51
|
Cullen PJ, Sprague GF. The Glc7p-interacting protein Bud14p attenuates polarized growth, pheromone response, and filamentous growth in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:884-94. [PMID: 12477789 PMCID: PMC138766 DOI: 10.1128/ec.1.6.884-894.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.
Collapse
Affiliation(s)
- Paul J Cullen
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
52
|
Cheeseman IM, Anderson S, Jwa M, Green EM, Kang JS, Yates JR, Chan CSM, Drubin DG, Barnes G. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002; 111:163-72. [PMID: 12408861 DOI: 10.1016/s0092-8674(02)00973-x] [Citation(s) in RCA: 498] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Aurora kinase Ipl1p plays a crucial role in regulating kinetochore-microtubule attachments in budding yeast, but the underlying basis for this regulation is not known. To identify Ipl1p targets, we first purified 28 kinetochore proteins from yeast protein extracts. These studies identified five previously uncharacterized kinetochore proteins and defined two additional kinetochore subcomplexes. We then used mass spectrometry to identify 18 phosphorylation sites in 7 of these 28 proteins. Ten of these phosphorylation sites are targeted directly by Ipl1p, allowing us to identify a consensus phosphorylation site for an Aurora kinase. Our systematic mutational analysis of the Ipl1p phosphorylation sites demonstrated that the essential microtubule binding protein Dam1p is a key Ipl1p target for regulating kinetochore-microtubule attachments in vivo.
Collapse
Affiliation(s)
- Iain M Cheeseman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 2002; 162:663-76. [PMID: 12399379 PMCID: PMC1462274 DOI: 10.1093/genetics/162.2.663] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.
Collapse
Affiliation(s)
- Mariko Sekiya-Kawasaki
- Department of Integrated Biosciences, Graduate School of Frontier Science, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Angeles de la Torre-Ruiz M, Torres J, Arino J, Herrero E. Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and the cell integrity pathway in Saccharomyces cerevisiae. J Biol Chem 2002; 277:33468-76. [PMID: 12080055 DOI: 10.1074/jbc.m203515200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of cellular integrity in Saccharomyces cerevisiae is carried out by the activation of the protein kinase C-mediated mitogen-activated protein kinase (PKC1-MAPK) pathway. Here we report that correct down-regulation of both basal and induced activity of the PKC1-MAPK pathway requires the SIT4 function. Sit4 is a protein phosphatase also required for a proper cell cycle progression. We present evidence demonstrating that the G(1) to S delay in the cell cycle, which occurs as a consequence of the absence of Sit4, is mediated by up-regulation of Pkc1 activity. Sit4 operates downstream of the plasma membrane sensors Mid2, Wsc1, and Wsc2 and upstream of Pkc1. Sit4 affects all known biological functions involving Pkc1, namely Mpk1 activity and cell wall integrity, actin cytoskeleton organization, and ribosomal gene transcription.
Collapse
Affiliation(s)
- Maria Angeles de la Torre-Ruiz
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198-Lleida, Spain.
| | | | | | | |
Collapse
|
55
|
Fox H, Hickey PC, Fernández-Abalos JM, Lunness P, Read ND, Doonan JH. Dynamic distribution of BIMG(PP1) in living hyphae of Aspergillus indicates a novel role in septum formation. Mol Microbiol 2002; 45:1219-30. [PMID: 12207691 DOI: 10.1046/j.1365-2958.2002.03092.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutation of bimG, the major protein phosphatase 1 gene in Aspergillus nidulans, causes multiple cell cycle and hyphal growth defects that are associated with overphosphorylation of subcellular components. We have used functional translational fusions with the green fluorescent protein (GFP) to show that BIMG has at least four discrete locations within growing hyphae. Three of these locations, the hyphal tip, the spindle pole body and the nucleus, correlate with previously known requirements for bimG(PP1) in mitosis and hyphal growth and are highly dynamic. BIMG-GFP in the hyphal tip seemed to be associated with the plasma membrane and formed a collar of fluorescence within the apical dome. The distribution of nuclear BIMG-GFP varied depending on nutritional conditions; on poor medium, it concentrated more in the nucleolus than in the nucleoplasm, whereas on rich medium, it was more evenly distributed between the two nuclear regions. The association of BIMG-GFP with developing septa was transient, and we present evidence that BIMG phosphatase plays a direct role in septum formation, distinct from its role in mitosis. We conclude that, by being physically present at several sites, the BIMG phosphatase has roles in multiple cellular processes.
Collapse
Affiliation(s)
- H Fox
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
56
|
Fichtner L, Frohloff F, Jablonowski D, Stark MJR, Schaffrath R. Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 2002; 45:817-26. [PMID: 12139626 DOI: 10.1046/j.1365-2958.2002.03055.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
mTn3-tagging identified Kluyveromyces lactis zymocin target genes from Saccharomyces cerevisiae as TOT1-3/ELP1-3 coding for the RNA polymerase II (pol II) Elongator histone acetyltransferase (HAT) complex. tot phenotypes resulting from mTn3 tagging were similar to totDelta null alleles, suggesting loss of Elongator's integrity. Consistently, the Tot1-3/Elp1-3 proteins expressed from the mTn3-tagged genes were all predicted to be C-terminally truncated, lacking approximately 80% of Tot1p, five WD40 Tot2p repeats and two HAT motifs of Tot3p. Besides its role as a HAT, Tot3p assists subunit communication within Elongator by mediating Tot2-Tot4, Tot2-Tot5, Tot2-Tot1 and Tot4-Tot5 protein-protein interactions. TOT1 and TOT2 are essential for Tot4-Tot2 and Tot4-Tot3 interactions respectively. The latter was lost with a C-terminal Tot2p truncation; the former was affected by progressively truncating TOT1. Despite being dispensable for Tot4-Tot2 interaction, the extreme C-terminus of Tot1p may play a role in TOT/Elongator function, as its truncation confers zymocin resistance. Tot4p/Kti12p, an Elongator-associated factor, also interacted with pol II and could be immunoprecipitated while being bound to the ADH1 promoter. Two-hybrid analysis showed that Tot4p also interacts with Cdc19p, suggesting that Tot4p plays an additional role in concert with Cdc19p, perhaps co-ordinating cell growth with carbon source metabolism.
Collapse
Affiliation(s)
- Lars Fichtner
- Institut für Genetik, Martin-Luther-Universität, Halle, Saale, Germany
| | | | | | | | | |
Collapse
|
57
|
Ter Linde JJM, Steensma HY. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 2002; 19:825-40. [PMID: 12112237 DOI: 10.1002/yea.879] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Saccharomyces cerevisiae adapts to altered oxygen availability by differentially expressing a number of genes. Under aerobic conditions oxygen control of gene expression is exerted through the activator Hap1 and the repressor Rox1. The Hap1 transcription factor senses cellular heme status and increases expression of aerobic genes in response to oxygen. The repression of hypoxic genes under normoxic conditions results from Hap1-mediated activation of ROX1 transcription. To allow the identification of additional Hap1 and Rox1 target genes, genome-wide expression was analysed in aerobically, chemostat-cultivated hap1 and rox1 null mutants. The microarray results show that deletion of HAP1 causes a lower transcript level of 51 genes. Transcription of 40 genes was increased in rox1 mutant cells compared to wild-type cells. Combining these results with our previously described transcriptome data of aerobically and anaerobically grown cells and with computational analysis of the promoters identified 24 genes that are potentially regulated by Hap1, and 38 genes satisfied the criteria of being direct targets of Rox1. In addition, this work provides further evidence that Rox1 controls transcription of anaerobic genes through repression under normoxic conditions.
Collapse
Affiliation(s)
- José J M Ter Linde
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
58
|
Chai B, Hsu JM, Du J, Laurent BC. Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 2002; 161:575-84. [PMID: 12072455 PMCID: PMC1462120 DOI: 10.1093/genetics/161.2.575] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RSC is a 15-protein ATP-dependent chromatin-remodeling complex related to Snf-Swi, the prototypical ATP-dependent nucleosome remodeler in budding yeast. Despite insight into the mechanism by which purified RSC remodels nucleosomes, little is known about the chromosomal targets or cellular pathways in which RSC acts. To better understand the cellular function of RSC, a screen was undertaken for gene dosage suppressors of sth1-3ts, a temperature-sensitive mutation in STH1, which encodes the essential ATPase subunit. Slg1p and Mid2p, two type I transmembrane stress sensors of cell wall integrity that function upstream of protein kinase C (Pkc1p), were identified as multicopy suppressors of sth1-3ts cells. Although the sth1-3ts mutant exhibits defects characteristic of PKC1 pathway mutants (caffeine and staurosporine sensitivities and an osmoremedial phenotype), only upstream components and not downstream effectors of the PKC1-MAP kinase pathway can suppress defects conferred by sth1-3ts, suggesting that RSC functions in an alternative PKC1-dependent pathway. Moreover, sth1-3ts cells display defects in actin cytoskeletal rearrangements and are hypersensitive to the microtubule depolymerizing drug, TBZ; both of these defects can be corrected by the high-copy suppressors. Together, these data reveal an important functional connection between the RSC remodeler and PKC1-dependent signaling in regulating the cellular architecture.
Collapse
Affiliation(s)
- Bob Chai
- Department of Microbiology and Immunology and Morse Institute for Molecular Genetics, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
59
|
Williams-Hart T, Wu X, Tatchell K. Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae. Genetics 2002; 160:1423-37. [PMID: 11973298 PMCID: PMC1462070 DOI: 10.1093/genetics/160.4.1423] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein phosphatase type 1 (PP1) is encoded by the essential gene GLC7 in Saccharomyces cerevisiae. glc7-109 (K259A, R260A) has a dominant, hyperglycogen defect and a recessive, ion and drug sensitivity. Surprisingly, the hyperglycogen phenotype is partially retained in null mutants of GAC1, GIP2, and PIG1, which encode potential glycogen-targeting subunits of Glc7. The R260A substitution in GLC7 is responsible for the dominant and recessive traits of glc7-109. Another mutation at this residue, glc7-R260P, confers only salt sensitivity, indicating that the glycogen and salt traits of glc7-109 are due to defects in distinct physiological pathways. The glc7-109 mutant is sensitive to cations, aminoglycosides, and alkaline pH and exhibits increased rates of l-leucine and 3,3'-dihexyloxacarbocyanine iodide uptake, but it is resistant to molar concentrations of sorbitol or KCl, indicating that it has normal osmoregulation. KCl suppresses the ion and drug sensitivities of the glc7-109 mutant. The CsCl sensitivity of this mutant is suppressed by recessive mutations in PMA1, which encodes the essential plasma membrane H(+)ATPase. Together, these results indicate that Glc7 regulates ion homeostasis by controlling ion transport and/or plasma membrane potential, a new role for Glc7 in budding yeast.
Collapse
Affiliation(s)
- Tara Williams-Hart
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
60
|
Peggie MW, MacKelvie SH, Bloecher A, Knatko EV, Tatchell K, Stark MJR. Essential functions of Sds22p in chromosome stability and nuclear localization of PP1. J Cell Sci 2002; 115:195-206. [PMID: 11801737 DOI: 10.1242/jcs.115.1.195] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sds22p is a conserved, leucine-rich repeat protein that interacts with the catalytic subunit of protein phosphatase 1 (PP1(C)) and which has been proposed to regulate one or more functions of PP1(C) during mitosis. Here we show that Saccharomyces cerevisiae Sds22p is a largely nuclear protein, most of which is present as a sTable 1:1 complex with yeast PP1(C) (Glc7p). Temperature-sensitive (Ts(-)) S. cerevisiae sds22 mutants show profound chromosome instability at elevated growth temperatures but do not confer a cell cycle stage-specific arrest. In the sds22-6 Ts(-) mutant, nuclear Glc7p is both reduced in level and aberrantly localized at 37 degrees C and the interaction between Glc7p and Sds22p in vitro is reduced at higher temperatures, consistent with the in vivo Ts(-) growth defect. Like some glc7 mutations, sds22-6 can suppress the Ts(-) growth defect associated with ipl1-2, a loss of function mutation in a protein kinase that is known to work in opposition to PP1 on at least two nuclear substrates. This, together with reciprocal genetic interactions between GLC7 and SDS22, suggests that Sds22p functions positively with Glc7p to promote dephosphorylation of nuclear substrates required for faithful transmission of chromosomes during mitosis, and this role is at least partly mediated by effects of Sds22p on the nuclear distribution of Glc7p
Collapse
Affiliation(s)
- Mark W Peggie
- Division of Gene Regulation and Expression, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
61
|
Richard M, Quijano RR, Bezzate S, Bordon-Pallier F, Gaillardin C. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol 2001; 183:3098-107. [PMID: 11325938 PMCID: PMC95210 DOI: 10.1128/jb.183.10.3098-3107.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Yarrowia lipolytica is distantly related to Saccharomyces cerevisiae, can be genetically modified, and can grow in both haploid and diploid states in either yeast, pseudomycelial, or mycelial forms, depending on environmental conditions. Previous results have indicated that the STE and RIM pathways, which mediate cellular switching in other dimorphic yeasts, are not required for Y. lipolytica morphogenesis. To identify the pathways involved in morphogenesis, we mutagenized a wild-type strain of Y. lipolytica with a Tn3 derivative. We isolated eight tagged mutants, entirely defective in hyphal formation, from a total of 40,000 mutants and identified seven genes homologous to S. cerevisiae CDC25, RAS2, BUD6, KEX2, GPI7, SNF5, and PPH21. We analyzed their abilities to invade agar and to form pseudomycelium or hyphae under inducing conditions and their sensitivity to temperature and to Calcofluor white. Chitin staining was used to detect defects in their cell walls. Our results indicate that a functional Ras-cyclic AMP pathway is required for the formation of hyphae in Y. lipolytica and that perturbations in the processing of extracellular, possibly parietal, proteins result in morphogenetic defects.
Collapse
Affiliation(s)
- M Richard
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National Agronomique Paris-Grignon, UMR-INRA216, URA-CNRS1925, 78850 Thiverval-Grignon, France.
| | | | | | | | | |
Collapse
|
62
|
Stirling DA, Stark MJ. Mutations in SPC110, encoding the yeast spindle pole body calmodulin-binding protein, cause defects in cell integrity as well as spindle formation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:85-100. [PMID: 11118641 DOI: 10.1016/s0167-4889(00)00110-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The 110 kDa spindle pole body component, Spc110p, is an essential target of calmodulin in budding yeast. Cells with mutations which reduce calmodulin binding to Spc110p are unable to form a mitotic spindle and die. Here we show that these effects can be overcome either directly by increasing extracellular calcium or calmodulin expression, which reverse the primary spindle defect, or indirectly through increased extracellular osmolarity or high dosage of MID2 or SLG1/HCS77/WSC1 which preserve viability. We propose that overcoming a cell integrity defect associated with the mitotic arrest enables the defective spindle pole bodies to provide sufficient function for proliferation of a large proportion of mutant cells. Our findings demonstrate a role for calcium in the Spc110p-calmodulin interaction in vivo and have important general implications for the interpretation of genetic interactions involving cell integrity genes.
Collapse
Affiliation(s)
- D A Stirling
- Department of Biochemistry, University of Dundee, MSI/WTB Complex, DD1 5EH, Dundee, UK.
| | | |
Collapse
|
63
|
Marcoux N, Cloutier S, Zakrzewska E, Charest PM, Bourbonnais Y, Pallotta D. Suppression of the profilin-deficient phenotype by the RHO2 signaling pathway in Saccharomyces cerevisiae. Genetics 2000; 156:579-92. [PMID: 11014808 PMCID: PMC1461282 DOI: 10.1093/genetics/156.2.579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Profilin plays an important role in actin organization in all eukaryotic cells through mechanisms that are still poorly understood. We had previously shown that Mid2p, a transmembrane protein and a potential cell wall sensor, is an effective multicopy suppressor of the profilin-deficient phenotype in Saccharomyces cerevisiae. To better understand the role of Mid2p in the organization of the actin cytoskeleton, we isolated five additional multicopy suppressors of pfy1Delta cells that are Rom1p, Rom2p, Rho2p, Smy1p, and the previously uncharacterized protein Syp1p. The problems of caffeine and NaCl sensitivity, growth defects at 30 degrees and 37 degrees, the accumulation of intracellular vesicular structures, and a random budding pattern in pfy1Delta cells are corrected by all the suppressors tested. This is accompanied by a partial repolarization of the cortical actin patches without the formation of visible actin cables. The overexpression of Mid2p, Rom2p, and Syp1p, but not the overexpression of Rho2p and Smy1p, results in an abnormally thick cell wall in wild-type and pfy1Delta cells. Since none of the suppressors, except Rho2p, can correct the phenotype of the pfy1-111/rho2Delta strain, we propose a model in which the suppressors act through the Rho2p signaling pathway to repolarize cortical actin patches.
Collapse
Affiliation(s)
- N Marcoux
- Pavillon Charles-Eugène Marchand, Laval University, Ste-Foy, Quebec G1K 7P4, Canada
| | | | | | | | | | | |
Collapse
|
64
|
Andrews PD, Stark MJ. Dynamic, Rho1p-dependent localization of Pkc1p to sites of polarized growth. J Cell Sci 2000; 113 ( Pt 15):2685-93. [PMID: 10893184 DOI: 10.1242/jcs.113.15.2685] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the Rho GTPases and their effectors are key regulators of the actin cytoskeleton, membrane trafficking and secretion, cell growth, cell cycle progression and cytokinesis. Budding yeast Pkc1p, a protein kinase C-like enzyme involved in cell wall biosynthesis and cytoskeletal polarity, is structurally and functionally related to the Rho-associated kinases (PRK/ROCK) of mammalian cells. In this study, localization of Pkc1p was monitored in live cells using a GFP fusion (Pkc1p-GFP). Pkc1p-GFP showed dynamic spatial and temporal localization at sites of polarized growth. Early in the cell cycle, Pkc1p-GFP was found at the pre-bud site and bud tips, becoming delocalized as the cell progressed further and finally relocalizing around the mother-daughter bud neck in an incomplete ring, which persisted until cell separation. Bud localization was actin-dependent but stability of Pkc1p-GFP at the neck was actin-independent, although localization at both sites required functional Rho1p. In addition, Pkc1p-GFP showed rapid relocalization after cell wall damage. These results suggest that the roles of Pkc1p in both polarized growth and the response to cell wall stress are mediated by dynamic changes in its localization, and suggest an additional potential role in cytokinesis.
Collapse
Affiliation(s)
- P D Andrews
- Department of Biochemistry, MSI/Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|
65
|
Bloecher A, Tatchell K. Dynamic localization of protein phosphatase type 1 in the mitotic cell cycle of Saccharomyces cerevisiae. J Cell Biol 2000; 149:125-40. [PMID: 10747092 PMCID: PMC2175104 DOI: 10.1083/jcb.149.1.125] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 03/01/2000] [Indexed: 11/29/2022] Open
Abstract
Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.
Collapse
Affiliation(s)
- Andrew Bloecher
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130
| |
Collapse
|