directs SNX27-retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus. Nat Commun 2016; 7:10939. [PMID: 26956659 PMCID: PMC4786876 DOI: 10.1038/ncomms10939] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27–retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27–retromer–WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi. Endosomes maintain cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Here the authors show that the SNX27-retromer-WASH complex acts as a hub to direct cargoes to the plasma membrane by blocking their transport to lysosomes and Golgi apparatus.
Collapse
|
70
|
Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez del Ama L, Ferizovic N, Green DM, Howe JD, Ehler E, Hurlstone A, Caswell PT. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 2015; 210:1013-31. [PMID: 26370503 PMCID: PMC4576860 DOI: 10.1083/jcb.201502040] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab-coupling protein–mediated integrin trafficking promotes filopodia formation via RhoA-ROCK-FHOD3, generating non-lamellipodial actin spike protrusions that drive cancer cell migration in 3D extracellular matrix and in vivo. Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jennifer L Allen
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Anna Chapman
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Maria Morlan-Mairal
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Egor Zindy
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Laura Fernandez del Ama
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Nermina Ferizovic
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - David M Green
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jonathan D Howe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, BHF Research Excellence Centre, King's College London, London SE1 1UL, England, UK
| | - Adam Hurlstone
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
71
|
Liu X, Zhao B, Wang H, Wang Y, Niu M, Sun M, Zhao Y, Yao R, Qu Z. Aberrant expression of Arpin in human breast cancer and its clinical significance. J Cell Mol Med 2015; 20:450-8. [PMID: 26648569 PMCID: PMC4759471 DOI: 10.1111/jcmm.12740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022] Open
Abstract
Arpin (Arp2/3 complex inhibitor), a novel protein found in 2013, plays a pivotal role in cell motility and migration. However, the precise role of Arpin in cancer is unclear. This study investigated the expression of Arpin in breast cancer and evaluated its correlation with the characteristics of clinical pathology and prognosis of breast cancer patients. Immunohistochemistry (IHC) for Arpin protein was performed on formalin‐fixed, paraffin‐embedded 176 breast cancer tissues and 43 normal breast tissues while qRT‐PCR for Arpin mRNA with 104 paired tumour and paratumoural tissues from breast cancer patients respectively. The association of Arpin expression with clinical pathological features and survival was assessed in a retrospective cohort analysis of patients. The results showed that the expression of Arpin protein in cancer tissues was lower compared to that in normal breast and the expression of Arpin mRNA was also lower in cancer tissues than that in the matched paratumoural tissues. Among the 176 breast cancer patients, the lower expression of Arpin was significantly associated with advanced tumour, nodes and metastasis system stage, and the reduced Arpin expression was strongly associated with axillary lymph node metastasis using univariate and multivariate logistic regression analysis [odds ratio: 3.242; 95% confidence interval (CI): 1.526, 6.888; P < 0.05]. Furthermore, Arpin expression was an independent risk factor for recurrence‐free survival (HR: 0.373; 95% CI: 0.171, 0.813; P < 0.05). As Arpin expression was first examined in human breast cancer tissues with qRT‐PCR and IHC, our results suggest that Arpin downregulation may contribute to the initiation and development of breast cancer metastasis. Therefore, as a potential predictive marker, Arpin deserves future studies.
Collapse
Affiliation(s)
- Xiangping Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhao
- Department of Ultrasonography, Qilu Hospital, Shandong University, Qingdao, China
| | - Haibo Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengdi Niu
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Sun
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Zhao
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiqiang Qu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
72
|
Abstract
Cell surface receptors that have been internalized and enter the endocytic pathway have multiple fates including entrance into the multivesicular body pathway on their way to lysosomal degradation, recycling back to the cell surface, or retrograde trafficking out of the endolysosomal system back to the Golgi apparatus. Two ubiquitously expressed protein complexes, WASH and the endosomal coat complex retromer, function together to play a central role in directing the fate of receptors into the latter two pathways. In this chapter, we describe fluorescent- and flow cytometry-based methods for analyzing the recycling and retrograde trafficking of two receptors, α5β1 and CI-M6PR, whose intracellular fates are regulated by WASH and retromer activity. The guidelines presented in this chapter can be applied to the analysis of any cell surface or intracellular membrane protein to determine the impact of WASH or retromer deregulation on its intracellular trafficking route.
Collapse
|
73
|
Derivery E, Gautreau A. Quantitative analysis of endosome tubulation and microdomain organization mediated by the WASH complex. Methods Cell Biol 2015; 130:215-34. [PMID: 26360037 DOI: 10.1016/bs.mcb.2015.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sorting of cargoes in endosomes occurs through their concentration into sorting platforms, called microdomains, from which transport intermediates are formed. The WASH complex localizes to such endosomal microdomains and triggers localized branched actin nucleation by activating the Arp2/3 complex. These branched actin networks are required for both the lateral compartmentalization of endosome membranes into distinct microdomains and for the fission of transport intermediates from these sorting platforms. In this chapter, we provide experimental protocols to study these two aspects of WASH physiology. We first describe how to image the dynamic membrane tubules resulting from the defects of WASH-mediated fission. We then describe how to study quantitatively the microdomain localization of WASH in live and fixed cells. Since microdomains are below the resolution limit of conventional light-microscopy techniques, this required the development of specific image analysis pipelines, which are detailed. The guidelines presented in this chapter can apply to other endomembrane microdomains beyond WASH in order to increase our understanding of trafficking in molecular and quantitative terms.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland
| | - Alexis Gautreau
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau Cedex, France
| |
Collapse
|
74
|
Mukadam AS, Seaman MNJ. Retromer-mediated endosomal protein sorting: The role of unstructured domains. FEBS Lett 2015; 589:2620-6. [PMID: 26072290 DOI: 10.1016/j.febslet.2015.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
The retromer complex is a key element of the endosomal protein sorting machinery that is conserved through evolution and has been shown to play a role in diseases such as Alzheimer's disease and Parkinson's disease. Through sorting various membrane proteins (cargo), the function of retromer complex has been linked to physiological processes such as lysosome biogenesis, autophagy, down regulation of signalling receptors and cell spreading. The cargo-selective trimer of retromer recognises membrane proteins and sorts them into two distinct pathways; endosome-to-Golgi retrieval and endosome-to-cell surface recycling and additionally the cargo-selective trimer functions as a hub to recruit accessory proteins to endosomes where they may regulate and/or facilitate retromer-mediated endosomal proteins sorting. Unstructured domains present in cargo proteins or accessory factors play key roles in both these aspects of retromer function and will be discussed in this review.
Collapse
Affiliation(s)
- Aamir S Mukadam
- Cambridge Institute for Medical Research, Dept. of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, Dept. of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
75
|
Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. J Virol 2015; 89:8365-82. [PMID: 26041286 DOI: 10.1128/jvi.00209-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm.
Collapse
|
76
|
Osborne DG, Piotrowski JT, Dick CJ, Zhang JS, Billadeau DD. SNX17 affects T cell activation by regulating TCR and integrin recycling. THE JOURNAL OF IMMUNOLOGY 2015; 194:4555-66. [PMID: 25825439 DOI: 10.4049/jimmunol.1402734] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
A key component in T cell activation is the endosomal recycling of receptors to the cell surface, thereby allowing continual integration of signaling and Ag recognition. One protein potentially involved in TCR transport is sorting nexin 17 (SNX17). SNX proteins have been found to bind proteins involved in T cell activation, but specifically the role of SNX17 in receptor recycling and T cell activation is unknown. Using immunofluorescence, we find that SNX17 colocalizes with TCR and localizes to the immune synapse in T- conjugates. Significantly, knockdown of the SNX17 resulted in fewer T-APC conjugates, lower CD69, TCR, and LFA-1 surface expression, as well as lower overall TCR recycling compared with control T cells. Lastly, we identified the 4.1/ezrin/radixin/moesin domain of SNX17 as being responsible in the binding and trafficking of TCR and LFA-1 to the cell surface. These data suggest that SNX17 plays a role in the maintenance of normal surface levels of activating receptors and integrins to permit optimum T cell activation at the immune synapse.
Collapse
Affiliation(s)
- Douglas G Osborne
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Joshua T Piotrowski
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Christopher J Dick
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jin-San Zhang
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905;Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905; andDivision of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
77
|
Verboon JM, Rahe TK, Rodriguez-Mesa E, Parkhurst SM. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations. Mol Biol Cell 2015; 26:1665-74. [PMID: 25739458 PMCID: PMC4436778 DOI: 10.1091/mbc.e14-08-1266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/25/2015] [Indexed: 01/12/2023] Open
Abstract
Drosophila immune cells undergo four stereotypical developmental migrations to populate the embryo. Wash is a downstream effector of Rho1 and establishes Rho1>Wash>Arp2/3 as the regulatory pathway controlling the cytoskeleton during one of these developmental hemocyte migrations in a WASH regulatory complex–independent manner. Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Travis K Rahe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Evelyn Rodriguez-Mesa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
78
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|
79
|
Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, Dick CJ, Gomez TS, Koenecke M, Zhang JS, Dai H, Sifuentes-Dominguez LF, Geng LN, Kaufmann SH, Hein MY, Wallis M, McGaughran J, Gecz J, Sluis BVD, Billadeau DD, Burstein E. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell 2015; 26:91-103. [PMID: 25355947 PMCID: PMC4279232 DOI: 10.1091/mbc.e14-06-1073] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022] Open
Abstract
COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.
Collapse
Affiliation(s)
| | | | | | - Zhihui Deng
- Department of Immunology, Department of Pathophysiology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | | | | | | | | | | | - Jin-San Zhang
- Department of Immunology, School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haiming Dai
- Department of Molecular Pharmacology and Experimental Therapeutics, and
| | | | | | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, and
| | - Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mathew Wallis
- Genetic Health Queensland at the Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia
| | - Julie McGaughran
- Genetic Health Queensland at the Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jozef Gecz
- Robinson Institute and Department of Paediatrics, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bart van de Sluis
- Section of Molecular Genetics at the Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 Groningen, Netherlands
| | - Daniel D Billadeau
- Department of Immunology, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9151
| |
Collapse
|
80
|
Deng ZH, Gomez TS, Osborne DG, Phillips-Krawczak CA, Zhang JS, Billadeau DD. Nuclear FAM21 participates in NF-κB-dependent gene regulation in pancreatic cancer cells. J Cell Sci 2014; 128:373-84. [PMID: 25431135 DOI: 10.1242/jcs.161513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pentameric WASH complex is best known for its role in regulating receptor trafficking from retromer-rich endosomal subdomains. FAM21 functions to stabilize the WASH complex through its N-terminal head domain and localizes it to endosomes by directly binding the retromer through its extended C-terminal tail. Herein, we used affinity purification combined with mass spectrometry to identify additional FAM21-interacting proteins. Surprisingly, multiple components of the nuclear factor κB (NF-κB) pathway were identified, including the p50 and p65 (RelA) NF-κB subunits. We show that FAM21 interacts with these components and regulates NF-κB-dependent gene transcription at the level of p65 chromatin binding. We further demonstrate that FAM21 contains a functional monopartite nuclear localization signal sequence (NLS) as well as a CRM1/exportin1-dependent nuclear export signal (NES), both of which work jointly with the N-terminal head domain and C-terminal retromer recruitment domain to regulate FAM21 cytosolic and nuclear subcellular localization. Finally, our findings indicate that FAM21 depletion sensitizes pancreatic cancer cells to gemcitabine and 5-fluorouracil. Thus, FAM21 not only functions as an integral component of the cytoplasmic WASH complex, but also modulates NF-κB gene transcription in the nucleus.
Collapse
Affiliation(s)
- Zhi-Hui Deng
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA Department of Pathophysiology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Timothy S Gomez
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Douglas G Osborne
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Christine A Phillips-Krawczak
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
81
|
Genome-wide RNAi screen reveals a role for multipass membrane proteins in endosome-to-golgi retrieval. Cell Rep 2014; 9:1931-1945. [PMID: 25464851 PMCID: PMC4542293 DOI: 10.1016/j.celrep.2014.10.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 11/22/2022] Open
Abstract
Endosome-to-Golgi retrieval is an essential membrane trafficking pathway required for many important physiological processes and linked to neurodegenerative disease and infection by bacterial and viral pathogens. The prototypical cargo protein for this pathway is the cation-independent mannose 6-phosphate receptor (CIMPR), which delivers lysosomal hydrolases to endosomes. Efficient retrieval of CIMPR to the Golgi requires the retromer complex, but other aspects of the endosome-to-Golgi retrieval pathway are poorly understood. Employing an image-based antibody-uptake assay, we conducted a genome-wide RNAi loss-of-function screen for novel regulators of this trafficking pathway and report ∼90 genes that are required for endosome-to-Golgi retrieval of a CD8-CIMPR reporter protein. Among these regulators of endosome-to-Golgi retrieval are a number of multipass membrane-spanning proteins, a class of proteins often overlooked with respect to a role in membrane trafficking. We further demonstrate a role for three multipass membrane proteins, SFT2D2, ZDHHC5, and GRINA, in endosome-to-Golgi retrieval.
Collapse
|
82
|
Woodham EF, Machesky LM. Polarised cell migration: intrinsic and extrinsic drivers. Curr Opin Cell Biol 2014; 30:25-32. [PMID: 24953729 DOI: 10.1016/j.ceb.2014.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/17/2014] [Indexed: 11/24/2022]
Abstract
Cell polarity arises out of asymmetry of the distribution and organisation of cell contents. Polarity is an important feature of all living organisms and much energy is devoted to breaking symmetry and establishing polarity. Recent developments in our understanding of how the budding yeast Saccharomyces cerevisiae establishes and maintains polarity for cell division shed light on universal mechanisms that may be relevant to both asymmetric cell division and polarised cell migration in other organisms. Here, we summarise some of the recent developments in our understanding of polarity of the cytoskeleton and associated signalling molecules as it relates to cell migration. Parallels are drawn between planar cell polarity and apical-basal polarity in epithelial tissues and front-back polarity in migrating cells.
Collapse
Affiliation(s)
- Emma F Woodham
- The CRUK Beatson Institute for Cancer Research, University of Glasgow, College of MVLS, Garscube Campus, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Laura M Machesky
- The CRUK Beatson Institute for Cancer Research, University of Glasgow, College of MVLS, Garscube Campus, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
83
|
Machesky L, Sedwick C. Laura Machesky: actin opens the way. J Cell Biol 2014; 206:816-7. [PMID: 25267291 PMCID: PMC4178962 DOI: 10.1083/jcb.2067pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Machesky studies the role of the actin cytoskeleton in cancer invasion and metastasis.
Collapse
|
84
|
SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene 2014; 34:3582-92. [PMID: 25220418 DOI: 10.1038/onc.2014.289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the majority of recurrences are due to metastasis. However, the molecular mechanisms that regulate OS metastatic spread are largely unknown. In this study, we report that special AT-rich-binding protein 2 (SATB2) is highly expressed in OS cells and tumors. Short hairpin RNA-mediated knockdown of SATB2 (sh-SATB2) decreases migration and invasion of OS cells without affecting proliferation or viability. Microarray analysis identified genes that were differentially regulated by SATB2 including the actin-binding protein Epithelial Protein Lost In Neoplasm (EPLIN), which was upregulated in sh-SATB2 cells. Silencing EPLIN rescues the decreased invasion observed in sh-SATB2 cells. Pathway analyses of SATB2-regulated genes revealed enrichment of those involved in cytoskeleton dynamics, and increased stress fiber formation was detected in cells with SATB2 knockdown. Furthermore, sh-SATB2 cells exhibit increased RhoA, decreased Rac1 and increased phosphorylation of focal adhesion kinase (FAK) and paxillin. These findings identify SATB2 as a novel regulator of OS invasion, in part via effects on EPLIN and the cytoskeleton.
Collapse
|
85
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|
86
|
Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE, Morton JP, Timpson P. Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis 2014; 35:1671-9. [PMID: 24903340 DOI: 10.1093/carcin/bgu108] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Basic in vitro systems can be used to model and assess complex diseases, such as cancer. Recent advances in this field include the incorporation of multiple cell types and extracellular matrix proteins into three-dimensional (3D) models to recapitulate the structure, organization and functionality of live tissue in situ. Cells within such a 3D environment behave very differently from cells on two-dimensional (2D) substrates, as cell-matrix interactions trigger signalling pathways and cellular responses in 3D, which may not be observed in 2D. Thus, the use of 3D systems can be advantageous for the assessment of disease progression over 2D set-ups alone. Here, we highlight the current advantages and challenges of employing 3D systems in the study of cancer and provide an overview to guide the appropriate use of distinct models in cancer research.
Collapse
Affiliation(s)
- David Herrmann
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - James R W Conway
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Claire Vennin
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Astrid Magenau
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - William E Hughes
- Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and
| | - Jennifer P Morton
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Paul Timpson
- Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia, Diabetes and Obesity Division, Garvan Institute of Medical Research, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2010, Sydney, Australia and The Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
87
|
Graham DB, Osborne DG, Piotrowski JT, Gomez TS, Gmyrek GB, Akilesh HM, Dani A, Billadeau DD, Swat W. Dendritic cells utilize the evolutionarily conserved WASH and retromer complexes to promote MHCII recycling and helper T cell priming. PLoS One 2014; 9:e98606. [PMID: 24886983 PMCID: PMC4041763 DOI: 10.1371/journal.pone.0098606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/06/2014] [Indexed: 01/19/2023] Open
Abstract
Immature dendritic cells (DCs) maintain a highly dynamic pool of recycling MHCII that promotes sampling of environmental antigens for presentation to T helper cells. However, the molecular basis of MHCII recycling and the cellular machinery that orchestrates MHCII trafficking are incompletely understood. Using a mouse model we show that WASH, an actin regulatory protein that facilitates retromer function, is essential for MHCII recycling and efficient priming of T helper cells. We further demonstrate that WASH deficiency results in impaired MHCII surface levels, recycling, and an accumulation of polyubiquitinated MHCII complexes, which are subsequently slated for premature lysosomal degradation. Consequently, conditional deletion of the Wash gene in DCs impairs priming of both conventional and autoimmune T helper cells in vivo and attenuates disease progression in a model of experimental autoimmune encephalitis (EAE). Thus, we identify a novel mechanism in which DCs employ the evolutionarily conserved WASH and retromer complex for MHCII recycling in order to regulate T helper cell priming.
Collapse
Affiliation(s)
- Daniel B. Graham
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Douglas G. Osborne
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Joshua T. Piotrowski
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Timothy S. Gomez
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Grzegorz B. Gmyrek
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Holly M. Akilesh
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Adish Dani
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Daniel D. Billadeau
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail: (WS); (DDB)
| | - Wojciech Swat
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
- * E-mail: (WS); (DDB)
| |
Collapse
|
88
|
Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5:3891. [PMID: 24852344 PMCID: PMC4050264 DOI: 10.1038/ncomms4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin–actin interactions needed for recycling by G-clathrin during migration. Clathrin light chain (CLC) subunits are dispensable for clathrin-mediated endocytosis of a number of cargoes. Majeed et al. report that CLCs are however required for gyrating-clathrin-dependent recycling of inactive β1-integrins, the absence of which impairs cell migration.
Collapse
|
89
|
Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun 2014; 5:3828. [PMID: 24819384 PMCID: PMC4024763 DOI: 10.1038/ncomms4828] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Endosomal protein sorting controls the localization of many physiologically important proteins and is linked to several neurodegenerative diseases. VPS35 is a component of the retromer complex, which mediates endosome-to-Golgi retrieval of membrane proteins such as the cation-independent mannose 6-phosphate receptor. Furthermore, retromer is also required for the endosomal recruitment of the actin nucleation promoting WASH complex. The VPS35 D620N mutation causes a rare form of autosomal-dominant Parkinson's disease (PD). Here we show that this mutant associates poorly with the WASH complex and impairs WASH recruitment to endosomes. Autophagy is impaired in cells expressing PD-mutant VPS35 or lacking WASH. The autophagy defects can be explained, at least in part, by abnormal trafficking of the autophagy protein ATG9A. Thus, the PD-causing D620N mutation in VPS35 restricts WASH complex recruitment to endosomes, and reveals a novel role for the WASH complex in autophagosome formation.
Collapse
Affiliation(s)
- Eszter Zavodszky
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Matthew N.J. Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sophia Y. Breusegem
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - Michael E. Harbour
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
90
|
El-Sayed FG, Camden JM, Woods LT, Khalafalla MG, Petris MJ, Erb L, Weisman GA. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. Am J Physiol Cell Physiol 2014; 307:C83-96. [PMID: 24760984 DOI: 10.1152/ajpcell.00380.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
Collapse
Affiliation(s)
- Farid G El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Mahmoud G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri; and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
91
|
Monteiro P, Rossé C, Castro-Castro A, Irondelle M, Lagoutte E, Paul-Gilloteaux P, Desnos C, Formstecher E, Darchen F, Perrais D, Gautreau A, Hertzog M, Chavrier P. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. ACTA ACUST UNITED AC 2014; 203:1063-79. [PMID: 24344185 PMCID: PMC3871436 DOI: 10.1083/jcb.201306162] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
WASH and exocyst promote pericellular matrix degradation and tumor cell invasion by enabling localized exocytosis of MT1-MMP from late endosomes. Remodeling of the extracellular matrix by carcinoma cells during metastatic dissemination requires formation of actin-based protrusions of the plasma membrane called invadopodia, where the trans-membrane type 1 matrix metalloproteinase (MT1-MMP) accumulates. Here, we describe an interaction between the exocyst complex and the endosomal Arp2/3 activator Wiskott-Aldrich syndrome protein and Scar homolog (WASH) on MT1-MMP–containing late endosomes in invasive breast carcinoma cells. We found that WASH and exocyst are required for matrix degradation by an exocytic mechanism that involves tubular connections between MT1-MMP–positive late endosomes and the plasma membrane in contact with the matrix. This ensures focal delivery of MT1-MMP and supports pericellular matrix degradation and tumor cell invasion into different pathologically relevant matrix environments. Our data suggest a general mechanism used by tumor cells to breach the basement membrane and for invasive migration through fibrous collagen-enriched tissues surrounding the tumor.
Collapse
|
92
|
Freeman CL, Hesketh G, Seaman MNJ. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci 2014; 127:2053-70. [PMID: 24643499 DOI: 10.1242/jcs.144659] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Retromer is a vital element of the endosomal protein sorting machinery and comprises two subcomplexes that operate together to sort membrane proteins (cargo) and tubulate membranes. Tubules are formed by a dimer of sorting nexins, a key component of which is SNX1. Cargo selection is mediated by the VPS35-VPS29-VPS26 trimer, which additionally recruits the WASH complex through VPS35 binding to the WASH complex subunit FAM21. Loss of function of the WASH complex leads to dysregulation of endosome tubulation, although it is unclear how this occurs. Here, we show that FAM21 also binds to the SNX1-interacting DNAJ protein RME-8. Loss of RME-8 causes altered kinetics of SNX1 membrane association and a pronounced increase in highly branched endosomal tubules. Building on previous observations from other laboratories, we show that these tubules contain membrane proteins that are dependent upon WASH complex activity for their localization to the plasma membrane. Therefore, we propose that the interaction between RME-8 and the WASH complex provides a means to coordinate the activity of the WASH complex with the membrane-tubulating function of the sorting nexins at sites where retromer-mediated endosomal protein sorting occurs.
Collapse
Affiliation(s)
- Caroline L Freeman
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
93
|
Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol 2014; 6:6/3/a016832. [PMID: 24591520 DOI: 10.1101/cshperspect.a016832] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organelles within the endomembrane system are connected via vesicle flux. Along the endocytic pathway, endosomes are among the most versatile organelles. They sort cargo through tubular protrusions for recycling or through intraluminal vesicles for degradation. Sorting involves numerous machineries, which mediate fission of endosomal transport intermediates and fusion with other endosomes or eventually with lysosomes. Here we review the recent advances in our understanding of these processes with a particular focus on the Rab GTPases, tethering factors, and retromer. The cytoskeleton has also been recently recognized as a central player in membrane dynamics of endosomes, and this review covers the regulation of the machineries that govern the formation of branched actin networks through the WASH and Arp2/3 complexes in relation with cargo recycling and endosomal fission.
Collapse
Affiliation(s)
- Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
94
|
Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD. The Vps35 D620N Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer. Traffic 2013; 15:230-44. [DOI: 10.1111/tra.12136] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jordan Follett
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Nicholas A. Hamilton
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Megha Mohan
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Stephanie Tay
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Yang Zhe
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Stephen A. Wood
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - George D. Mellick
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
| | - Peter A. Silburn
- Eskitis Institute for Drug Discovery; Griffith University; Nathan Queensland, Australia
- The University of Queensland Centre for Clinical Research; Herston Queensland, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland, Australia
| |
Collapse
|
95
|
Nobis M, Carragher NO, McGhee EJ, Morton JP, Sansom OJ, Anderson KI, Timpson P. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J 2013; 280:5177-97. [PMID: 23678945 DOI: 10.1111/febs.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The integration of signal transduction pathways plays a fundamental role in governing disease initiation, progression and outcome. It is therefore necessary to understand disease at the signalling level to enable effective treatment and to intervene in its progression. The recent extension of in vitro subcellular image-based analysis to live in vivo modelling of disease is providing a more complete picture of real-time, dynamic signalling processes or drug responses in live tissue. Intravital imaging offers alternative strategies for studying disease and embraces the biological complexities that govern disease progression. In the present review, we highlight how three-dimensional or live intravital imaging has uncovered novel insights into biological mechanisms or modes of drug action. Furthermore, we offer a prospective view of how imaging applications may be integrated further with the aim of understanding disease in a more physiological and functional manner within the framework of the drug discovery process.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
96
|
King JS, Gueho A, Hagedorn M, Gopaldass N, Leuba F, Soldati T, Insall RH. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Mol Biol Cell 2013; 24:2714-26. [PMID: 23885127 PMCID: PMC3756923 DOI: 10.1091/mbc.e13-02-0092] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.
Collapse
Affiliation(s)
- Jason S. King
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Aurélie Gueho
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Navin Gopaldass
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robert H. Insall
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| |
Collapse
|
97
|
Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol 2013; 23:522-8. [PMID: 23721880 DOI: 10.1016/j.tcb.2013.04.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/21/2022]
Abstract
Endosomal protein sorting governs the fate of many physiologically important proteins involved in a panoply of cellular functions. Recent discoveries have revealed a vital role for endosomally localised branched actin patches in facilitating protein sorting. The formation of the actin patches has been shown to require the function of the WASH complex - the major endosomal actin polymerisation-promoting complex - which stimulates the activity of the ubiquitously expressed Arp2/3 complex. Another key component of the endosomal protein-sorting machinery is the retromer complex. Studies now show that retromer mediates the recruitment of the WASH complex and its regulators to endosomes. In this review, recent progress in understanding the role of the WASH complex along with retromer in endosomal protein sorting is discussed.
Collapse
|
98
|
Ryder PV, Vistein R, Gokhale A, Seaman MN, Puthenveedu MA, Faundez V. The WASH complex, an endosomal Arp2/3 activator, interacts with the Hermansky-Pudlak syndrome complex BLOC-1 and its cargo phosphatidylinositol-4-kinase type IIα. Mol Biol Cell 2013; 24:2269-84. [PMID: 23676666 PMCID: PMC3708732 DOI: 10.1091/mbc.e13-02-0088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The WASH complex, an endosomal activator of the Arp2/3 complex involved in branched actin polymerization, is identified as a new factor in vesicle traffic mediated by the Hermansky–Pudlak syndrome complex BLOC-1. Vesicle biogenesis machinery components such as coat proteins can interact with the actin cytoskeleton for cargo sorting into multiple pathways. It is unknown, however, whether these interactions are a general requirement for the diverse endosome traffic routes. In this study, we identify actin cytoskeleton regulators as previously unrecognized interactors of complexes associated with the Hermansky–Pudlak syndrome. Two complexes mutated in the Hermansky–Pudlak syndrome, adaptor protein complex-3 and biogenesis of lysosome-related organelles complex-1 (BLOC-1), interact with and are regulated by the lipid kinase phosphatidylinositol-4-kinase type IIα (PI4KIIα). We therefore hypothesized that PI4KIIα interacts with novel regulators of these complexes. To test this hypothesis, we immunoaffinity purified PI4KIIα from isotope-labeled cell lysates to quantitatively identify interactors. Strikingly, PI4KIIα isolation preferentially coenriched proteins that regulate the actin cytoskeleton, including guanine exchange factors for Rho family GTPases such as RhoGEF1 and several subunits of the WASH complex. We biochemically confirmed several of these PI4KIIα interactions. Of importance, BLOC-1 complex, WASH complex, RhoGEF1, or PI4KIIα depletions altered the content and/or subcellular distribution of the BLOC-1–sensitive cargoes PI4KIIα, ATP7A, and VAMP7. We conclude that the Hermansky–Pudlak syndrome complex BLOC-1 and its cargo PI4KIIα interact with regulators of the actin cytoskeleton.
Collapse
Affiliation(s)
- P V Ryder
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
99
|
Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2013; 125:3695-701. [PMID: 23027580 DOI: 10.1242/jcs.095810] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
100
|
Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM, Cullen PJ. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 2013; 15:461-71. [PMID: 23563491 PMCID: PMC4052425 DOI: 10.1038/ncb2721] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
The PDZ-domain-containing sorting nexin 27 (SNX27) promotes recycling of internalized transmembrane proteins from endosomes to the plasma membrane by linking PDZ-dependent cargo recognition to retromer-mediated transport. Here, we employed quantitative proteomics of the SNX27 interactome and quantification of the surface proteome of SNX27- and retromer-suppressed cells to dissect the assembly of the SNX27 complex and provide an unbiased global view of SNX27-mediated sorting. Over 100 cell surface proteins, many of which interact with SNX27, including the glucose transporter GLUT1, the Menkes disease copper transporter ATP7A, various zinc and amino acid transporters, and numerous signalling receptors, require SNX27-retromer to prevent lysosomal degradation and maintain surface levels. Furthermore, we establish that direct interaction of the SNX27 PDZ domain with the retromer subunit VPS26 is necessary and sufficient to prevent lysosomal entry of SNX27 cargo. Our data identify the SNX27-retromer as a major endosomal recycling hub required to maintain cellular nutrient homeostasis.
Collapse
Affiliation(s)
- Florian Steinberg
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|