51
|
Tanaka K, Kumano K, Ueno H. Intracellular signals of lung cancer cells as possible therapeutic targets. Cancer Sci 2015; 106:489-96. [PMID: 25707772 PMCID: PMC4452148 DOI: 10.1111/cas.12643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023] Open
Abstract
In recent years, several molecularly targeted therapies have been developed as part of lung cancer treatment; they have produced dramatically good results. However, among the many oncogenes that have been identified to be involved in the development of lung cancers, a number of oncogenes are not covered by these advanced therapies. For the treatment of lung cancers, which is a group of heterogeneous diseases, persistent effort in developing individual therapies based on the respective causal genes is important. In addition, for the development of a novel therapy, identification of the lung epithelial stem cells and the origin cells of lung cancer, and understanding about candidate cancer stem cells in lung cancer tissues, their intracellular signaling pathways, and the mechanism of dysregulation of the pathways in cancer cells are extremely important. However, the development of drug resistance by cancer cells, despite the use of molecularly targeted drugs for the causal genes, thus obstructing treatment, is a well-known phenomenon. In this article, we discuss major causal genes of lung cancers and intracellular signaling pathways involving those genes, and review studies on origin and stem cells of lung cancers, as well as the possibility of developing molecularly targeted therapies based on these studies.
Collapse
Affiliation(s)
- Kiyomichi Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| | - Keiki Kumano
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
52
|
Rothenberg SM, Concannon K, Cullen S, Boulay G, Turke AB, Faber AC, Lockerman EL, Rivera MN, Engelman JA, Maheswaran S, Haber DA. Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways. eLife 2015; 4. [PMID: 25686219 PMCID: PMC4384750 DOI: 10.7554/elife.06132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022] Open
Abstract
Treatment of EGFR-mutant lung cancer with erlotinib results in
dramatic tumor regression but it is invariably followed by drug resistance. In
characterizing early transcriptional changes following drug treatment of mutant
EGFR-addicted cells, we identified the stem cell transcriptional regulator SOX2 as
being rapidly and specifically induced, both in vitro and in vivo. Suppression of
SOX2 sensitizes cells to erlotinib-mediated apoptosis, ultimately decreasing the
emergence of acquired resistance, whereas its ectopic expression reduces drug-induced
cell death. We show that erlotinib relieves EGFR-dependent suppression of FOXO6,
leading to its induction of SOX2, which in turn represses the pro-apoptotic BH3-only
genes BIM and BMF. Together, these observations
point to a physiological feedback mechanism that attenuates oncogene
addiction-mediated cell death associated with the withdrawal of growth factor
signaling and may therefore contribute to the development of resistance. DOI:http://dx.doi.org/10.7554/eLife.06132.001 Tumors can form when cells gain mutations in genes that enable them to grow and
divide rapidly. In some human lung cancers, genetic mutations are found in a gene
that makes a protein called EGFR. This protein encourages cells to divide and the
mutations can lead to the cancer cells producing more EGFR, or producing a form of
the protein that is more active. Treating these cancers with a drug called erlotinib inhibits EGFR and makes the
tumors shrink dramatically, but the tumors will usually re-grow because any tumor
cells that survive often become resistant to the drug. There are several ways that
the tumor cells can become resistant, which makes the task of developing a solution
to this problem more difficult. It has been suggested that the tumor cells may enter
a temporary ‘drug-tolerant’ state that helps them to survive and makes
it more likely that they will develop resistance to the drug. However, it is not
clear how this drug-tolerant state might work. To address this question, Rothenberg et al. examined which genes are switched on (or
‘expressed’) in tumor cells with a mutant version of EGFR after they
were treated with the erlotinib drug. The experiments show that a gene called
SOX2 is expressed in these cells. Cells that had lower levels of
SOX2 expression were more sensitive to the effects of the drug
and fewer cells developed resistance. On the other hand, cells that had higher levels
of SOX2 expression were less sensitive to the drug and resistance
was more likely to develop. A protein called FOXO6—which is usually suppressed by EGFR—activates
the SOX2 gene in these cells. Therefore, using erlotinib to inhibit
EGFR to kill the cancer cells increases the activity of FOXO6, which in turn promotes
the survival of some of the cells by activating the SOX2 gene. A
better understanding of the ways in which cancer cells adapt to erlotinib and other
drugs may help us to design more effective treatments with better outcomes for
patients. DOI:http://dx.doi.org/10.7554/eLife.06132.002
Collapse
Affiliation(s)
- S Michael Rothenberg
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Kyle Concannon
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Sarah Cullen
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Gaylor Boulay
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Alexa B Turke
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Anthony C Faber
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Elizabeth L Lockerman
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Miguel N Rivera
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Jeffrey A Engelman
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Shyamala Maheswaran
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Daniel A Haber
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
53
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
54
|
Schilders K, Ochieng JK, van de Ven CP, Gontan C, Tibboel D, Rottier RJ. Role of SOX2 in foregut development in relation to congenital abnormalities. World J Med Genet 2014; 4:94-104. [DOI: 10.5496/wjmg.v4.i4.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The uptake of the two essential ingredients for life, oxygen and nutrients, occurs primarily through the oral cavity, but these two lifelines need to be separated with high accuracy once inside the body. The two systems, the gas exchange pulmonary system and the gastro-intestinal feeding system, are derived from the same primitive embryonic structure during development, the foregut, which need to be separated before birth. In certain newborns, this separation occurs not or insufficiently, leading to life threatening conditions, sometimes incompatible with life. The development of the foregut, trachea and lungs is influenced and coordinated by a multitude of signaling cascades and transcription factors. In this review, we will highlight the development of the foregut and pulmonary system and focus on associated congenital abnormalities in light of known genetic alterations with specific attention to the transcription factor SOX2.
Collapse
|
55
|
Emmerton-Coughlin HMA, Martin KK, Chiu JSS, Zhao L, Scott LA, Regnault TRH, Bütter A. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia. Front Surg 2014; 1:44. [PMID: 25593968 PMCID: PMC4286986 DOI: 10.3389/fsurg.2014.00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 12/05/2022] Open
Abstract
Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Results: Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). Conclusion: For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.
Collapse
Affiliation(s)
| | - K Kathryn Martin
- Division of General Surgery, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Jacky S S Chiu
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Lin Zhao
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Leslie A Scott
- Division of Pediatric Surgery, Children's Hospital, The University of Western Ontario , London, ON , Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada ; Children's Health Research Institute, The University of Western Ontario , London, ON , Canada ; Lawson Health Research Institute, The University of Western Ontario , London, ON , Canada
| | - Andreana Bütter
- Division of Pediatric Surgery, Children's Hospital, The University of Western Ontario , London, ON , Canada ; Lawson Health Research Institute, The University of Western Ontario , London, ON , Canada
| |
Collapse
|
56
|
Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C, Smits R, Grosveld FG, Wijnen RMH, Tibboel D, Rottier RJ. Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. Am J Respir Cell Mol Biol 2014; 51:311-22. [PMID: 24669837 DOI: 10.1165/rcmb.2013-0419oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung development is determined by the coordinated expression of several key genes. Previously, we and others have shown the importance of the sex determining region Y-box 2 (Sox2) gene in lung development. Transgenic expression of Sox2 during lung development resulted in cystic airways, and here we show that modulating the timing of ectopic Sox2 expression in the branching regions of the developing lung results in variable cystic lesions resembling the spectrum of the human congenital disorder congenital cystic adenomatoid malformation (CCAM). Sox2 dominantly differentiated naive epithelial cells into the proximal lineage irrespective of the presence of Fgf10. Sox2 directly induced the expression of Trp63, the master switch toward the basal cell lineage and induced the expression of Gata6, a factor involved in the emergence of bronchoalveolar stem cells. We showed that SOX2 and TRP63 are coexpressed in the lungs of human patients with type II CCAM. The combination of premature differentiation toward the proximal cell lineage and the induction of proliferation resulted in the cyst-like structures. Thus, we show that Sox2 is directly responsible for the emergence of two lung progenitor cells: basal cells by regulating the master gene Trp63 and bronchoalveolar stem cells by regulating Gata6.
Collapse
Affiliation(s)
- Joshua K Ochieng
- Departments of 1 Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15:123-38. [PMID: 25105578 PMCID: PMC4212493 DOI: 10.1016/j.stem.2014.07.012] [Citation(s) in RCA: 658] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke Medicine, Durham, NC 27705, USA
| | - Harold A Chapman
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Calle
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Andrew Le
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melinda Snitow
- Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Krummel
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barry R Stripp
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thiennu Vu
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric S White
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Faisal MN, Hoffmann J, El-Kholy S, Kallsen K, Wagner C, Bruchhaus I, Fink C, Roeder T. Transcriptional regionalization of the fruit fly's airway epithelium. PLoS One 2014; 9:e102534. [PMID: 25020150 PMCID: PMC4097054 DOI: 10.1371/journal.pone.0102534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022] Open
Abstract
Although airway epithelia are primarily devoted to gas exchange, they have to fulfil a number of different tasks including organ maintenance and the epithelial immune response to fight airborne pathogens. These different tasks are at least partially accomplished by specialized cell types in the epithelium. In addition, a proximal to distal gradient mirroring the transition from airflow conduction to real gas exchange, is also operative. We analysed the airway system of larval Drosophila melanogaster with respect to region-specific expression in the proximal to distal axis. The larval airway system is made of epithelial cells only. We found differential expression between major trunks of the airways and more distal ones comprising primary, secondary and terminal ones. A more detailed analysis was performed using DNA-microarray analysis to identify cohorts of genes that are either predominantly expressed in the dorsal trunks or in the primary/secondary/terminal branches of the airways. Among these differentially expressed genes are especially those involved in signal transduction. Wnt-signalling associated genes for example are predominantly found in secondary/terminal airways. In addition, some G-protein coupled receptors are differentially expressed between both regions of the airways, exemplified by those activated by octopamine or tyramine, the invertebrate counterparts of epinephrine and norepinephrine. Whereas the OAMB is predominantly found in terminal airway regions, the oct3βR has higher expression levels in dorsal trunks. In addition, we observed a significant association of both, genes predominantly expressed in dorsal trunks or in primary to terminal branches branches with those regulated by hypoxia. Taken together, this observed differential expression is indicative for a proximal to distal transcriptional regionalization presumably reflecting functional differences in these parts of the fly’s airway system.
Collapse
Affiliation(s)
| | - Julia Hoffmann
- University of Kiel, Dept. Molecular Physiology, Kiel, Germany
| | - Samar El-Kholy
- University of Kiel, Dept. Molecular Physiology, Kiel, Germany
| | - Kimberley Kallsen
- University of Kiel, Dept. Molecular Physiology, Kiel, Germany
- Research Center Borstel, Priority Area Allergy and Asthma, Borstel, Germany
| | - Christina Wagner
- Research Center Borstel, Priority Area Allergy and Asthma, Borstel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Dept. Molecular Parasitology, Hamburg, Germany
| | - Christine Fink
- University of Kiel, Dept. Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- University of Kiel, Dept. Molecular Physiology, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Germany
- * E-mail:
| |
Collapse
|
59
|
Jimenez FR, Lewis JB, Belgique ST, Wood TT, Reynolds PR. Developmental lung expression and transcriptional regulation of claudin-6 by TTF-1, Gata-6, and FoxA2. Respir Res 2014; 15:70. [PMID: 24970044 PMCID: PMC4082679 DOI: 10.1186/1465-9921-15-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Claudins are transmembrane proteins expressed in tight junctions that prevent paracellular transport of extracellular fluid and a variety of other substances. However, the expression profile of Claudin-6 (Cldn6) in the developing lung has not been characterized. Methods and results Cldn6 expression was determined during important periods of lung organogenesis by microarray analysis, qPCR and immunofluorescence. Expression patterns were confirmed to peak at E12.5 and diminish as lung development progressed. Immunofluorescence revealed that Cldn6 was detected in cells that also express TTF-1 and FoxA2, two critical transcriptional regulators of pulmonary branching morphogenesis. Cldn6 was also observed in cells that express Sox2 and Sox9, factors that influence cell differentiation in the proximal and distal lung, respectively. In order to assess transcriptional control of Cldn6, 0.5, 1.0, and 2.0-kb of the proximal murine Cldn6 promoter was ligated into a luciferase reporter and co-transfected with expression vectors for TTF-1 or two of its important transcriptional co-regulators, FoxA2 and Gata-6. In almost every instance, TTF-1, FoxA2, and Gata-6 activated gene transcription in cell lines characteristic of proximal airway epithelium (Beas2B) and distal alveolar epithelium (A-549). Conclusions These data revealed for the first time that Cldn6 might be an important tight junctional component expressed by pulmonary epithelium during lung organogenesis. Furthermore, Cldn6-mediated aspects of cell differentiation may describe mechanisms of lung perturbation coincident with impaired cell junctions and abnormal membrane permeability.
Collapse
Affiliation(s)
| | | | | | | | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.
| |
Collapse
|
60
|
Wang Y, Dong J, Li D, Lai L, Siwko S, Li Y, Liu M. Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2. Stem Cells 2014; 31:1921-31. [PMID: 23712846 DOI: 10.1002/stem.1438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022]
Abstract
The key signaling networks regulating mammary stem cells are poorly defined. The leucine-rich repeat containing G protein-coupled receptor (Lgr) family has been implicated in intestinal, gastric, and epidermal stem cell functions. We investigated whether Lgr4 functions in mammary gland development and mammary stem cells. We found that Lgr4(-/-) mice had delayed ductal development, fewer terminal end buds, and decreased side-branching. Crucially, the mammary stem cell repopulation capacity was severely impaired. Mammospheres from Lgr4(-/-) mice showed decreased Wnt signaling. Wnt3a treatment prevented the adverse effects of Lgr4 loss on organoid formation. Chromatin immunoprecipitation analysis indicated that Sox2 expression was controlled by the Lgr4/Wnt/β-catenin/Lef1 pathway. Importantly, Sox2 overexpression restored the in vivo mammary regeneration potential of Lgr4(-/-) mammary stem cells. Therefore, Lgr4 activates Sox2 to regulate mammary development and stem cell functions via Wnt/β-catenin/Lef1.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Xie W, Lynch TJ, Liu X, Tyler SR, Yu S, Zhou X, Luo M, Kusner DM, Sun X, Yi Y, Zhang Y, Goodheart MJ, Parekh KR, Wells JM, Xue HH, Pevny LH, Engelhardt JF. Sox2 modulates Lef-1 expression during airway submucosal gland development. Am J Physiol Lung Cell Mol Physiol 2014; 306:L645-L660. [PMID: 24487391 PMCID: PMC3962629 DOI: 10.1152/ajplung.00157.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/29/2014] [Indexed: 01/06/2023] Open
Abstract
Tracheobronchial submucosal glands (SMGs) are derived from one or more multipotent glandular stem cells that coalesce to form a placode in surface airway epithelium (SAE). Wnt/β-catenin-dependent induction of lymphoid enhancer factor (Lef-1) gene expression during placode formation is an early event required for SMG morphogenesis. We discovered that Sox2 expression is repressed as Lef-1 is induced within airway SMG placodes. Deletion of Lef-1 did not activate Sox2 expression in SMG placodes, demonstrating that Lef-1 activation does not directly inhibit Sox2 expression. Repression of Sox2 protein in SMG placodes occurred posttranscriptionally, since the activity of its endogenous promoter remained unchanged in SMG placodes. Thus we hypothesized that Sox2 transcriptionally represses Lef-1 expression in the SAE and that suppression of Sox2 in SMG placodes activates Wnt/β-catenin-dependent induction of Lef-1 during SMG morphogenesis. Consistent with this hypothesis, transcriptional reporter assays, ChIP analyses, and DNA-protein binding studies revealed a functional Sox2 DNA binding site in the Lef-1 promoter that is required for suppressing β-catenin-dependent transcription. In polarized primary airway epithelium, Wnt induction enhanced Lef-1 expression while also inhibiting Sox2 expression. Conditional deletion of Sox2 also enhanced Lef-1 expression in polarized primary airway epithelium, but this induction was significantly augmented by Wnt stimulation. Our findings provide the first evidence that Sox2 acts as a repressor to directly modulate Wnt-responsive transcription of the Lef-1 gene promoter. These studies support a model whereby Wnt signals and Sox2 dynamically regulate the expression of Lef-1 in airway epithelia and potentially also during SMG development.
Collapse
Affiliation(s)
- Weiliang Xie
- Rm. 1-111 BSB, Dept. of Anatomy and Cell Biology, Univ. of Iowa, 51 Newton Rd., Iowa City, IA 52242.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ye X, Wu F, Wu C, Wang P, Jung K, Gopal K, Ma Y, Li L, Lai R. β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Signal 2013; 26:492-501. [PMID: 24291232 DOI: 10.1016/j.cellsig.2013.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 11/23/2013] [Indexed: 01/19/2023]
Abstract
Sox2, an embryonic stem cell marker, has been recently implicated in the pathogenesis of breast cancer (BC). Using liquid chromatography-mass spectrometry and co-immunoprecipitation, we identified β-catenin as a Sox2 binding partner in MCF7 cells. The interaction between Sox2 and β-catenin was substantially different between the two cell subsets separated based on their differential responsiveness to a Sox2 reporter. Specifically, while β-catenin binds to Sox2 in the nuclear fraction of cells showing reporter-responsiveness (i.e. RR cells), this interaction was not detectable in those that were reporter-unresponsive (i.e. RU cells). In RR but not in RU cells, siRNA knockdown of β-catenin significantly upregulated the Sox2 transcriptional activity, enhanced its DNA binding and increased the expression of its target genes. Correlating with these findings, while inhibition of β-catenin significantly downregulated the mammosphere formation efficiency in RU cells, this treatment paradoxically increased that of RR cells. To conclude, we identified that β-catenin is an important binding partner of Sox2 and a regulator of its transcriptional activity in a small subset of BC cells. The interaction between Sox2 and β-catenin provides a novel mechanism underlying the functional dichotomy of BC cells, which carries potential therapeutic implications.
Collapse
Affiliation(s)
- Xiaoxia Ye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Peng Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Karen Jung
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Yupo Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada; DynaLIFE(DX) Medical Laboratories, Edmonton, AB, Canada.
| |
Collapse
|
63
|
Volckaert T, Campbell A, Dill E, Li C, Minoo P, De Langhe S. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 2013; 140:3731-42. [PMID: 23924632 DOI: 10.1242/dev.096560] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Localized Fgf10 expression in the distal mesenchyme adjacent to sites of lung bud formation has long been thought to drive stereotypic branching morphogenesis even though isolated lung epithelium branches in the presence of non-directional exogenous Fgf10 in Matrigel. Here, we show that lung agenesis in Fgf10 knockout mice can be rescued by ubiquitous overexpression of Fgf10, indicating that precisely localized Fgf10 expression is not required for lung branching morphogenesis in vivo. Fgf10 expression in the mesenchyme itself is regulated by Wnt signaling. Nevertheless, we found that during lung initiation simultaneous overexpression of Fgf10 is not sufficient to rescue the absence of primary lung field specification in embryos overexpressing Dkk1, a secreted inhibitor of Wnt signaling. However, after lung initiation, simultaneous overexpression of Fgf10 in lungs overexpressing Dkk1 is able to rescue defects in branching and proximal-distal differentiation. We also show that Fgf10 prevents the differentiation of distal epithelial progenitors into Sox2-expressing airway epithelial cells in part by activating epithelial β-catenin signaling, which negatively regulates Sox2 expression. As such, these findings support a model in which the main function of Fgf10 during lung development is to regulate proximal-distal differentiation. As the lung buds grow out, proximal epithelial cells become further and further displaced from the distal source of Fgf10 and differentiate into bronchial epithelial cells. Interestingly, our data presented here show that once epithelial cells are committed to the Sox2-positive airway epithelial cell fate, Fgf10 prevents ciliated cell differentiation and promotes basal cell differentiation.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
64
|
Li C, Li A, Xing Y, Li M, Chan B, Ouyang R, Taketo MM, Kucherlapati R, Borok Z, Minoo P. Apc deficiency alters pulmonary epithelial cell fate and inhibits Nkx2.1 via triggering TGF-beta signaling. Dev Biol 2013; 378:13-24. [PMID: 23562608 DOI: 10.1016/j.ydbio.2013.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
Abstract
Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1(positive) cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, USC Keck School of Medicine & Childrens Hospital Los Angeles, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gaete M, Tucker AS. Organized emergence of multiple-generations of teeth in snakes is dysregulated by activation of Wnt/beta-catenin signalling. PLoS One 2013; 8:e74484. [PMID: 24019968 PMCID: PMC3760860 DOI: 10.1371/journal.pone.0074484] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/02/2013] [Indexed: 02/01/2023] Open
Abstract
In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes.
Collapse
Affiliation(s)
- Marcia Gaete
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abigail S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
66
|
Wheeler JLH, Martin KC, Lawrence BP. Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and inducible nitric oxide synthase expression during influenza virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 190:659-68. [PMID: 23233726 DOI: 10.4049/jimmunol.1201341] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The underlying reasons for variable clinical outcomes from respiratory viral infections remain uncertain. Several studies suggest that environmental factors contribute to this variation, but limited knowledge of cellular and molecular targets of these agents hampers our ability to quantify or modify their contribution to disease and improve public health. The aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that binds many anthropogenic and natural chemicals. The immunomodulatory properties of AhR ligands are best characterized with extensive studies of changes in CD4(+) T cell responses. Yet, AhR modulates other aspects of immune function. We previously showed that during influenza virus infection, AhR activation modulates neutrophil accumulation in the lung, and this contributes to increased mortality in mice. Enhanced levels of inducible NO synthase (iNOS) in infected lungs are observed during the same time frame as AhR-mediated increased pulmonary neutrophilia. In this study, we evaluated whether these two consequences of AhR activation are causally linked. Reciprocal inhibition of AhR-mediated elevations in iNOS and pulmonary neutrophilia reveal that although they are contemporaneous, they are not causally related. We show using Cre/loxP technology that elevated iNOS levels and neutrophil number in the infected lung result from separate, AhR-dependent signaling in endothelial and respiratory epithelial cells, respectively. Studies using mutant mice further reveal that AhR-mediated alterations in these innate responses to infection require a functional nuclear localization signal and DNA binding domain. Thus, gene targets of AhR in non-hematopoietic cells are important new considerations for understanding AhR-mediated changes in innate anti-viral immunity.
Collapse
Affiliation(s)
- Jennifer L Head Wheeler
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
67
|
Butler C, Birchall M, Giangreco A. Interventional and intrinsic airway homeostasis and repair. Physiology (Bethesda) 2012; 27:140-7. [PMID: 22689789 DOI: 10.1152/physiol.00001.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human airways are a paragon of intrinsic engineering. They experience 7,000-10,000 liters of airflow/day, have a 70-m(2) surface area, and undergo complete renewal every 100-400 days. Despite this, airways are susceptible to aging, injury, and diseases that are major causes of mortality. Current airway regeneration research is focused both on understanding the cells and strategies responsible for maintaining intrinsic tissue homeostasis as well as on establishing clinical interventions for improving repair.
Collapse
Affiliation(s)
- Colin Butler
- Centre for Respiratory Research, Department of Medicine, University College London, Rayne Institute, London, United Kingdom
| | | | | |
Collapse
|
68
|
Jönsson ME, Kubota A, Timme-Laragy AR, Woodin B, Stegeman JJ. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol Appl Pharmacol 2012; 265:166-74. [PMID: 23036320 DOI: 10.1016/j.taap.2012.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.
Collapse
Affiliation(s)
- Maria E Jönsson
- Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
69
|
Roth HM, Wadsworth SJ, Kahn M, Knight DA. The airway epithelium in asthma: developmental issues that scar the airways for life? Pulm Pharmacol Ther 2012; 25:420-6. [PMID: 23022283 DOI: 10.1016/j.pupt.2012.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/19/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
Abstract
While allergies are very common, affecting ∼40% of the population in most Western countries, only a proportion of allergic people develop asthma. This highlights the importance of tissue and cell specific mechanisms that contribute to the disease. As the interface between the inhaled environment and the internal environment of the lung, the epithelium normally possesses numerous mechanisms to maintain an effective protective barrier. However, the inability of the airway epithelium of asthmatics to effectively defend the lung against normally innocuous inhaled agents strongly suggests that asthma must involve defects in the epithelial barrier rather than being primarily an allergic disease. Evidence is accumulating that in asthma, the epithelium does not go through normal stages of development and differentiation and as a consequence, remain somewhat "immature". This in turn leads to a chronic cycle of dysregulated damage and repair which ultimately impacts on the airways function by increasing inflammation, but also by initiating processes that ultimately lead to changes to the structure and function of the airway.
Collapse
Affiliation(s)
- Hollis M Roth
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Canada
| | | | | | | |
Collapse
|
70
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
71
|
Hashimoto S, Chen H, Que J, Brockway BL, Drake JA, Snyder JC, Randell SH, Stripp BR. β-Catenin–SOX2 signaling regulates the fate of developing airway epithelium. Development 2012. [DOI: 10.1242/dev.082131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|