51
|
Ng WC, Londrigan SL, Nasr N, Cunningham AL, Turville S, Brooks AG, Reading PC. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus. J Virol 2016; 90:206-21. [PMID: 26468543 PMCID: PMC4702526 DOI: 10.1128/jvi.01447-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/04/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin.
Collapse
Affiliation(s)
- Wy Ching Ng
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Najla Nasr
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L Cunningham
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
52
|
Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis. Anat Sci Int 2015; 91:35-42. [DOI: 10.1007/s12565-015-0313-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
|
53
|
Bahl S, Parashar S, Malhotra H, Raje M, Mukhopadhyay A. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania. J Biol Chem 2015; 290:29993-30005. [PMID: 26499792 DOI: 10.1074/jbc.m115.670018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Surbhi Bahl
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Smriti Parashar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | - Manoj Raje
- the Institute of Microbial Technology, Chandigarh 160036, India
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
54
|
Coffey S, Costacou T, Orchard T, Erkan E. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells. PLoS One 2015; 10:e0140417. [PMID: 26465605 PMCID: PMC4605734 DOI: 10.1371/journal.pone.0140417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/26/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.
Collapse
Affiliation(s)
- Sam Coffey
- Cincinnati Children’s Hospital Medical Center, Division of Nephrology, Cincinnati, OH, United States of America
| | - Tina Costacou
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, United States of America
| | - Trevor Orchard
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, United States of America
| | - Elif Erkan
- Cincinnati Children’s Hospital Medical Center, Division of Nephrology, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
55
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
56
|
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila. Genetics 2015; 201:1087-102. [PMID: 26341658 DOI: 10.1534/genetics.115.177600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure-sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shi(ts1) mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.
Collapse
|
57
|
The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci Rep 2015; 35:BSR20150171. [PMID: 26285805 PMCID: PMC4613718 DOI: 10.1042/bsr20150171] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 01/18/2023] Open
Abstract
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.
Collapse
|
58
|
Seven D, Dogan S, Kiliç E, Karaman E, Koseoglu H, Buyru N. Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. Oncol Lett 2015; 10:1927-1931. [PMID: 26622777 DOI: 10.3892/ol.2015.3433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Several studies have suggested that Ras-associated binding 25 protein (Rab25) is involved in the pathogenesis of human cancer. Although it has been demonstrated that the development of head and neck squamous cell carcinoma (HNSCC) is the result of an accumulation of multiple sequential genetic and epigenetic alterations in key genes with important functions in cell growth and the cell cycle, recent studies have indicated that HNSCC is a complex and heterogenous disease. To the best of our knowledge, there is no data regarding the regulation of the Rab25 gene at the mRNA or protein level in HNSCC. Furthermore, available data on Rab25 expression in other types of cancer are conflicting. The aim of the present study was to investigate whether Rab25 is involved in the development and/or progression of HNSCC, and to analyze the mechanisms underlying its effects in this type of cancer. The expression of Rab25 mRNA in HNSCC tissues and adjacent non-tumor tissue samples was measured using reverse transcription-quantitative polymerase chain reaction, while the level of the Rab25, Akt1 and phosphorylated-Akt1 proteins was measured using western blotting. Expression of Rab25 mRNA and protein was downregulated in 69.1% and 56.1% of tumor tissue samples, respectively. This downregulation was associated with an increase in p-Akt1 expression, in the absence of a change in total Akt1 protein levels, in tumor tissues compared with normal tissues. The current findings suggest that Rab25 acts as a tumor suppressor in HNSCC.
Collapse
Affiliation(s)
- Didem Seven
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Soydan Dogan
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Erkan Kiliç
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Emin Karaman
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Hikmet Koseoglu
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Nur Buyru
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| |
Collapse
|
59
|
Tsutsui T, Nakano A, Ueda T. The Plant-Specific RAB5 GTPase ARA6 is Required for Starch and Sugar Homeostasis in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1073-83. [PMID: 25713173 DOI: 10.1093/pcp/pcv029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
Endosomal trafficking plays integral roles in various eukaryotic cell activities. In animal cells, a member of the RAB GTPase family, RAB5, is a key regulator of various endosomal functions. In addition to orthologs of animal RAB5, plants harbor the plant-specific RAB5 group, the ARA6 group, which is conserved in land plant lineages. In Arabidopsis thaliana, ARA6 and conventional RAB5 act in distinct endosomal trafficking pathways; ARA6 mediates trafficking from endosomes to the plasma membrane, whereas conventional RAB5 acts in endocytic and vacuolar trafficking pathways. ARA6 is also required for normal salt and osmotic stress tolerance, although the functional link between ARA6 and stress tolerance remains unclear. In this study, we investigated ARA6 function in stress tolerance by monitoring broad-scale changes in gene expression in the ara6 mutant. A comparison of the expression profiles between wild-type and ara6-1 plants revealed that the expression of the Qua-Quine Starch (QQS) gene was significantly affected by the ara6-1 mutation. QQS is involved in starch homeostasis, consistent with the starch content decreasing in the ara6 mutants to approximately 60% of that of the wild-type plant. In contrast, the free and total glucose content increased in the ara6 mutants. Moreover, the proliferation of Pseudomonas syringae pv. tomato DC3000 was repressed in ara6 mutants, which could be attributed to the elevated sugar content. These results suggest that ARA6 is responsible for starch and sugar homeostasis, most probably through the function of QQS.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
60
|
Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virol 2015. [DOI: 10.2217/fvl.15.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Dengue virus (DENV) is the etiological agent of the most important human viral infection transmitted by mosquitoes in the world. In spite of the serious health threat that dengue represents, at present there are no vaccine or antiviral agents available and treatment of patients consists of supportive therapy. This review will focus on the process of DENV entry into the host cell as a potential target for antiviral therapy. The recent advances in the knowledge of viral and cellular molecules and mechanisms involved in binding, internalization and trafficking of DENV into the host cell until virion uncoating are discussed, together with an overview of the strategies and compounds evaluated for development of antiviral agents targeted to DENV entry.
Collapse
Affiliation(s)
- Viviana Castilla
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| |
Collapse
|
61
|
Adam N, Vergauwen L, Blust R, Knapen D. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. ENVIRONMENTAL RESEARCH 2015; 138:82-92. [PMID: 25704829 DOI: 10.1016/j.envres.2015.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
There is still a lot of contradiction on whether metal ions are solely responsible for the observed toxicity of ZnO and CuO nanoparticles to aquatic species. While most experiments have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at lower levels of biological organization may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO and CuO nanoparticles was tested at two lower levels: energy reserves and gene transcription and compared with zinc and copper salts. Daphnia magna was exposed during 96h to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for determination of glycogen, lipid and protein concentration and for a differential gene transcription analysis using microarray. The dissolved, nanoparticle and aggregated fraction in the medium was characterized. The results showed that ZnO nanoparticles had largely dissolved directly after addition to the test medium. The CuO nanoparticles mostly formed aggregates, while only a small fraction dissolved. The exposure to zinc (both nano and metal salt) had no effect on the available energy reserves. However, in the copper exposure, the glycogen, lipid and protein concentration in the exposed daphnids was lower than in the unexposed ones. When comparing the nanoparticle (ZnO or CuO) exposed daphnids to the metal salt (zinc or copper salt) exposed daphnids, the microarray results showed no significantly differentially transcribed gene fragments. The results indicate that under the current exposure conditions the toxicity of ZnO and CuO nanoparticles to D. magna is solely caused by toxic metal ions.
Collapse
Affiliation(s)
- Nathalie Adam
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Lucia Vergauwen
- Zebrafishlab, Physiology and Biochemistry of Domestic Animals, Department of Veterinary Sciences, University of Antwerp. Universiteitslaan 1, 2610 Wilrijk, Belgium.
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Dries Knapen
- Zebrafishlab, Physiology and Biochemistry of Domestic Animals, Department of Veterinary Sciences, University of Antwerp. Universiteitslaan 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
62
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|
63
|
Baranov MV, Ter Beest M, van den Bogaart G. Reaching for far-flung antigen: How solid-core podosomes of dendritic cells transform into protrusive structures. Commun Integr Biol 2014; 7:970961. [PMID: 26843902 PMCID: PMC4594491 DOI: 10.4161/cib.29084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
We recently identified a novel role for podosomes in antigen sampling. Podosomes are dynamic cellular structures that consist of point-like concentrations of actin surrounded by integrins and adaptor proteins such as vinculin and talin. Podosomes establish cellular contact with the extracellular matrix (ECM) and facilitate cell migration via ECM degradation. In our recent paper, we studied podosomes of human dendritic cells (DCs), major antigen presenting cells (APC) that take-up, process, and present foreign antigen to naive T-cells. We employed gelatin-impregnated porous polycarbonate filters to demonstrate that the mechanosensitive podosomes of DCs selectively localize to regions of low-physical resistance such as the filter pores. After degradation of the gelatin, podosomes increasingly protrude into the lumen of these pores. These protrusive podosome-derived structures contain several endocytic and early endosomal markers such as clathrin, Rab5, and VAMP3, and, surprisingly, also contain C-type lectins, a type of pathogen recognition receptors (PRRs). Finally, we performed functional uptake experiments to demonstrate that these PRRs facilitate uptake of antigen from the opposite side of the filter. Our data provide mechanistic insight in how dendritic cells sample for antigen across epithelial barriers for instance from the lumen of the lung and gut.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| |
Collapse
|
64
|
Egami Y, Taguchi T, Maekawa M, Arai H, Araki N. Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Front Physiol 2014; 5:374. [PMID: 25324782 PMCID: PMC4179697 DOI: 10.3389/fphys.2014.00374] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/10/2014] [Indexed: 12/26/2022] Open
Abstract
Macropinosome formation requires the sequential activation of numerous signaling pathways that coordinate the actin-driven formation of plasma membrane protrusions (ruffles) and circular ruffles (macropinocytic cups), followed by the closure of these macropinocytic cups into macropinosomes. In the process of macropinosome formation, localized productions of phosphoinositides such as PI(4,5)P2 and PI(3,4,5)P3 spatiotemporally orchestrate actin polymerization and rearrangement through recruiting and activating a variety of actin-associated proteins. In addition, the sequential activation of small GTPases, which are known to be master regulators of the actin cytoskeleton, plays a pivotal role in parallel with phosphoinositides. To complete macropinosome formation, phosphoinositide breakdown and Rho GTPase deactivation must occur in appropriate timings. After the nascent macropinosomes are formed, phosphoinositides and several Rab GTPases control macropinosome maturation by regulating vesicle trafficking and membrane fusion. In this review, we summarize recent advances in our understanding of the critical functions of phosphoinositide metabolism and small GTPases in association with their downstream effectors in macropinocytosis.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Masashi Maekawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| |
Collapse
|
65
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
66
|
VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A 2014; 111:4560-5. [PMID: 24616501 DOI: 10.1073/pnas.1316376111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A crucial step in the elimination of invading microbes by macrophages is phagosomal maturation through heterotypic endosomal fusion. This process is controlled by the guanine nucleotide binding protein Rab5, which assembles protein microdomains that include the tethering protein early endosomal antigen (EEA) 1 and the phosphatidylinositol (PI) 3-kinase hVps34, which generates PI(3)P, a phospholipid required for membrane association of EEA1 and other fusion factors. During infection of macrophages, the pathogen Legionella pneumophila bypasses the microbicidal endosomal compartment by an unknown mechanism. Here, we show that the effector protein VipD from L. pneumophila exhibits phospholipase A1 activity that is activated only upon binding to endosomal Rab5 or Rab22. Within mammalian cells, VipD localizes to endosomes and catalyzes the removal of PI(3)P from endosomal membranes. EEA1 and other transport and fusion factors are consequently depleted from endosomes, rendering them fusion-incompetent. During host cell infection, VipD reduces exposure of L. pneumophila to the endosomal compartment and protects their surrounding vacuoles from acquiring Rab5. Thus, by catalyzing PI(3)P depletion in a Rab5-dependent manner, VipD alters the protein composition of endosomes thereby blocking fusion with Legionella-containing vacuoles.
Collapse
|
67
|
Ezzikouri S, Ozawa M, Kohara M, Elmdaghri N, Benjelloun S, Tsukiyama-Kohara K. Recent insights into hepatitis B virus-host interactions. J Med Virol 2014; 86:925-32. [PMID: 24604126 DOI: 10.1002/jmv.23916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) poses a threat to global public health mainly because of complications of HBV-related chronic liver disease. HBV exhibits a narrow host range, replicating primarily in hepatocytes by a still poorly understood mechanism. For the generation of progeny virions, HBV depends on interactions with specific host factors through its life cycle. Revealing and characterizing these interactions are keys to identifying novel antiviral targets, and to developing specific treatment strategies for HBV patients. In this review, recent insights into the HBV-host interactions, especially on virus entry, intracellular trafficking, genome transcription and replication, budding and release, and even cellular restriction factors were reviewed.
Collapse
Affiliation(s)
- Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Park JS, Heo JS, Chang HS, Choi IS, Kim MK, Lee JU, Park BL, Shin HD, Park CS. Association analysis of member RAS oncogene family gene polymorphisms with aspirin intolerance in asthmatic patients. DNA Cell Biol 2014; 33:155-61. [PMID: 24555545 DOI: 10.1089/dna.2013.2213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Member RAS oncogene family (RAB1A), a member of the RAS oncogene family, cycles between inactive GDP-bound and active GTP-bound forms regulating vesicle transport in exocytosis. Thus, functional alterations of the RAB1A gene may contribute to aspirin intolerance in asthmatic sufferers. To investigate the relationship between single-nucleotide polymorphisms (SNPs) in the RAB1A gene and aspirin-exacerbated respiratory disease (AERD), asthmatics (n=1197) were categorized into AERD and aspirin-tolerant asthma (ATA). All subjects were diagnosed as asthma on the basis of the Global Initiative for Asthma (GINA) guidelines. AERD was defined as asthmatics showing 15% or greater decreases in forced expiratory volume in one second (FEV(1)) or naso-ocular reactions by the oral acetyl salicylic acid (ASA) challenge (OAC) test. In total, eight SNPs were genotyped. Logistic regression analysis identified that the minor allele frequency of +14444 T>G and +41170 C>G was significantly higher in the AERD group (n=181) than in the ATA group (n=1016) (p=0.0003-0.03). Linear regression analysis revealed a strong association between the SNPs and the aspirin-induced decrease in FEV(1) (p=0.0004-0.004). The RAB1A gene may play a role in the development of AERD in asthmatics and the genetic polymorphisms of the gene have the potential to be used as an indicator of this disease.
Collapse
Affiliation(s)
- Jong-Sook Park
- 1 Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital , Bucheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Transcriptomic analysis reveals key regulators of mammogenesis and the pregnancy-lactation cycle. SCIENCE CHINA-LIFE SCIENCES 2014; 57:340-355. [PMID: 24554470 DOI: 10.1007/s11427-013-4579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
An organ unique to mammals, the mammary gland develops 90% of its mass after birth and experiences the pregnancylactation-involution cycle (PL cycle) during reproduction. To understand mammogenesis at the transcriptomic level and using a ribo-minus RNA-seq protocol, we acquired greater than 50 million reads each for the mouse mammary gland during pregnancy (day 12 of pregnancy), lactation (day 14 of lactation), and involution (day 7 of involution). The pregnancy-, lactation- and involution-related sequencing reads were assembled into 17344, 10160, and 13739 protein-coding transcripts and 1803, 828, and 1288 non-coding RNAs (ncRNAs), respectively. Differentially expressed genes (DEGs) were defined in the three samples, which comprised 4843 DEGs (749 up-regulated and 4094 down-regulated) from pregnancy to lactation and 4926 DEGs (4706 up-regulated and 220 down-regulated) from lactation to involution. Besides the obvious and substantive up- and down-regulation of the DEGs, we observe that lysosomal enzymes were highly expressed and that their expression coincided with milk secretion. Further analysis of transcription factors such as Trps1, Gtf2i, Tcf7l2, Nupr1, Vdr, Rb1, and Aebp1, and ncRNAs such as mir-125b, Let7, mir-146a, and mir-15 has enabled us to identify key regulators in mammary gland development and the PL cycle.
Collapse
|
70
|
Fu J, Huang Y, Cai J, Wei S, Ouyang Z, Ye F, Huang X, Qin Q. Identification and characterization of Rab7 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2014; 36:19-26. [PMID: 24161772 DOI: 10.1016/j.fsi.2013.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Rab7 is a small GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. During the virus-host co-evolution, host Rab7 was also exploited by virus to complete their life cycle. To date, however, the roles of fish Rab7 in virus infection remained largely unknown. Here, we cloned and characterized a Rab7 gene from grouper, Epinephelus coioides (Ec-Rab7). The full-length Ec-Rab7 cDNA was composed of 1182 bp and encoded a polypeptide of 207 amino acids which shared 99% identity with that from Anoplopoma fimbria or Oreochromis niloticus. Ec-Rab7 contained five conserved domains of Rab GTPase family including GTP-binding or GTPase regions as well as an effector site. RT-PCR analysis revealed that Ec-Rab7 ubiquitously expressed in all detected tissues and its transcript in spleen was up-regulated after challenge with Singapore grouper iridovirus (SGIV). Subcellular localization analysis revealed that Ec-Rab7 was distributed in the cytoplasm as spots and mostly colocalized with lysosomes. Notably, the ectopic expressed Ec-Rab7 partly aggregated into the viral factories in cells infected by SGIV. Furthermore, overexpression of Ec-Rab7 accelerated the occurrence of cytopathic effect (CPE) induced by SGIV infection and promoted viral gene transcription. In addition, far western blotting assay revealed that Ec-Rab7 might interact with viral proteins, including SGIV VP69 and VP101. Taken together, our data suggested that Ec-Rab7 might be potentially involved in SGIV replication.
Collapse
Affiliation(s)
- Jing Fu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jia Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengliang Ouyang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Fuzhou Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, PR China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| |
Collapse
|
71
|
FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr Top Microbiol Immunol 2014; 382:249-72. [PMID: 25116104 DOI: 10.1007/978-3-319-07911-0_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the 'classical' Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3-7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.
Collapse
|
72
|
Lyakhovetsky R, Gruenbaum Y. Studying lamins in invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:245-62. [PMID: 24563351 DOI: 10.1007/978-1-4899-8032-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are nuclear intermediate filament proteins that are conserved in all multicellular animals. Proteins that resemble lamins are also found in unicellular organisms and in plants. Lamins form a proteinaceous meshwork that outlines the nucleoplasmic side of the inner nuclear membrane, while a small fraction of lamin molecules is also present in the nucleoplasm. They provide structural support for the nucleus and help regulate many other nuclear activities. Much of our knowledge on the function of nuclear lamins and their associated proteins comes from studies in invertebrate organisms and specifically in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The simpler lamin system and the powerful genetic tools offered by these model organisms greatly promote such studies. Here we provide an overview of recent advances in the biology of invertebrate nuclear lamins, with special emphasis on their assembly, cellular functions and as models for studying the molecular basis underlying the pathology of human heritable diseases caused by mutations in lamins A/C.
Collapse
Affiliation(s)
- Roman Lyakhovetsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | | |
Collapse
|
73
|
Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Handb Exp Pharmacol 2014; 220:33-65. [PMID: 24668469 DOI: 10.1007/978-3-642-45106-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.
Collapse
|
74
|
Karnik R, Ludlow MJ, Abuarab N, Smith AJ, Hardy MEL, Elliott DJS, Sivaprasadarao A. Endocytosis of HERG is clathrin-independent and involves arf6. PLoS One 2013; 8:e85630. [PMID: 24392021 PMCID: PMC3877390 DOI: 10.1371/journal.pone.0085630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/05/2013] [Indexed: 01/02/2023] Open
Abstract
The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.
Collapse
Affiliation(s)
- Rucha Karnik
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Melanie J. Ludlow
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Centre, University of Leeds, Leeds, United Kingdom
| | - Nada Abuarab
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew J. Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | - Asipu Sivaprasadarao
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
75
|
Oh H, Kim H, Chung KH, Hong NH, Shin B, Park WJ, Jun Y, Rhee S, Song WK. SPIN90 knockdown attenuates the formation and movement of endosomal vesicles in the early stages of epidermal growth factor receptor endocytosis. PLoS One 2013; 8:e82610. [PMID: 24340049 PMCID: PMC3858329 DOI: 10.1371/journal.pone.0082610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/03/2013] [Indexed: 12/16/2022] Open
Abstract
The finding that SPIN90 colocalizes with epidermal growth factor (EGF) in EEA1-positive endosomes prompted us to investigate the role of SPIN90 in endocytosis of the EGF receptor (EGFR). In the present study, we demonstrated that SPIN90 participates in the early stages of endocytosis, including vesicle formation and trafficking. Stable HeLa cells with knockdown of SPIN90 displayed significantly higher levels of surface EGFR than control cells. Analysis of the abundance and cellular distribution of EGFR via electron microscopy revealed that SPIN90 knockdown cells contain residual EGFR at cell membranes and fewer EGFR-containing endosomes, both features that reflect reduced endosome formation. The delayed early endosomal targeting capacity of SPIN90 knockdown cells led to increased EGFR stability, consistent with the observed accumulation of EGFR at the membrane. Small endosome sizes and reduced endosome formation in SPIN90 knockdown cells, observed using fluorescent confocal microscopy, strongly supported the involvement of SPIN90 in endocytosis of EGFR. Overexpression of SPIN90 variants, particularly the SH3, PRD, and CC (positions 643 - 722) domains, resulted in aberrant morphology of Rab5-positive endosomes (detected as small spots located near the cell membrane) and defects in endosomal movement. These findings clearly suggest that SPIN90 participates in the formation and movement of endosomes. Consistent with this, SPIN90 knockdown enhanced cell proliferation. The delay in EGFR endocytosis effectively increased the levels of endosomal EGFR, which triggered activation of ERK1/2 and cell proliferation via upregulation of cyclin D1. Collectively, our findings suggest that SPIN90 contributes to the formation and movement of endosomal vesicles, and modulates the stability of EGFR protein, which affects cell cycle progression via regulation of the activities of downstream proteins, such as ERK1/2, after EGF stimulation.
Collapse
Affiliation(s)
- Hyejin Oh
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Hwan Kim
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Kyung-Hwun Chung
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Baehyun Shin
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Woo Jin Park
- Bio Remodeling and Gene Therapy Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Youngsoo Jun
- Cell Biology and Membrane Biochemistry Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdan Gwagi-ro 261, Gwangju Metrocity, Korea
- * E-mail:
| |
Collapse
|
76
|
Echovirus 7 entry into polarized caco-2 intestinal epithelial cells involves core components of the autophagy machinery. J Virol 2013; 88:434-43. [PMID: 24155402 DOI: 10.1128/jvi.02706-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Echovirus 7 enters polarized Caco-2 intestinal epithelial cells by a clathrin-mediated endocytic process and then moves through the endosomal system before releasing its genome into the cytoplasm. We examined the possible role in virus entry of core components of the autophagy machinery. We found that depletion of Beclin-1, Atg12, Atg14, Atg16, or LC3 with specific small interfering RNAs inhibited echovirus 7 infection upstream of uncoating but had little or no effect on virus attachment to the cell surface. These data indicate that multiple autophagy-related proteins are important for one or more events that occur after the virus has bound its receptor on the cell surface but before RNA is released from the virus capsid. Although we have not determined the mechanism by which each protein contributes to virus entry, we found that stable depletion of Atg16L1 interfered with virus internalization from the cell surface rather than with intracellular trafficking. Autophagy gene products may thus participate in the endocytic process that moves virus into polarized Caco-2 cells.
Collapse
|
77
|
Su H, Liu B, Fröhlich O, Ma H, Sands JM, Chen G. Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis. FASEB J 2013; 27:4100-7. [PMID: 23796783 PMCID: PMC4046183 DOI: 10.1096/fj.13-229294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter plays an important role in the urinary concentration mechanism. However, the molecular mechanisms regarding UT-A1 trafficking, endocytosis, and degradation are still unclear. In this study, we identified the small GTPase Rab14 as a binding partner to the C terminus of UT-A1 in a yeast 2-hybrid assay. Interestingly, UT-A1 binding is preferential for the GDP-bound inactive form of Rab14. Coinjection of Rab14 in Xenopus oocytes results in a decrease of UT-A1 urea transport activity, suggesting that Rab14 acts as a negative regulator of UT-A1. We subsequently found that Rab14 reduces the cell membrane expression of UT-A1, as evidenced by cell surface biotinylation. This effect is blocked by chlorpromazine, an inhibitor of the clathrin-mediated endocytic pathway, but not by filipin, an inhibitor of the caveolin-mediated endocytic pathway. In kidney, Rab14 is mainly expressed in IMCD epithelial cells with a pattern identical to UT-A1 expression. Consistent with its role in participating in clathrin-mediated endocytosis, Rab14 localizes in nonlipid raft microdomains and codistributes with Rab5, a marker of the clathrin-mediated endocytic pathway. Taken together, our study suggests that Rab14, as a novel UT-A1 partner, may have an important regulatory function for UT-A1 urea transport activity in the kidney inner medulla.
Collapse
Affiliation(s)
- Hua Su
- 1Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Echovirus 1 entry into polarized Caco-2 cells depends on dynamin, cholesterol, and cellular factors associated with macropinocytosis. J Virol 2013; 87:8884-95. [PMID: 23740983 DOI: 10.1128/jvi.03415-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteroviruses invade their hosts by crossing the intestinal epithelium. We have examined the mechanism by which echovirus 1 (EV1) enters polarized intestinal epithelial cells (Caco-2). Virus binds to VLA-2 on the apical cell surface and moves rapidly to early endosomes. Using inhibitory drugs, dominant negative mutants, and small interfering RNAs (siRNAs) to block specific endocytic pathways, we found that virus entry requires dynamin GTPase and membrane cholesterol but is independent of both clathrin- and caveolin-mediated endocytosis. Instead, infection requires factors commonly associated with macropinocytosis, including amiloride-sensitive Na(+)/H(+) exchange, protein kinase C, and C-terminal-binding protein-1 (CtBP1); furthermore, EV1 accumulates rapidly in intracellular vesicles with dextran, a fluid-phase marker. These results suggest a role for macropinocytosis in the process by which EV1 enters polarized cells to initiate infection.
Collapse
|
79
|
Rapetti-Mauss R, O'Mahony F, Sepulveda FV, Urbach V, Harvey BJ. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium. J Physiol 2013; 591:2813-31. [PMID: 23529131 PMCID: PMC3690688 DOI: 10.1113/jphysiol.2013.251678] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022] Open
Abstract
The cAMP-regulated potassium channel KCNQ1:KCNE3 plays an essential role in transepithelial Cl(-) secretion. Recycling of K(+) across the basolateral membrane provides the driving force necessary to maintain apical Cl(-) secretion. The steroid hormone oestrogen (17β-oestradiol; E2), produces a female-specific antisecretory response in rat distal colon through the inhibition of the KCNQ1:KCNE3 channel. It has previously been shown that rapid inhibition of the channel conductance results from E2-induced uncoupling of the KCNE3 regulatory subunit from the KCNQ1 channel pore complex. The purpose of this study was to determine the mechanism required for sustained inhibition of the channel function. We found that E2 plays a role in regulation of KCNQ1 cell membrane abundance by endocytosis. Ussing chamber experiments have shown that E2 inhibits both Cl(-) secretion and KCNQ1 current in a colonic cell line, HT29cl.19A, when cultured as a confluent epithelium. Following E2 treatment, KCNQ1 was retrieved from the plasma membrane by a clathrin-mediated endocytosis, which involved the association between KCNQ1 and the clathrin adaptor, AP-2. Following endocytosis, KCNQ1 was accumulated in early endosomes. Following E2-induced endocytosis, rather than being degraded, KCNQ1 was recycled by a biphasic mechanism involving Rab4 and Rab11. Protein kinase Cδ and AMP-dependent kinase were rapidly phosphorylated in response to E2 on their activating phosphorylation sites, Ser643 and Thr172, respectively (as previously shown). Both kinases are necessary for the E2-induced endocytosis, because E2 failed to induce KCNQ1 internalization following pretreatment with specific inhibitors of both protein kinase Cδ and AMP-dependent kinase. The ubiquitin ligase Nedd4.2 binds KCNQ1 in response to E2 to induce channel internalization. This study has provided the first demonstration of hormonal regulation of KCNQ1 trafficking. In conclusion, we propose that internalization of KCNQ1 is a key event in the sustained antisecretory response to oestrogen.
Collapse
Affiliation(s)
- Raphael Rapetti-Mauss
- Department of Molecular Medicine, RCSI-ERC, Beaumont Hospital, PO Box 9063, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
80
|
Ramkhelawon B, Rivas D, Lehoux S. Shear stress activates extracellular signal-regulated kinase 1/2 via the angiotensin II type 1 receptor. FASEB J 2013; 27:3008-16. [PMID: 23585396 DOI: 10.1096/fj.12-222299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanical factors such as strain, pressure, and shear stress are key regulators of cell function, but the molecular mechanisms underlying the detection and responses to such stimuli are poorly understood. Whether the angiotensin II (AngII) AT1 receptor (AT1R) transduces shear stress in endothelial cells (ECs) is unknown. We exposed human umbilical cord endothelial cells (HUVECs) to a shear stress of 0 (control) or 15 dyn/cm(2) for 5 or 10 min. The colocalization of AT1R with caveolin-1 (Cav1), endosomal markers Rab5, EEA1, and Rab7, and lysosomal marker Lamp-1 increased in shear stimulated cells, detected by immunocytochemistry. Shear stress reduced labeling of wild-type mouse ECs (18±3% of unsheared control, P<0.01) but not Cav1(-/-) ECs (90±10%) with fluorescent AngII, confirming that internalization of AT1R requires Cav1. Shear stress activated ERK1/2 2-fold (P<0.01), which was prevented by the AT1R blocker losartan. NADPH oxidase inhibition with apocynin prevented both the colocalization of AT1R with Cav1 and the induction of ERK1/2 by shear stress. Moreover, shear-dependent ERK1/2 activation was minimal in CHO cells expressing an AT1Ra mutant that does not internalize, compared with cells expressing wild-type AT1Ra (P<0.05). Hence, AT1R may be an important transducer of shear stress-dependent activation of ERK1/2.
Collapse
|
81
|
Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol 2013; 87:6415-27. [PMID: 23536683 DOI: 10.1128/jvi.00393-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite important progress toward deciphering human hepatitis B virus (HBV) entry into host cells, many aspects of the early steps of the life cycle remained completely obscure. Following endocytosis, HBV must travel through the complex network of the endocytic pathway to reach the cell nucleus and initiate replication. In addition to guiding the viral particles to the replication site, the endosomal vesicles may play a crucial role in infection, providing the appropriate environment for virus uncoating and nucleocapsid release. In this work, we investigated the trafficking of HBV particles internalized in permissive cells. Expression of key Rab proteins, involved in specific pathways leading to different intracellular locations, was modulated in HepaRG cells, using a stable and inducible short hairpin RNA (shRNA) expression system. The trafficking properties of the newly developed cells were demonstrated by confocal microscopy and flow cytometry using specific markers. The results showed that HBV infection strongly depends on Rab5 and Rab7 expression, indicating that HBV transport from early to mature endosomes is required for a step in the viral life cycle. This may involve reduction of disulfide bond-linked envelope proteins, as alteration of the redox potential of the endocytic pathway resulted in inhibition of infection. Subcellular fractionation of HBV-infected cells showed that viral particles are further transported to lysosomes. Intriguingly, infection was not dependent on the lysosomal activity, suggesting that trafficking to this compartment is a "dead-end" route. Together, these data add to our understanding of the HBV-host cell interactions controlling the early stages of infection.
Collapse
|
82
|
Militello RD, Munafó DB, Berón W, López LA, Monier S, Goud B, Colombo MI. Rab24 is required for normal cell division. Traffic 2013; 14:502-18. [PMID: 23387408 DOI: 10.1111/tra.12057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co-localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i.e., chromatin bridges). Furthermore, in CHO cells stably transfected with GFP-Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules.
Collapse
Affiliation(s)
- Rodrigo D Militello
- Laboratorio de Biología Celular y Molecular- Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
83
|
Insight on signal transduction pathways involved in phagocytosis in the colonial ascidian Botryllus schlosseri. J Invertebr Pathol 2013; 112:260-6. [DOI: 10.1016/j.jip.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 11/20/2022]
|
84
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 2013; 28:672-87. [PMID: 23044750 PMCID: PMC3562759 DOI: 10.1002/jbmr.1779] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J Virol 2013; 87:4683-93. [PMID: 23408617 DOI: 10.1128/jvi.02189-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of MV, and MV is selectively released from the apical membrane of polarized epithelial cells. However, the molecular mechanisms for the apical release of MV remain largely unknown. In the present study, the localization and trafficking mechanisms of the RNP complex of MV were analyzed in detail using recombinant MVs expressing fluorescent protein-tagged L proteins. Live cell imaging analyses demonstrated that the MV RNP complex was transported in a manner dependent on the microtubule network and together with Rab11A-containing recycling endosomes. The RNP complex was accumulated at the apical membrane and the apical recycling compartment. The accumulation and shedding of infectious virions were severely impaired by expression of a dominant negative form of Rab11A. On the other hand, recycling endosome-mediated RNP transport was totally dispensable for virus production in nonpolarized cells. These data provide the first demonstration of the regulated intracellular trafficking events of the MV RNP complex that define the directional viral release from polarized epithelial cells.
Collapse
|
86
|
Hadwiger JA. Role of the Vps9-domain protein RgfA in Dictyostelium chemotaxis and development. Can J Microbiol 2013; 59:22-7. [PMID: 23391225 DOI: 10.1139/cjm-2012-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins with a Vps9 domain function as guanine nucleotide exchange factors for Rab proteins and can mediate the uptake of cell surface receptors or other molecules through endocytosis. However, genes encoding these proteins have not been previously studied in cells with robust chemotactic capabilities. Several genes encoding Vps9 domains were identified in the genome of Dictyostelium discoideum, and one of the genes, designated as rgfA (DDB_G0272038), was examined for functions in cell growth, development, and chemotaxis. The rgfA gene was expressed during vegetative growth and throughout development, but disruption of this gene resulted in no major alterations in cell growth, macropinocytosis, developmental morphology, or chemotactic movement. However, heterologous expression of RgfA resulted in a delay of developmental morphogenesis and impaired chemotaxis of cells to folate but did not affect macropinocytosis. These results suggest that RgfA might share redundant functions with other Dictyostelium Vps9-domain proteins and that heterologous expression of this protein can alter processes that depend on the reception of external signals.
Collapse
Affiliation(s)
- Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA.
| |
Collapse
|
87
|
Park SY, Shi X, Pang J, Yan C, Berk BC. Thioredoxin-interacting protein mediates sustained VEGFR2 signaling in endothelial cells required for angiogenesis. Arterioscler Thromb Vasc Biol 2013; 33:737-43. [PMID: 23393387 DOI: 10.1161/atvbaha.112.300386] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Thioredoxin-interacting protein (TXNIP) is an α-arrestin protein whose function is important for the regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling and endothelial cell survival. Because VEGFR2 is critical for angiogenesis, we explored the role of TXNIP in VEGF-induced angiogenesis. APPROACH AND RESULTS TXNIP knockdown inhibited VEGF-induced endothelial cell tube formation and proliferation in cultured human umbilical vein endothelial cell. To elucidate the mechanism by which TXNIP altered VEGFR2 signaling in human umbilical vein endothelial cell, we studied phosphorylation of VEGFR2, phospholipase C gamma-1 (PLCγ1), endothelial NO synthase, and Akt (known as protein kinase B). TXNIP knockdown significantly decreased phosphorylation of VEGFR2 and PLCγ1 at times >5 minutes, but phosphorylation was unchanged at 2 minutes, as was Akt and endothelial NO synthase phosphorylation. Cell-surface biotinylation assay showed that TXNIP knockdown significantly attenuated VEGFR2 internalization. These results suggested that TXNIP was required for sustained VEGFR2 signaling, which is mediated largely by internalized VEGFR2. Rab5 knockdown to inhibit the trafficking and fusion of early endosomes significantly blocked VEGF-induced VEGFR2 internalization and phosphorylation of VEGFR2 and PLCγ1. Immunofluorescence and coimmunoprecipitation showed that TXNIP was part of a complex that included Rab5 and VEGFR2. Finally, TXNIP knockdown prevented the association of VEGFR2 and Rab5. CONCLUSIONS Our results show that TXNIP is essential for VEGFR2 internalization in Rab5 positive endosomes, which is required for endothelial cell growth and angiogenesis.
Collapse
Affiliation(s)
- Shin-Young Park
- Aab Cardiovascular Research Institute, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
88
|
Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS One 2013; 8:e54566. [PMID: 23349930 PMCID: PMC3547880 DOI: 10.1371/journal.pone.0054566] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM) fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into host cells after bacteria establish residency in a lysosome-derived organelle.
Collapse
|
89
|
Abstract
Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future.
Collapse
|
90
|
Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:240-9. [PMID: 22974509 DOI: 10.1111/tpj.12023] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 05/20/2023]
Abstract
RAB GTPases are key regulators of membrane traffic. Among them, RAB11, a widely conserved sub-group, has evolved in a unique way in plants; plant RAB11 members show notable diversity, whereas yeast and animals have only a few RAB11 members. Fifty-seven RAB GTPases are encoded in the Arabidopsis thaliana genome, 26 of which are classified in the RAB11 group (further divided into RABA1-RABA6 sub-groups). Although several plant RAB11 members have been shown to play pivotal roles in plant-unique developmental processes, including cytokinesis and tip growth, molecular and physiological functions of the majority of RAB11 members remain unknown. To reveal precise functions of plant RAB11, we investigated the subcellular localization and dynamics of the largest sub-group of Arabidopsis RAB11, RABA1, which has nine members. RABA1 members reside on mobile punctate structures adjacent to the trans-Golgi network and co-localized with VAMP721/722, R-SNARE proteins that operate in the secretory pathway. In addition, the constitutive-active mutant of RABA1b, RABA1b(Q72L) , was present on the plasma membrane. The RABA1b -containing membrane structures showed actin-dependent dynamic motion . Vesicles labeled by GFP-RABA1b moved dynamically, forming queues along actin filaments. Interestingly, Arabidopsis plants whose four major RABA1 members were knocked out, and those expressing the dominant-negative mutant of RABA1B, exhibited hypersensitivity to salinity stress. Altogether, these results indicate that RABA1 members mediate transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance.
Collapse
Affiliation(s)
- Rin Asaoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Ito
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198, Japan
| | - Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
91
|
Weinert S, Poitz DM, Auffermann-Gretzinger S, Eger L, Herold J, Medunjanin S, Schmeisser A, Strasser RH, Braun-Dullaeus RC. The lysosomal transfer of LDL/cholesterol from macrophages into vascular smooth muscle cells induces their phenotypic alteration. Cardiovasc Res 2012; 97:544-52. [PMID: 23250921 DOI: 10.1093/cvr/cvs367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
MESH Headings
- Animals
- Aorta, Abdominal/cytology
- Aorta, Abdominal/metabolism
- Cell Communication/physiology
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol, LDL/metabolism
- Coculture Techniques
- Humans
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Lipoproteins, LDL/metabolism
- Lysosomal-Associated Membrane Protein 1/metabolism
- Lysosomes/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phenotype
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Sönke Weinert
- Internal Medicine/Cardiology, Angiology and Pneumology, Magdeburg University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Stimulation of the receptor tyrosine kinase KIT by Stem Cell Factor (SCF) triggers activation of RAS and its downstream effectors. Proper KIT activation is essential for the maturation, survival and proliferation of mast cells. In addition, SCF activation of KIT is critical for recruiting mast cells to sites of infection or injury, where they release a mix of pro-inflammatory substances. RIN3, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), is highly expressed and enriched in human mast cells. SCF treatment of mast cells increased the amount of GTP-bound RAB5, and the degree of RAB5 activation correlated with the expression level of RIN3. At the same time, SCF caused the dissociation of a pre-formed complex of RIN3 with BIN2, a membrane bending protein implicated in endocytosis. Silencing of RIN3 increased the rate of SCF-induced KIT internalization, while persistent RIN3 over-expression led to KIT down regulation. These observations strongly support a role for RIN3 in coordinating the early steps of KIT endocytosis. Importantly, RIN3 also functioned as an inhibitor of mast cell migration toward SCF. Finally, we demonstrate that elevated RIN3 levels sensitize mastocytosis cells to treatment with a KIT tyrosine kinase inhibitor, suggesting the value of a two-pronged inhibitor approach for this difficult to treat malignancy. These findings directly connect KIT activation with a mast cell-specific RAS effector that regulates the cellular response to SCF and provide new insight for the development of more effective mastocytosis treatments.
Collapse
Affiliation(s)
- Christine Janson
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Noriyuki Kasahara
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United of States of America
| | - John Colicelli
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
93
|
Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J Virol 2012; 86:13554-65. [PMID: 23035217 DOI: 10.1128/jvi.02337-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To investigate further the contribution of the adenovirus type 5 (Ad5) E1B 55-kDa protein to genome replication, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected with Ad5 or the E1B 55-kDa-null mutant Hr6. Unexpectedly, all cell types were observed to contain a significantly higher concentration of entering Hr6 than of Ad5 DNA, as did an infectious unit of Hr6. However, the great majority of the Hr6 genomes were degraded soon after entry. As this unusual phenotype cannot be ascribed to the Hr6 E1B frameshift mutation (J. S. Chahal and S. J. Flint, J. Virol. 86:3064-3072, 2012), the sequences of the Ad5 and Hr6 genomes were compared by using high-throughput sequencing. Seven previously unrecognized mutations were identified in the Hr6 genome, two of which result in substitutions in virion proteins, G315V in the preterminal protein (preTP) and A406V in fiber protein IV. Previous observations and the visualization by immunofluorescence of greater numbers of viral genomes entering the cytosol of Hr6-infected cells than of Ad5-infected cells indicated that the fiber mutation could not be responsible for the low-infectivity phenotype of Hr6. However, comparison of the forms of terminal protein present in purified virus particles indicated that the production of mature terminal protein from a processing intermediate is impaired in Hr6 particles. We therefore propose that complete processing of preTP within virus particles is necessary for the ability of viral genomes to become localized at appropriate sites and persist in infected cells.
Collapse
|
94
|
Vaibhava V, Nagabhushana A, Chalasani MLS, Sudhakar C, Kumari A, Swarup G. Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17. J Cell Sci 2012; 125:5026-39. [PMID: 22854040 DOI: 10.1242/jcs.102327] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases regulate various membrane trafficking pathways but the mechanisms by which GTPase-activating proteins recognise specific Rabs are not clear. Rab8 is involved in controlling several trafficking processes, including the trafficking of transferrin receptor from the early endosome to the recycling endosome. Here, we provide evidence to show that TBC1D17, a Rab GTPase-activating protein, through its catalytic activity, regulates Rab8-mediated endocytic trafficking of transferrin receptor. Optineurin, a Rab8-binding effector protein, mediates the interaction and colocalisation of TBC1D17 with Rab8. A non-catalytic region of TBC1D17 is required for direct interaction with optineurin. Co-expression of Rab8, but not other Rabs tested, rescues the inhibition of transferrin receptor trafficking by TBC1D17. The activated GTP-bound form of Rab8 is localised to the tubules emanating from the endocytic recycling compartment. Through its catalytic activity, TBC1D17 inhibits recruitment of Rab8 to the tubules and reduces colocalisation of transferrin receptor and Rab8. Knockdown of optineurin or TBC1D17 results in enhanced recruitment of Rab8 to the tubules. A glaucoma-associated mutant of optineurin, E50K, causes enhanced inhibition of Rab8 by TBC1D17, resulting in defective endocytic recycling of transferrin receptor. Our results show that TBC1D17, through its interaction with optineurin, regulates Rab8-mediated endocytic recycling of transferrin receptor and recruitment of Rab8 to the endocytic recycling tubules. We describe a mechanism of regulating a Rab GTPase by an effector protein (optineurin) that acts as an adaptor to bring together a Rab (Rab8) and its GTPase-activating protein (TBC1D17).
Collapse
Affiliation(s)
- Vipul Vaibhava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
95
|
Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 2012; 27:1-20. [DOI: 10.1111/j.1472-8206.2012.01051.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 04/17/2012] [Accepted: 06/01/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Suchi Raghunathan
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| | - Bhoomika M. Patel
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| |
Collapse
|
96
|
Smith RB, Machamer JB, Kim NC, Hays TS, Marqués G. Relay of retrograde synaptogenic signals through axonal transport of BMP receptors. J Cell Sci 2012; 125:3752-64. [PMID: 22573823 DOI: 10.1242/jcs.094292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal function depends on the retrograde relay of growth and survival signals from the synaptic terminal, where the neuron interacts with its targets, to the nucleus, where gene transcription is regulated. Activation of the Bone Morphogenetic Protein (BMP) pathway at the Drosophila larval neuromuscular junction results in nuclear accumulation of the phosphorylated form of the transcription factor Mad in the motoneuron nucleus. This in turn regulates transcription of genes that control synaptic growth. How BMP signaling at the synaptic terminal is relayed to the cell body and nucleus of the motoneuron to regulate transcription is unknown. We show that the BMP receptors are endocytosed at the synaptic terminal and transported retrogradely along the axon. Furthermore, this transport is dependent on BMP pathway activity, as it decreases in the absence of ligand or receptors. We further demonstrate that receptor traffic is severely impaired when Dynein motors are inhibited, a condition that has previously been shown to block BMP pathway activation. In contrast to these results, we find no evidence for transport of phosphorylated Mad along the axons, and axonal traffic of Mad is not affected in mutants defective in BMP signaling or retrograde transport. These data support a model in which complexes of activated BMP receptors are actively transported along the axon towards the cell body to relay the synaptogenic signal, and that phosphorylated Mad at the synaptic terminal and cell body represent two distinct molecular populations.
Collapse
Affiliation(s)
- Rebecca B Smith
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
97
|
Wang T, Zhang M, Ma Z, Guo K, Tergaonkar V, Zeng Q, Hong W. A role of Rab7 in stabilizing EGFR-Her2 and in sustaining Akt survival signal. J Cell Physiol 2012; 227:2788-97. [PMID: 21928319 DOI: 10.1002/jcp.23023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rab7 plays an important role in regulating endocytic traffic. In view of an emerging role of membrane traffic in signaling and diseases, we have examined the possible role of Rab7 in oncogenesis. The role of Rab7 was investigated using shRNA-mediated knockdown in A431 and MCF7 cancer cells. To our surprise, Rab7 knockdown effectively suppressed anchorage-independent growth of cancer cells in soft agar. Anoikis (matrix-detachment triggered apoptosis) was enhanced, while the level of phosphorylated (active) Akt (which is a key survival factor) was significantly reduced. Also intriguing was the observation that EGFR and Her2 levels were significantly reduced when Rab7 was knocked-down. More robust reduction of EGFR and Her2 levels was observed when knocked-down cells were treated with HSP90 inhibitor geldanamycin (GA). Low concentration of GA (50-100 nm)-induced apoptosis of the Rab7 knocked-down cells but not control cells, suggesting that Rab7 and HSP90 together contribute to the optimal stability of EGFR and Her2 as well as to protect cancer cells from apoptosis. Rab7 seems to protect EGFR and Her2 from proteosome-mediated degradation. These results suggest that Rab7 is likely involved in protecting EGFR and Her2 from being degraded by the proteosome and in maintaining optimal Akt survival signal (especially during cell detachment or when HSP90 is inhibited). Rab7 is potentially a novel target for combinatory therapy with Hsp90 inhibitors.
Collapse
Affiliation(s)
- Tuanlao Wang
- School of Pharmaceutical Sciences, Institute for Biomedical Research, Xiamen University, Fujian, China.
| | | | | | | | | | | | | |
Collapse
|
98
|
Yang X, Zhang Y, Li S, Liu C, Jin Z, Wang Y, Ren F, Chang Z. Rab21 attenuates EGF-mediated MAPK signaling through enhancing EGFR internalization and degradation. Biochem Biophys Res Commun 2012; 421:651-7. [PMID: 22525675 DOI: 10.1016/j.bbrc.2012.04.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 01/22/2023]
Abstract
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is regulated by endocytosis where many Rab proteins play an important role in the determination of the receptor recycle or degradation. In an effort to better understand how EGF signaling is regulated, we examined the role of Rab21 in regulation of the degradation and signal transduction of the EGFR. Using a transient expression protocol in HEK293T and HeLa cells, we found that Rab21 enhanced the degradation of EGFR through accelerating its internalization in both EGF-independent and EGF-dependent manners. We further demonstrated that Rab21 interacted with EGFR by immunoprecipitation experiments. Interestingly, we observed that overexpression of Rab21 attenuated EGF-mediated mitogen-activated protein kinase (MAPK) signaling by inducing EGFR degradation. Taken together, these data suggest that Rab21 plays a negative role in the EGF-mediated MAPK signaling pathway.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Enteroviruses invade the host by crossing the intestinal mucosa, which is lined by polarized epithelium. A number of enteroviruses, including echoviruses (EV) and group B coxsackieviruses (CVB), initiate infection by attaching to decay-accelerating factor (DAF), a molecule that is highly expressed on the apical surface of polarized epithelial cells. We previously observed that entry of DAF-binding CVB3 into polarized intestinal epithelial cells occurs by an unusual endocytic mechanism that requires caveolin but does not involve clathrin or dynamin. Here we examined the entry of a DAF-binding echovirus, EV7. We found that drugs, small interfering RNAs (siRNAs), and dominant negative mutants that target factors required for clathrin-mediated endocytosis, including clathrin and dynamin, inhibited both EV7 infection and internalization of virions from the cell surface. Once virus had entered the cell, it colocalized with markers of early endosomes (EEA1) and then late endosomes (LAMP-2). Inhibition of endosomal maturation—with siRNAs or dominant negative mutants targeting Rab5 and Rab7—inhibited infection and prevented release of viral RNA into the cell. These results indicate that EV7 is internalized by clathrin-mediated endocytosis and then moves to early and late endosomes before releasing its RNA. Trafficking through endosomes is known to be important for viruses that depend on low pH or endosomal cathepsin proteases to complete the entry process. However, we found that EV7 infection required neither low pH nor cathepsins. The results demonstrate that echovirus 7 (EV7), after binding to decay-accelerating factor (DAF) on the cell surface, enters cells by clathrin-mediated endocytosis; this entry mechanism differs markedly from that of another DAF-binding enterovirus, coxsackievirus B3 (CVB3). Thus, after attachment to the same cell surface receptor, these closely related viruses enter the same cells by different mechanisms. The cellular cues required for release of viral RNA from the enterovirus capsid (“uncoating”) remain poorly defined. We found that EV7 moved to late endosomes and that release of RNA depended on endosomal maturation; nonetheless, EV7 did not depend on the endosomal factors implicated in uncoating and entry by other viruses. The results suggest either that an unidentified endosomal factor is essential for uncoating of EV7 or that trafficking through the endosome is an essential step in a pathway that leads to another intracellular organelle where uncoating is completed.
Collapse
|
100
|
Dai Y, Liu Y, Huang D, Yu C, Cai G, Pi L, Ren C, Chen GZ, Tian Y, Zhang X. Increased expression of Rab coupling protein in squamous cell carcinoma of the head and neck and its clinical significance. Oncol Lett 2012; 3:1231-1236. [PMID: 22783424 DOI: 10.3892/ol.2012.652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/17/2012] [Indexed: 02/01/2023] Open
Abstract
The role of Rab coupling protein (RCP) has not been previously investigated in squamous cell carcinoma of the head and neck (SCCHN). The aim of this study was to explore RCP protein expression and its clinicopathological significance in SCCHN. RCP protein expression in 95 SCCHN samples, 18 vocal nodule epithelia and 16 leukoplakia epithelia samples was analyzed by immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Our data indicated that vocal nodule epithelia, leukoplakia epithelia and SCCHN showed a gradual increase in the expression of RCP protein. RCP overexpression was significantly associated with T classification, clinical staging, lymph node metastasis and recurrence. Survival analysis revealed that a high RCP expression was significantly correlated with shorter overall survival and disease-free survival. In conclusion, RCP protein may contribute to the malignant progression of SCCHN, and serves as a novel prognostic marker in patients with SCCHN.
Collapse
Affiliation(s)
- Yaozhang Dai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | | | | | | | | | | | | | | | | | | |
Collapse
|