51
|
Wischnjow A, Sarko D, Janzer M, Kaufman C, Beijer B, Brings S, Haberkorn U, Larbig G, Kübelbeck A, Mier W. Renal Targeting: Peptide-Based Drug Delivery to Proximal Tubule Cells. Bioconjug Chem 2016; 27:1050-7. [DOI: 10.1021/acs.bioconjchem.6b00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artjom Wischnjow
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Dikran Sarko
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Maria Janzer
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christina Kaufman
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Sebastian Brings
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Gregor Larbig
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Armin Kübelbeck
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
52
|
Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Human Host Defense Cathelicidin Peptide LL-37 Enhances the Lipopolysaccharide Uptake by Liver Sinusoidal Endothelial Cells without Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1338-1347. [DOI: 10.4049/jimmunol.1403203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The liver is a major organ that removes waste substances from the blood, and liver sinusoidal endothelial cells (LSECs) are professional scavenger cells, which incorporate and degrade various endogenous and exogenous molecules including pathogenic factor LPS. Mammalian cells express a number of peptide antibiotics that function as effectors in the innate host defense systems. LL-37, a human cathelicidin antimicrobial peptide, has a potent LPS-neutralizing activity and exhibits protective actions on various infection models. However, the effect of LL-37 on the LPS clearance has not been clarified. In this study, to further understand the host-protective mechanism of LL-37, we evaluated the effect of LL-37 on the LPS clearance in vitro. LL-37 enhanced the LPS uptake by human LSECs. Of interest, LL-37 was similarly incorporated into LSECs both in the presence and the absence of LPS, and the incorporated LPS and LL-37 were colocalized in LSECs. Importantly, the uptake of LPS and LL-37 was inhibited by endocytosis inhibitors, heparan sulfate proteoglycan analogs, and glycosaminoglycan lyase treatment of the cells. Moreover, the uptake of LL-37-LPS did not activate TLR4 signaling in both MyD88-dependent and -independent pathways. In addition, the incorporated LL-37-LPS was likely transported to the lysosomes in LSECs. Together these observations suggest that LL-37 enhances the LPS uptake by LSECs via endocytosis through the complex formation with LPS and the interaction with cell-surface heparan sulfate proteoglycans, thereby facilitating the intracellular incorporation and degradation of LPS without cell activation. In this article, we propose a novel function of LL-37 in enhancing LPS clearance.
Collapse
Affiliation(s)
- Kaori Suzuki
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taisuke Murakami
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhongshuang Hu
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroshi Tamura
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
- †Laboratory Program Support Consulting Office, Tokyo 160-0023, Japan
| | - Kyoko Kuwahara-Arai
- ‡Department of Bacteriology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Toshiaki Iba
- §Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
53
|
Hebron M, Moussa CEH. Two sides of the same coin: tyrosine kinase inhibition in cancer and neurodegeneration. Neural Regen Res 2016; 10:1767-9. [PMID: 26807110 PMCID: PMC4705787 DOI: 10.4103/1673-5374.165320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Michaeline Hebron
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., NW, USA
| | - Charbel E-H Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., NW, USA
| |
Collapse
|
54
|
Abstract
Lysosomes are membrane-bound intracellular organelles that receive macromolecules delivered by endocytosis, phagocytosis, and autophagy for degradation and recycling. Over the last decade, advances in lysosome research have established a broad role for the lysosome in the pathophysiology of disease. In this review, we highlight the recent discoveries in lysosome biology, with an emphasis on their implications for cancer therapy. We focus on targeting the lysosome in cancer by exploring lysosomal biogenesis and its role in the crosstalk between apoptosis and autophagy. We also discuss how lysosomal inhibition could emerge as a new therapeutic strategy to overcome drug resistance in cancer.
Collapse
Affiliation(s)
- Shengfu Piao
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
55
|
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 2015; 1371:30-44. [DOI: 10.1111/nyas.12966] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Serrano-Puebla
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|
56
|
Chauss D, Brennan LA, Bakina O, Kantorow M. Integrin αVβ5-mediated Removal of Apoptotic Cell Debris by the Eye Lens and Its Inhibition by UV Light Exposure. J Biol Chem 2015; 290:30253-66. [PMID: 26527683 DOI: 10.1074/jbc.m115.688390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
Accumulation of apoptotic material is toxic and associated with cataract and other disease states. Identification of mechanisms that prevent accumulation of apoptotic debris is important for establishing the etiology of these diseases. The ocular lens is routinely assaulted by UV light that causes lens cell apoptosis and is associated with cataract formation. To date, no molecular mechanism for removal of toxic apoptotic debris has been identified in the lens. Vesicular debris within lens cells exposed to UV light has been observed raising speculation that lens cells themselves could act as phagocytes to remove toxic apoptotic debris. However, phagocytosis has not been confirmed as a function of the intact eye lens, and no mechanism for lens phagocytosis has been established. Here, we demonstrate that the eye lens is capable of phagocytizing extracellular lens cell debris. Using high throughput RNA sequencing and bioinformatics analysis, we establish that lens epithelial cells express members of the integrin αVβ5-mediated phagocytosis pathway and that internalized cell debris co-localizes with αVβ5 and with RAB7 and Rab-interacting lysosomal protein that are required for phagosome maturation and fusion with lysosomes. We demonstrate that the αVβ5 receptor is required for lens epithelial cell phagocytosis and that UV light treatment of lens epithelial cells results in damage to the αVβ5 receptor with concomitant loss of phagocytosis. These data suggest that loss of αVβ5-mediated phagocytosis by the eye lens could result in accumulation of toxic cell debris that could contribute to UV light-induced cataract formation.
Collapse
Affiliation(s)
- Daniel Chauss
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Lisa A Brennan
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olga Bakina
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Marc Kantorow
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
57
|
Ebolavirus Glycoprotein Directs Fusion through NPC1+ Endolysosomes. J Virol 2015; 90:605-10. [PMID: 26468524 PMCID: PMC4702577 DOI: 10.1128/jvi.01828-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
Ebolavirus, a deadly hemorrhagic fever virus, was thought to enter cells through endolysosomes harboring its glycoprotein receptor, Niemann-Pick C1. However, an alternate model was recently proposed in which ebolavirus enters through a later NPC1-negative endosome that contains two-pore Ca(2+) channel 2 (TPC2), a newly identified ebolavirus entry factor. Here, using live cell imaging, we obtained evidence that in contrast to the new model, ebolavirus enters cells through endolysosomes that contain both NPC1 and TPC2.
Collapse
|
58
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
59
|
Hamilton GRC, Sahoo SK, Kamila S, Singh N, Kaur N, Hyland BW, Callan JF. Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chem Soc Rev 2015; 44:4415-32. [PMID: 25742963 DOI: 10.1039/c4cs00365a] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed.
Collapse
Affiliation(s)
- Graham R C Hamilton
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | | | | | | | | | | | | |
Collapse
|
60
|
Lu LQ, Liao W. Screening and functional pathway analysis of genes associated with pediatric allergic asthma using a DNA microarray. Mol Med Rep 2015; 11:4197-203. [PMID: 25633562 PMCID: PMC4394950 DOI: 10.3892/mmr.2015.3277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/02/2015] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to identify differentially expressed genes (DEGs) associated with pediatric allergic asthma, and to analyze the functional pathways of the selected target genes, in order to explore the pathogenesis of the disease. The GSE18965 gene expression profile was downloaded from the Gene Expression Omnibus database and was preprocessed. This gene expression profile consisted of seven normal samples and nine samples from patients with pediatric allergic asthma. The DEGs between the normal and pediatric allergic asthma samples were screened using limma package in R, and the cut‑off value was set at false discovery rate <0.05 and log fold change >1. Following hierarchical clustering of the DEGs based on the expression profiles, the up‑ and downregulated genes underwent a functional enrichment analysis by topological approach (P<0.05), using the Database for Annotation, Visualization and Integrated Discovery. A total of 127 DEGs were identified between the normal and pediatric allergic asthma samples. The up‑ and downregulated genes were significantly enriched in the actin filament‑based process and the monosaccharide metabolic process, respectively. Seven downregulated DEGs (M6PR, TPP1, GLB1, NEU1, ACP2, LAMP1 and HGSNAT) were identified in the lysosomal pathway, with P=6.4x10(‑9). These results suggested that variation in lysosomal function, triggered by the seven downregulated genes, may lead to aberrant functioning of the T lymphocytes, resulting in asthma. Further research regarding the treatment of pediatric allergic asthma through targeting lysosomal function is required.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pediatrics, First Hospital Affiliated to Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Liao
- Department of Pediatrics, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
61
|
|
62
|
Chu D, Xu W, Pan R, Ding Y, Sui W, Chen P. Rational modification of oligoarginine for highly efficient siRNA delivery: structure-activity relationship and mechanism of intracellular trafficking of siRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:435-46. [PMID: 25193363 DOI: 10.1016/j.nano.2014.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Recently, cell-penetrating peptides (CPPs) have received much attention for cellular delivery of therapeutic molecules. However, in the case of CPPs as carriers for siRNA delivery, their utility is often restricted by low cellular uptake and/or entrapment in endosomes. Here, in order to deliver siRNAs with high efficiency, oligoarginine, a prominent member in CPPs, is rationally modified with oligohistidine and stearyl moieties (STR-) by fully taking into account the formation of nanoparticles, uptake and intracellular trafficking. We show that when the ratio of histidine/arginine in a peptide sequence is >1.5, pronounced gene silencing is induced. Following this rule, STR-HnR8 (n=16 and 20) are developed, which show a high knockdown efficiency rarely reported before. Finally, we find that endosomal escape of siRNA induced by stearylated and oligohistidylated oligoarginine is only from "proton-sponge" effect. Taken together, our results suggest a new strategy for the improvement of CPP-based siRNA delivery systems. FROM THE CLINICAL EDITOR This study present a novel cell penetrating peptide-based siRNA delivery system utilizing modified oligo-arginine demonstrating a successful siRNA delivery approach.
Collapse
Affiliation(s)
- Dafeng Chu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Wen Xu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ran Pan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Yong Ding
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Weiping Sui
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
63
|
Wu X, Choi CHJ, Zhang C, Hao L, Mirkin CA. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J Am Chem Soc 2014; 136:7726-33. [PMID: 24841494 PMCID: PMC4046773 DOI: 10.1021/ja503010a] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 12/19/2022]
Abstract
Spherical nucleic acid (SNA) nanoparticle conjugates are a class of bionanomaterials that are extremely potent in many biomedical applications. Their unique ability to enter multiple mammalian cell types as single-entity agents arises from their novel three-dimensional architecture, which consists of a dense shell of highly oriented oligonucleotides chemically attached typically to a gold nanoparticle core. This architecture allows SNAs to engage certain cell surface receptors to facilitate entry. Here, we report studies aimed at determining the intracellular fate of SNAs and the trafficking events that occur inside C166 mouse endothelial cells after cellular entry. We show that SNAs traffic through the endocytic pathway into late endosomes and reside there for up to 24 h after incubation. Disassembly of oligonucleotides from the nanoparticle core is observed 16 h after cellular entry, most likely due to degradation by enzymes such as DNase II localized in late endosomes. Our observations point to these events being likely independent of core composition and treatment conditions, and they do not seem to be particularly dependent upon oligonucleotide sequence. Significantly and surprisingly, the SNAs do not enter the lysosomes under the conditions studied. To independently track the fate of the particle core and the fluorophore-labeled oligonucleotides that comprise its shell, we synthesized a novel class of quantum dot SNAs to determine that as the SNA structures are broken down over the 24 h time course of the experiment, the oligonucleotide fragments are recycled out of the cell while the nanoparticle core is not. This mechanistic insight points to the importance of designing and synthesizing next-generation SNAs that can bypass the degradation bottleneck imposed by their residency in late endosomes, and it also suggests that such structures might be extremely useful for endosomal signaling pathways by engaging receptors that are localized within the endosome.
Collapse
Affiliation(s)
| | | | - Chuan Zhang
- International Institute for
Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Liangliang Hao
- International Institute for
Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Chad A. Mirkin
- International Institute for
Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| |
Collapse
|
64
|
Fameli N, Ogunbayo OA, van Breemen C, Evans AM. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res 2014; 3:93. [PMID: 25126414 PMCID: PMC4126599 DOI: 10.12688/f1000research.3720.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 01/21/2023] Open
Abstract
Herein we demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular Ca
2+ waves. In pulmonary artery smooth muscle cells (PASMCs) it has been proposed that nicotinic acid adenine dinucleotide phosphate (NAADP) triggers increases in cytoplasmic Ca
2+ via L-SR junctions, in a manner that requires initial Ca
2+ release from lysosomes and subsequent Ca
2+-induced Ca
2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be < 400 nm and thus beyond the resolution of light microscopy, which has restricted detailed investigations of the junctional coupling process. The present study utilizes standard and tomographic transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. We show that L-SR nanojunctions are prominent features within these cells and estimate that the junctional membrane separation and extension are about 15 nm and 300 nm, respectively. Furthermore, we develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca
2+ signal information as input data. Simulations of NAADP-dependent junctional Ca
2+ transients demonstrate that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca
2+ signals and simulated Ca
2+ transients within L-SR junctions, we estimate that “trigger zones” comprising 60–100 junctions are required to confer a signal of similar magnitude. This is compatible with the 110 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca
2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca
2+signal coupling and may contribute to cellular function in health and disease.
Collapse
Affiliation(s)
- Nicola Fameli
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, V6T 1Z3, Canada.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Current address: Institute for Biophysics, Medical University of Graz, Graz, 8010, Austria
| | - Oluseye A Ogunbayo
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - A Mark Evans
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
65
|
Jin RU, Mills JC. RAB26 coordinates lysosome traffic and mitochondrial localization. J Cell Sci 2014; 127:1018-32. [PMID: 24413166 PMCID: PMC3937772 DOI: 10.1242/jcs.138776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022] Open
Abstract
As they mature, professional secretory cells like pancreatic acinar and gastric chief cells induce the transcription factor MIST1 (also known as BHLHA15) to substantially scale up production of large secretory granules in a process that involves expansion of apical cytoplasm and redistribution of lysosomes and mitochondria. How a scaling factor like MIST1 rearranges cellular architecture simply by regulating expression levels of its transcriptional targets is unknown. RAB26 is a MIST1 target whose role in MIST1-mediated secretory cell maturation is also unknown. Here, we confirm that RAB26 expression, unlike most Rabs which are ubiquitously expressed, is tissue specific and largely confined to MIST1-expressing secretory tissues. Surprisingly, functional studies showed that RAB26 predominantly associated with LAMP1/cathepsin D lysosomes and not directly with secretory granules. Moreover, increasing RAB26 expression - by inducing differentiation of zymogen-secreting cells or by direct transfection - caused lysosomes to coalesce in a central, perinuclear region. Lysosome clustering in turn caused redistribution of mitochondria into distinct subcellular neighborhoods. The data elucidate a novel function for RAB26 and suggest a mechanism for how cells could increase transcription of key effectors to reorganize subcellular compartments during differentiation.
Collapse
Affiliation(s)
- Ramon U. Jin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
66
|
Itokazu Y, Pagano RE, Schroeder AS, O'Grady SM, Limper AH, Marks DL. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair. Am J Physiol Cell Physiol 2014; 306:C819-30. [PMID: 24500283 DOI: 10.1152/ajpcell.00168.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ~60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (~40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
67
|
Jacobs BL, Goodman CA, Hornberger TA. The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 2014; 35:11-21. [PMID: 24162376 PMCID: PMC3981920 DOI: 10.1007/s10974-013-9367-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
It is well recognized that mechanical signals play a critical role in the regulation of skeletal muscle mass, and the maintenance of muscle mass is essential for mobility, disease prevention and quality of life. Furthermore, over the last 15 years it has become established that signaling through a protein kinase called the mammalian (or mechanistic) target of rapamycin (mTOR) is essential for mechanically-induced changes in protein synthesis and muscle mass, however, the mechanism(s) via which mechanical stimuli regulate mTOR signaling have not been defined. Nonetheless, advancements are being made, and an emerging body of evidence suggests that the late endosome/lysosomal (LEL) system might play a key role in this process. Therefore, the purpose of this review is to summarize this body of evidence. Specifically, we will first explain why the Ras homologue enriched in brain (Rheb) and phosphatidic acid (PA) are considered to be direct activators of mTOR signaling. We will then describe the process of endocytosis and its involvement in the formation of LEL structures, as well as the evidence which indicates that mTOR and its direct activators (Rheb and PA) are all enriched at the LEL. Finally, we will summarize the evidence that has implicated the LEL in the regulation of mTOR by various growth regulatory inputs such as amino acids, growth factors and mechanical stimuli.
Collapse
Affiliation(s)
- Brittany L Jacobs
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | | | | |
Collapse
|
68
|
Peng J, Zhang R, Cui Y, Liu H, Zhao X, Huang L, Hu M, Yuan X, Ma B, Ma X, Takashi U, Masaaki K, Liang X, Yu L. Atg5 regulates late endosome and lysosome biogenesis. SCIENCE CHINA-LIFE SCIENCES 2013; 57:59-68. [DOI: 10.1007/s11427-013-4588-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/22/2013] [Indexed: 01/07/2023]
|
69
|
Baudoin JP, Jerome WG, Kübel C, de Jonge N. Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography. PLoS One 2013; 8:e55022. [PMID: 23383042 PMCID: PMC3561407 DOI: 10.1371/journal.pone.0055022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters.
Collapse
Affiliation(s)
- Jean-Pierre Baudoin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - W. Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christian Kübel
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshaffen, Germany
| | - Niels de Jonge
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- INM – Leibniz Institute for New Materials, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
70
|
Mrakovic A, Kay JG, Furuya W, Brumell JH, Botelho RJ. Rab7 and Arl8 GTPases are Necessary for Lysosome Tubulation in Macrophages. Traffic 2012; 13:1667-79. [DOI: 10.1111/tra.12003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Amra Mrakovic
- Molecular Science Program and the Department of Chemistry and Biology; Ryerson University; Toronto ON M5B 2K3 Canada
| | - Jason G. Kay
- Program in Cell Biology; Hospital for Sick Children; Toronto ON M5G 1X8 Canada
| | - Wendy Furuya
- Program in Cell Biology; Hospital for Sick Children; Toronto ON M5G 1X8 Canada
| | - John H. Brumell
- Program in Cell Biology; Hospital for Sick Children; Toronto ON M5G 1X8 Canada
- Department of Molecular Genetics; University of Toronto; Toronto ON M5S 1A8 Canada
- Institute of Medical Science; University of Toronto; Toronto ON M5S 1A8 Canada
| | - Roberto J. Botelho
- Molecular Science Program and the Department of Chemistry and Biology; Ryerson University; Toronto ON M5B 2K3 Canada
| |
Collapse
|
71
|
A hypothetical model of cargo-selective rab recruitment during organelle maturation. Cell Biochem Biophys 2012; 63:59-71. [PMID: 22328341 DOI: 10.1007/s12013-012-9341-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rabs constitute a group of small GTPases that confer directionality to intracellular vesicle transport by promoting on the membrane of transport vesicles in the formation of specific protein complexes allowing for efficient fusion with a selected set of target organelles. The molecular mechanism controlling recruitment of the correct Rab at the right time is not fully understood. We propose a model according to which the residence time of a given Rab on the membrane of an organelle is determined by its transient trapping into a Rab effector complex (REC) composed of cargo receptor, SNAREs and further effectors. The stability of REC is controlled by the conformational state of the receptor which may change due to binding and release of cargo or changes in the luminal ion milieu. We use a conceptual mathematical model to calculate temporal changes in the Rab decoration of an organelle brought about by exchange with a cytosolic pool of Rabs or alternatively by budding and uptake of Rab-carrying vesicles. Considering the time-dependent drop in pH as one crucial factor for the conformational change of endocytic cargo receptors, our model provides a good quantitative description of the switch from Rab5 to Rab7 during the early-to-late endosome transition and correctly explains the arrest of this transition at insufficient luminal acidification. Model simulations suggest that a switch from one Rab to another may be continuous or abrupt. We discuss mechanisms, e.g. specific signalling pathways, which may restore an arrested organelle maturation.
Collapse
|
72
|
pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012; 64:979-92. [PMID: 21996056 DOI: 10.1016/j.addr.2011.09.006] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/06/2023]
Abstract
Titratable polyanions, and more particularly polymers bearing carboxylate groups, have been used in recent years to produce a variety of pH-sensitive colloids. These polymers undergo a coil-to-globule conformational change upon a variation in pH of the surrounding environment. This conformational change can be exploited to trigger the release of a drug from a drug delivery system in a pH-dependent fashion. This review describes the current status of pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates and their performance as nano-scale drug delivery systems, with emphasis on our recent contribution to this field.
Collapse
|
73
|
Yu H, Chen Y. Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
74
|
Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, Nader HB, Yamane T, Kerkis I, Tersariol ILS, Coll JL, Hayashi MAF. The Natural Cell-Penetrating Peptide Crotamine Targets Tumor Tissue in Vivo and Triggers a Lethal Calcium-Dependent Pathway in Cultured Cells. Mol Pharm 2011; 9:211-21. [DOI: 10.1021/mp2000605] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio D. Nascimento
- Grupo de Estudos em Odontologia, Universidade Bandeirante de São Paulo (UNIBAN), São Paulo, SP,
Brazil
| | - Lucie Sancey
- INSERM U823, Institut Albert Bonniot, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | | | - Claire Rome
- INSERM U823, Institut Albert Bonniot, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Vitor Oliveira
- Departamento
de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo B. Oliveira
- Departamento de Bioquímica
e Imunologia, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Helena B. Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo,
Brazil
| | - Tetsuo Yamane
- Laboratório
de Bioquímica e Biologia Molecular, Centro de Biotecnologia da Amazônia (CBA), Manaus, AM,
Brazil
| | - Irina Kerkis
- Laboratório
de Genética, Instituto Butantan,
São Paulo, SP, Brasil
| | - Ivarne L. S. Tersariol
- Centro Interdisciplinar
de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, Mogi das Cruzes, SP,
Brazil
| | - Jean-Luc Coll
- INSERM U823, Institut Albert Bonniot, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Mirian A. F. Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP),
São Paulo, SP, Brazil
| |
Collapse
|
75
|
Rosenfeld JL, Knoll BJ, Moore RH. Regulation of G-Protein-Coupled Receptor Activity by Rab GTPases. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820212398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
76
|
Liu L, Jiang D, McDonald A, Hao Y, Millhauser GL, Zhou F. Copper redox cycling in the prion protein depends critically on binding mode. J Am Chem Soc 2011; 133:12229-37. [PMID: 21707094 PMCID: PMC3166251 DOI: 10.1021/ja2045259] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The prion protein (PrP) takes up 4-6 equiv of copper in its extended N-terminal domain, composed of the octarepeat (OR) segment (human sequence residues 60-91) and two mononuclear binding sites (at His96 and His111; also referred to as the non-OR region). The OR segment responds to specific copper concentrations by transitioning from a multi-His mode at low copper levels to a single-His, amide nitrogen mode at high levels (Chattopadhyay et al. J. Am. Chem. Soc. 2005, 127, 12647-12656). The specific function of PrP in healthy tissue is unclear, but numerous reports link copper uptake to a neuroprotective role that regulates cellular stress (Stevens, et al. PLoS Pathog.2009, 5 (4), e1000390). A current working hypothesis is that the high occupancy binding mode quenches copper's inherent redox cycling, thus, protecting against the production of reactive oxygen species from unregulated Fenton type reactions. Here, we directly test this hypothesis by performing detailed pH-dependent electrochemical measurements on both low and high occupancy copper binding modes. In contrast to the current belief, we find that the low occupancy mode completely quenches redox cycling, but high occupancy leads to the gentle production of hydrogen peroxide through a catalytic reduction of oxygen facilitated by the complex. These electrochemical findings are supported by independent kinetic measurements that probe for ascorbate usage and also peroxide production. Hydrogen peroxide production is also observed from a segment corresponding to the non-OR region. Collectively, these results overturn the current working hypothesis and suggest, instead, that the redox cycling of copper bound to PrP in the high occupancy mode is not quenched, but is regulated. The observed production of hydrogen peroxide suggests a mechanism that could explain PrP's putative role in cellular signaling.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Alex McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Yuanqiang Hao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| |
Collapse
|
77
|
Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. Bioessays 2011; 33:448-57. [PMID: 21538413 PMCID: PMC3107950 DOI: 10.1002/bies.201000152] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.
Collapse
Affiliation(s)
- Dongbiao Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Xiang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
78
|
Zhao M, Wang HL, Zhang L, Zhao C, Ji LN, Mao ZW. Unexpected phosphodiesterase activity at low pH of a dinuclear copper–β-cyclodextrin complex. Chem Commun (Camb) 2011; 47:7344-6. [DOI: 10.1039/c1cc12466h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
79
|
Conjugation of membrane-destabilizing peptide onto gelatin–siloxane nanoparticles for efficient gene expression. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
VanderVen BC, Hermetter A, Huang A, Maxfield FR, Russell DG, Yates RM. Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A 2010; 77:751-60. [PMID: 20653015 PMCID: PMC2909615 DOI: 10.1002/cyto.a.20911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macrophages play a central role in tissue homeostasis and the immune system. Their primary function is to internalize cellular debris and microorganisms for degradation within their phagosomes. In this context, their capacity to process and sequester lipids such as triacylglycerides and cholesteryl esters makes them key players in circulatory diseases, such as atheroclerosis. To discover new inhibitors of lipolytic processing within the phagosomal system of the macrophage, we have developed a novel, cell-based assay suitable for high-throughput screening. We employed particles carrying a fluorogenic triglyceride substrate and a calibration fluor to screen for inhibitors of phagosomal lipolysis. A panel of secondary assays were employed to discriminate between lipase inhibitors and compounds that perturbed general phagosomal trafficking events. This process enabled us to identify a new structural class of pyrazole-methanone compounds that directly inhibit lysosomal and lipoprotein lipase activity.
Collapse
Affiliation(s)
- Brian C. VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | - Amy Huang
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Fredrick R Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robin M. Yates
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
81
|
Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells. Neurochem Res 2010; 35:1575-87. [PMID: 20535554 DOI: 10.1007/s11064-010-0217-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
A liposomal preparation of glutathione (GSH) was investigated for its ability to replenish intracellular GSH and provide neuroprotection in an in vitro model of Parkinson's disease using paraquat plus maneb (PQMB) in rat mesencephalic cultures. In mixed neuronal/glial cultures depleted of intracellular GSH, repletion to control levels occurred over 4 h with liposomal-GSH or non-liposomal-GSH however, liposomal-GSH was 100-fold more potent; EC(50s) 4.75 μM and 533 μM for liposomal and non-liposomal-GSH, respectively. Liposomal-GSH utilization was also observed in neuronal cultures, but with a higher EC(50) (76.5 μM), suggesting that glia facilitate utilization. Blocking γ-glutamylcysteine synthetase with buthionine sulfoxamine prevented replenishment with liposomal-GSH demonstrating the requirement for catabolism and resynthesis. Repletion was significantly attenuated with endosomal inhibition implicating the endosomal system in utilization. Liposomal-GSH provided dose-dependent protection against PQMB with an EC(50) similar to that found for repletion. PQMB depleted intracellular GSH by 50%. Liposomal-GSH spared endogenous GSH during PQMB exposure, but did not require GSH biosynthesis for protection. No toxicity was observed with the liposomal preparation at 200-fold the EC(50) for repletion. These findings indicate that glutathione supplied in a liposomal formulation holds promise as a potential therapeutic for neuronal maintenance.
Collapse
|
82
|
Zhu MX, Ma J, Parrington J, Galione A, Evans AM. TPCs: Endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 2010; 584:1966-74. [PMID: 20159015 PMCID: PMC2867333 DOI: 10.1016/j.febslet.2010.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 01/03/2023]
Abstract
Two-pore channels (TPCs or TPCNs) are novel members of the large superfamily of voltage-gated cation channels with slightly higher sequence homology to the pore-forming subunits of voltage-gated Ca(2+) and Na(+) channels than most other members. Recent studies demonstrate that TPCs locate to endosomes and lysosomes and form Ca(2+) release channels that respond to activation by the Ca(2+) mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). With multiple endolysosomal targeted NAADP receptors now identified, important new insights into the regulation of endolysosomal function in health and disease will therefore be unveiled.
Collapse
Affiliation(s)
- Michael X Zhu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
83
|
Divya L, Beyo RS, Sreejith P, Akbarsha MA, Oommen OV. Skeletal muscle–melanocyte association during tadpole tail resorption in a tropical frog, Clinotarsus curtipes Jerdon (Anura, Ranoidea). ZOOLOGY 2010; 113:175-83. [DOI: 10.1016/j.zool.2009.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
|
84
|
Goldman SDB, Krise JP. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J Biol Chem 2010; 285:4983-94. [PMID: 20007703 PMCID: PMC2836102 DOI: 10.1074/jbc.m109.037622] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 12/09/2009] [Indexed: 12/24/2022] Open
Abstract
The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [(3)H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo.
Collapse
Affiliation(s)
- Stephen D. B. Goldman
- From the Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047
| | - Jeffrey P. Krise
- From the Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047
| |
Collapse
|
85
|
Abstract
Ion channels are classically understood to regulate the flux of ions across the plasma membrane in response to a variety of environmental and intracellular cues. Ion channels serve a number of functions in intracellular membranes as well. These channels may be temporarily localized to intracellular membranes as a function of their biosynthetic or secretory pathways, i.e., en route to their destination location. Intracellular membrane ion channels may also be located in the endocytic pathways, either being recycled back to the plasma membrane or targeted to the lysosome for degradation. Several channels do participate in intracellular signal transduction; the most well known example is the inositol 1,4,5-trisphosphate receptor (IP(3)R) in the endoplasmic reticulum. Some organellar intracellular membrane channels are required for the ionic homeostasis of their residing organelles. Several newly-discovered intracellular membrane Ca(2+) channels actually play active roles in membrane trafficking. Transient receptor potential (TRP) proteins are a superfamily (28 members in mammal) of Ca(2+)-permeable channels with diverse tissue distribution, subcellular localization, and physiological functions. Almost all mammalian TRP channels studied thus far, like their ancestor yeast TRP channel (TRPY1) that localizes to the vacuole compartment, are also (in addition to their plasma membrane localization) found to be localized to intracellular membranes. Accumulated evidence suggests that intracellularly-localized TRP channels actively participate in regulating membrane traffic, signal transduction, and vesicular ion homeostasis. This review aims to provide a summary of these recent works. The discussion will also be extended to the basic membrane and electrical properties of the TRP-residing compartments.
Collapse
Affiliation(s)
- Xian-Ping Dong
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
86
|
Mucolipins: Intracellular TRPML1-3 channels. FEBS Lett 2010; 584:2013-21. [PMID: 20074572 DOI: 10.1016/j.febslet.2009.12.056] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022]
Abstract
The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.
Collapse
|
87
|
Miyakawa K, Ryo A, Murakami T, Ohba K, Yamaoka S, Fukuda M, Guatelli J, Yamamoto N. BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog 2009; 5:e1000700. [PMID: 20019814 PMCID: PMC2788703 DOI: 10.1371/journal.ppat.1000700] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 11/18/2009] [Indexed: 01/28/2023] Open
Abstract
Host cell factors can either positively or negatively regulate the assembly and egress of HIV-1 particles from infected cells. Recent reports have identified a previously uncharacterized transmembrane protein, tetherin/CD317/BST-2, as a crucial host restriction factor that acts during a late budding step in HIV-1 replication by inhibiting viral particle release. Although tetherin has been shown to promote the retention of nascent viral particles on the host cell surface, the precise molecular mechanisms that occur during and after these tethering events remain largely unknown. We here report that a RING-type E3 ubiquitin ligase, BCA2 (Breast cancer-associated gene 2; also called Rabring7, ZNF364 or RNF115), is a novel tetherin-interacting host protein that facilitates the restriction of HIV-1 particle production in tetherin-positive cells. The expression of human BCA2 in “tetherin-positive” HeLa, but not in “tetherin-negative” HOS cells, resulted in a strong restriction of HIV-1 particle production. Upon the expression of tetherin in HOS cells, BCA2 was capable of inhibiting viral particle production as in HeLa cells. The targeted depletion of endogenous BCA2 by RNA interference (RNAi) in HeLa cells reduced the intracellular accumulation of viral particles, which were nevertheless retained on the plasma membrane. BCA2 was also found to facilitate the internalization of HIV-1 virions into CD63+ intracellular vesicles leading to their lysosomal degradation. These results indicate that BCA2 accelerates the internalization and degradation of viral particles following their tethering to the cell surface and is a co-factor or enhancer for the tetherin-dependent restriction of HIV-1 release from infected cells. Human cells possess multiple systems that render them resistant to viral infection. Recently, a transmembrane protein, tetherin, has been identified as an antiviral host factor in HIV-1-infected cells. Tetherin retains newly assembled virions at the plasma membrane and prevents viral release from the infected cells. However, the precise molecular mechanisms following the virion tethering remain largely unknown. In our current study, we have identified a RING-type E3 ubiquitin ligase, BCA2, which co-localizes and interacts with tetherin in human cells. BCA2 was found to facilitate the internalization of HIV-1 particles captured by tetherin on the plasma membrane and to enhance the targeting of viral particles to the lysosomes. Conversely, the targeted depletion of endogenous BCA2 reduces the intracellular accumulation of viral particles. Additionally, the expression of a small viral protein Vpu, an antagonist of tetherin, counteracts the antiviral effects of BCA2. These results suggest that BCA2 is a potential antiviral factor that collaborates with tetherin to facilitate the degradation of nascent HIV-1 particles during “post-tethering” processes.
Collapse
Affiliation(s)
- Kei Miyakawa
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akihide Ryo
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (AR); (NY)
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kenji Ohba
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - John Guatelli
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (AR); (NY)
| |
Collapse
|
88
|
Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 2009; 298:C430-41. [PMID: 20018950 PMCID: PMC2838574 DOI: 10.1152/ajpcell.00475.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, we identified, for the first time, two-pore channels (TPCs, TPCN for gene name) as a novel family of nicotinic acid adenine dinucleotide phosphate (NAADP)-gated, endolysosome-targeted calcium release channels. Significantly, three subtypes of TPCs have been characterized, TPC1-3, with each being targeted to discrete acidic calcium stores, namely lysosomes (TPC2) and endosomes (TPC1 and TPC3). That TPCs act as NAADP-gated calcium release channels is clear, given that NAADP binds to high- and low-affinity sites associated with TPC2 and thereby induces calcium release and homologous desensitization, as observed in the case of endogenous NAADP receptors. Moreover, NAADP-evoked calcium signals via TPC2 are ablated by short hairpin RNA knockdown of TPC2 and by depletion of acidic calcium stores with bafilomycin. Importantly, however, NAADP-evoked calcium signals were biphasic in nature, with an initial phase of calcium release from lysosomes via TPC2, being subsequently amplified by calcium-induced calcium release (CICR) from the endoplasmic reticulum (ER). In marked contrast, calcium release via endosome-targeted TPC1 induced only spatially restricted calcium signals that were not amplified by CICR from the ER. These findings provide new insights into the mechanisms that cells may utilize to "filter" calcium signals via junctional complexes to determine whether a given signal remains local or is converted into a propagating global signal. Essentially, endosomes and lysosomes represent vesicular calcium stores, quite unlike the ER network, and TPCs do not themselves support CICR or, therefore, propagating regenerative calcium waves. Thus "quantal" vesicular calcium release via TPCs must subsequently recruit inositol 1,4,5-trisphoshpate receptors and/or ryanodine receptors on the ER by CICR to evoke a propagating calcium wave. This may call for a revision of current views on the mechanisms of intracellular calcium signaling. The purpose of this review is, therefore, to provide an appropriate framework for future studies in this area.
Collapse
Affiliation(s)
- Michael X Zhu
- Department of Neuroscience, Biochemistry and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
In mammalian cells, endocytosed cargo that is internalized through clathrin-coated pits/vesicles passes through early endosomes and then to late endosomes, before delivery to lysosomes for degradation by proteases. Late endosomes are MVBs (multivesicular bodies) with ubiquitinated membrane proteins destined for lysosomal degradation being sorted into their luminal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery. Cargo is delivered from late endosomes to lysosomes by kissing and direct fusion. These processes have been studied in live cell experiments and a cell-free system. Late endosome-lysosome fusion is preceded by tethering that probably requires mammalian orthologues of the yeast HOPS (homotypic fusion and vacuole protein sorting) complex. Heterotypic late endosome-lysosome membrane fusion is mediated by a trans-SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex comprising Syntaxin7, Vti1b, Syntaxin8 and VAMP7 (vesicle-associated membrane protein 7). This differs from the trans-SNARE complex required for homotypic late endosome fusion in which VAMP8 replaces VAMP7. VAMP7 is also required for lysosome fusion with the plasma membrane and its retrieval from the plasma membrane to lysosomes is mediated by its folded N-terminal longin domain. Co-ordinated interaction of the ESCRT, HOPS and SNARE complexes is required for cargo delivery to lysosomes.
Collapse
|
90
|
Goldman SDB, Funk RS, Rajewski RA, Krise JP. Mechanisms of amine accumulation in, and egress from, lysosomes. Bioanalysis 2009; 1:1445-59. [PMID: 21083094 PMCID: PMC3065188 DOI: 10.4155/bio.09.128] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The human body is continuously exposed to small organic molecules containing one or more basic nitrogen atoms. Many of these are endogenous (i.e., neurotransmitters, polyamines and biogenic amines), while others are exogenously supplied in the form of drugs, foods and pollutants. It is well-known that many amines have a strong propensity to specifically and substantially accumulate in highly acidic intracellular compartments, such as lysosomes, through a mechanism referred to as ion trapping. It is also known that cells have acquired the unique ability to sense and respond to amine accumulation in lysosomes in an effort to prevent potential negative consequences associated with hyperaccumulation. We describe here methods that are used to evaluate the dynamics of amine accumulation in, and egress from, lysosomes. Moreover, we highlight specific proteins that are thought to play important roles in these pathways. A theoretical model describing lysosomal amine dynamics is described and shown to adequately fit experimental kinetic data. The implications of this research in understanding and treating disease are discussed.
Collapse
Affiliation(s)
- Stephen DB Goldman
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | - Ryan S Funk
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | - Roger A Rajewski
- Biotechnology Innovation and Optimization Center, Lawrence, KS, USA
| | - Jeffrey P Krise
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| |
Collapse
|
91
|
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:727-39. [PMID: 19686370 DOI: 10.1111/j.1744-7909.2009.00842.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
92
|
Rothenfluh DA, Hubbell JA. Integration column: Biofunctional polymeric nanoparticles for spatio-temporal control of drug delivery and biomedical applications. Integr Biol (Camb) 2009; 1:446-51. [DOI: 10.1039/b907627c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
93
|
Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:524-39. [PMID: 19146988 DOI: 10.1016/j.bbalip.2008.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 12/12/2022]
Abstract
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal lipid storage caused either through drug induced phospholipidosis, inheritable endolysosomal and cytosolic lipid storage disorders and Ox-LDL or E-LDL induced phagosomal uptake and cytosolic lipid droplet storage in macrophages. Ox-LDL is resistant to rapid endolysosomal hydrolysis and is trapped within the endolysosomal compartment generating lamellar bodies which resemble the characteristics of phospholipidosis. Various inherited lysosomal storage diseases including sphingolipidosis, glycosphingolipidosis and cholesterylester storage diseases also present a phospholipidosis phenotype. In contrast E-LDL resembling coreless unesterified cholesterol enriched LDL-particles, with a multilamellar, liposome-like structure, lead to rapid phagosomal degradation and cytosolic lipid droplet accumulation. As a consequence the uptake of E-LDL through type I and type II phagocytosis leads to increased lipid droplet formation and moderate upregulation of ABCA1 and ABCG1 while uptake of Ox-LDL leads to a rapid expansion of the lysosomal compartment and a pronounced upregulation of the ABCA1/ABCG1/AP-3 lipid efflux pathway.
Collapse
|
94
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|
95
|
Izagirre U, Angulo E, Wade SC, ap Gwynn I, Marigómez I. β-Glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells. Cell Tissue Res 2008; 335:441-54. [DOI: 10.1007/s00441-008-0693-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
96
|
Abstract
Phagosome maturation is the process by which internalized particles (such as bacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The characterization of the phagosomal proteome and studies in model organisms and mammals have led to the identification of numerous candidate proteins that cooperate to control the maturation of phagosomes containing different particles. A subset of these candidate proteins makes up the first pathway to be identified for the maturation of apoptotic cell-containing phagosomes. This suggests that a machinery that is distinct from receptor-mediated endocytosis is used in phagosome maturation.
Collapse
Affiliation(s)
- Jason M Kinchen
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22902, USA.
| | | |
Collapse
|
97
|
Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3051-68. [PMID: 18603619 PMCID: PMC2504345 DOI: 10.1093/jxb/ern154] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/03/2008] [Accepted: 05/08/2008] [Indexed: 05/18/2023]
Abstract
Positively charged nanogold was used as a probe to trace the internalization of plasma membrane (PM) domains carrying negatively charged residues at an ultrastructural level. The probe revealed distinct endocytic pathways within tobacco protoplasts and allowed the morphology of the organelles involved in endocytosis to be characterized in great detail. Putative early endosomes with a tubulo-vesicular structure, similar to that observed in animal cells, are described and a new compartment, characterized by interconnected vesicles, was identified as a late endosome using the Arabidopsis anti-syntaxin family Syp-21 antibody. Endocytosis dissection using Brefeldin A (BFA), pulse chase, temperature- and energy-dependent experiments combined with quantitative analysis of nanogold particles in different compartments, suggested that recycling to the PM predominated with respect to degradation. Further experiments using ikarugamycin (IKA), an inhibitor of clathrin-dependent endocytosis, and negatively charged nanogold confirmed that distinct endocytic pathways coexist in tobacco protoplasts.
Collapse
|
98
|
Tanaka N, Kyuuma M, Sugamura K. Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Sci 2008; 99:1293-303. [PMID: 18429951 PMCID: PMC11158640 DOI: 10.1111/j.1349-7006.2008.00825.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 12/18/2022] Open
Abstract
Endosomal sorting complex required for transport (ESCRT) proteins form a multicomplex sorting machinery that controls multivesicular body (MVB) formation and the sorting of ubiquitinated membrane proteins to the endosomes. Being sorted to the MVB generally results in the lysosome-dependent degradation of cell-surface receptors, and defects in this machinery induce dysregulated receptor traffic and turnover. Recent lessons from gene targeting and silencing methodologies have implicated the ESCRT in normal development, cell differentiation, and growth, as well as in the budding of certain enveloped viruses. Furthermore, it is becoming apparent that the dysregulation of ESCRT proteins is involved in the development of various human diseases, including many types of cancers and neurodegenerative disorders. Here, we summarize the roles of ESCRT proteins in MVB sorting processes and the regulation of tumor cells, and we discuss some of their other functions that are unrelated to vesicular transport.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Microbiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
99
|
Abstract
Autophagy is the sole pathway for organelle turnover in cells and is a vital pathway for degrading normal and aggregated proteins, particularly under stress or injury conditions. Recent evidence has shown that the amyloid β peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Aβ generated during normal autophagy is subsequently degraded by lysosomes. Within neurons, autophagosomes and endosomes actively form in synapses and along neuritic processes but efficient clearance of these compartments requires their retrograde transport towards the neuronal cell body, where lysosomes are most concentrated. In Alzheimer disease, the maturation of autophagolysosomes and their retrograde transport are impeded, which leads to a massive accumulation of `autophagy intermediates' (autophagic vacuoles) within large swellings along dystrophic and degenerating neurites. The combination of increased autophagy induction and defective clearance of Aβ-generating autophagic vacuoles creates conditions favorable for Aβ accumulation in Alzheimer disease.
Collapse
Affiliation(s)
- Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Departments of Psychiatry and Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
100
|
Tatsumi A, Shoji JY, Kikuma T, Arioka M, Kitamoto K. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 2007; 362:474-9. [PMID: 17719006 DOI: 10.1016/j.bbrc.2007.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/03/2007] [Indexed: 11/30/2022]
Abstract
Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.
Collapse
Affiliation(s)
- Akinori Tatsumi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|