51
|
Xu N, Zhou X, Wang S, Xu LL, Zhou HS, Liu XL. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci 2015; 12:524-9. [PMID: 26078714 PMCID: PMC4466518 DOI: 10.7150/ijms.11352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/13/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Artesunate (ART), a wildly used agent to treat severe malarial around the world, also has the power to inhibit growth of different types of tumor. However, the exact molecular mechanisms keep unknown. METHOD In this study, we used myelodysplastic syndrome (MDS) cells (SKM-1 cells) with differential ART concentrations treatment at multiple time points to observe the subsequence cell function alteration and the possible involved pathway genes. RESULTS We found that ART demonstrated the ability to inhibit proliferation and induce apoptosis in SKM-1 in a dose and time-dependent manner. Demethylase recovered CDH1 gene expression may be involved in the apoptosis process. The β-catenin protein translocated from the nucleus and cytoplasm to the membrane result in inactivation of β-catenin signaling pathway. CONCLUSION Our findings provide a rational basis to develop ART as a useful therapeutic agent for the treatment of myelodysplastic syndromes.
Collapse
Affiliation(s)
- Na Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- 2. Department of Ultrasound, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lu-lu Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-li Liu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
52
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
53
|
Xiang M, Namani A, Wu S, Wang X. Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol 2014; 140:1251-9. [PMID: 24599821 DOI: 10.1007/s00432-014-1627-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells. RESULTS AND DISCUSSION Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study. CONCLUSION This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.
Collapse
Affiliation(s)
- MingJun Xiang
- Department of Biochemistry and Molecular Biology, College of Medical Science, Jishou University, Jishou, 416000, China,
| | | | | | | |
Collapse
|
54
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
55
|
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a key transcription factor that regulates the expression of over a hundred cytoprotective and antioxidant genes that provide cellular protection from reactive oxygen species. Chemotherapy resistance in several cancers has been linked to dysregulation of the NRF2 signalling pathway, moreover there is growing evidence that NRF2 may contribute to tumorigenesis. MicroRNA (miRNA) are small non-coding RNA sequences that post-transcriptionally regulate mRNA sequences. In cancer pathogenesis, aberrantly expressed miRNAs can act as either tumor suppressor or oncogenic miRNA. Recent evidence has been described that identifies a number of miRNA that can be regulated by NRF2. This review outlines the importance of NRF2 in regulating miRNA, and the functional role this may have in the tumorigenesis of human malignancies and their chemotherapy resistance.
Collapse
|
56
|
No JH, Kim YB, Song YS. Targeting nrf2 signaling to combat chemoresistance. J Cancer Prev 2014; 19:111-117. [PMID: 25337579 PMCID: PMC4204167 DOI: 10.15430/jcp.2014.19.2.111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that upregulates expression of a battery of genes to combat oxidative and electrophilic stress. Modification of Kelch-like ECH-associated protein 1 (Keap1) by reactive oxygen species stabilizes Nrf2 by escaping from degradation. Nrf2 then binds to antioxidant response elements (AREs) on the promoter region of various genes. Activation of the Keap1-Nrf2-ARE pathway plays critical roles in the chemopreventive effect of various phytochemicals. However, Nrf2 can protect cancer cells from oxidative stress and promote cell proliferation. Moreover, recent studies reveal that activation of the Nrf2 pathway is critical for resistance to chemotherapeutic agents. The aim of this review is to provide a molecular basis for the use of Nrf2 inhibitors in overcoming chemoresistance.
Collapse
Affiliation(s)
- Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong-Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Major in Biomodulation, World Class University, Seoul National University, Seoul, Korea
| |
Collapse
|
57
|
Namani A, Li Y, Wang XJ, Tang X. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1875-85. [PMID: 24851839 DOI: 10.1016/j.bbamcr.2014.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yulong Li
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| |
Collapse
|
58
|
Na HK, Surh YJ. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic Biol Med 2014; 67:353-65. [PMID: 24200599 DOI: 10.1016/j.freeradbiomed.2013.10.819] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a vast variety of endogenous and exogenous insults, including oxidative stress. Nrf2 acts as a master switch in the circuits upregulating the expression of various stress-response proteins, especially heme oxygenase-1 (HO-1). Paradoxically, however, recent studies have demonstrated oncogenic functions of Nrf2 and its major target protein HO-1. Levels of Nrf2 and HO-1 are elevated in many different types of human malignancies, which may facilitate the remodeling of the tumor microenvironment making it advantageous for the autonomic growth of cancer cells, metastasis, angiogenesis, and tolerance to chemotherapeutic agents and radiation and photodynamic therapy. In this context, the cellular stress response or cytoprotective signaling mediated via the Nrf2-HO-1 axis is hijacked by cancer cells for their growth advantage and survival of anticancer treatment. Therefore, Nrf2 and HO-1 may represent potential therapeutic targets in the management of cancer. This review highlights the roles of Nrf2 and HO-1 in proliferation of cancer cells, their tolerance/resistance to anticancer treatments, and metastasis or angiogenesis in tumor progression.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food & Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea; Cancer Research Institute, Seoul National University, Seoul 110-744, South Korea.
| |
Collapse
|
59
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med 2013; 65:750-764. [PMID: 23820265 DOI: 10.1016/j.freeradbiomed.2013.06.041] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/30/2013] [Accepted: 06/24/2013] [Indexed: 02/03/2023]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the expression of a large pool of antioxidant and cytoprotective genes regulating the cellular response to oxidative and electrophilic stress. Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1) and, upon stimulation by an oxidative or electrophilic insult, is rapidly activated by protein stabilization. Owing to its cytoprotective functions, Nrf2 has been traditionally studied in the field of chemoprevention; however, there is accumulated evidence that Keap1/Nrf2 mutations or unbalanced regulation that leads to overexpression or hyperactivation of Nrf2 may participate in tumorigenesis and be involved in chemoresistance of a wide number of solid cancers and leukemias. In addition to protecting cells from reactive oxygen species, Nrf2 seems to play a direct role in cell growth control and is related to apoptosis-regulating pathways. Moreover, Nrf2 activity is connected with oncogenic kinase pathways, structural proteins, hormonal regulation, other transcription factors, and epigenetic enzymes involved in the pathogenesis of various types of tumors. The aim of this review is to compile and summarize existing knowledge of the oncogenic functions of Nrf2 to provide a solid basis for its potential use as a molecular marker and pharmacological target in cancer.
Collapse
Affiliation(s)
- Irene Gañán-Gómez
- Department of System Biology, Biochemistry and Molecular Biology Unit, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain.
| | - Yue Wei
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| | - María Carmen Boyano-Adánez
- Department of System Biology, Biochemistry and Molecular Biology Unit, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Guillermo García-Manero
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| |
Collapse
|
61
|
Zhou S, Ye W, Shao Q, Zhang M, Liang J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 2013; 88:706-15. [PMID: 24126138 DOI: 10.1016/j.critrevonc.2013.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/14/2013] [Accepted: 09/17/2013] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy can effectively kill cancer cells through ROS generation. Cancer cells with upregulated antioxidant systems can develop high radioresistance ability, and the transcription factor NF-E2-related factor 2 (Nrf2) is a key regulator of the antioxidant system. Currently, there are numerous data indicating the important role of Nrf2 in cancer radioresistance. In this review, we summarize the aberrant regulation of Nrf2 in radioresistant cells and discuss the effects and underlying mechanism of Nrf2 in promoting radioresistance. These findings suggest that Nrf2 might be a potential therapeutic target in cancer radiation resistance or a promising radioprotector for normal organs during radiation therapy in the future.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
62
|
Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJM, Batson J, Malik K, Paraskeva C, Greenhough A. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32:1903-16. [PMID: 23736261 PMCID: PMC3981178 DOI: 10.1038/emboj.2013.123] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/β-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of β-catenin expression levels in vitro and in vivo revealed that β-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation β-catenin is selectively degraded via the formation of a β-catenin-LC3 complex, attenuating β-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the β-catenin-LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in β-catenin, which is required for interaction with LC3 and non-proteasomal degradation of β-catenin. Thus, Wnt/β-catenin represses autophagy and p62 expression, while β-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place β-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy.
Collapse
Affiliation(s)
- Katy J Petherick
- Cancer Research UK Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|