51
|
Gräf R, Daunderer C, Schulz I. Molecular and functional analysis of the dictyostelium centrosome. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:155-202. [PMID: 15548420 DOI: 10.1016/s0074-7696(04)41003-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The centrosome is a nonmembranous, nucleus-associated organelle that functions not only as the main microtubule-organizing center but also as a cell cycle control unit. How the approximately 100 different proteins that make up a centrosome contribute to centrosome function is still largely unknown. Considerable progress in the understanding of centrosomal functions can be expected from comparative cell biology of morphologically different centrosomal structures fulfilling conserved functions. Dictyostelium is an alternative model organism for centrosome research in addition to yeast and animal cells. With the elucidation of morphological changes and dynamics of centrosome duplication, the establishment of a centrosome isolation protocol, and the identification of many centrosomal components, there is a solid basis for understanding the biogenesis and function of this fascinating organelle. Here we give an overview of the prospective protein inventory of the Dictyostelium centrosome based on database searches. Moreover, we focus on the comparative cell biology of known components of the Dictyostelium centrosome including the gamma-tubulin complex and the homologues of centrin, Nek2, XMAP215, and EB1.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut?Zellbiologie, Universität München, D-80336 München, Germany
| | | | | |
Collapse
|
52
|
Abstract
After internalization, endocytic material is actively transported through the cytoplasm, predominantly by microtubule motor proteins. Microtubule-based endocytic transport facilitates sorting of endocytic contents, vesicle fusion and fission, delivery to lysosomes, cytosolic dispersal, as well as nuclear uptake and cytosolic egress of pathogens. Endosomes, like most organelles, move bidirectionally through the cytosol and regulate their cellular location by controlling the activity of motor proteins, and potentially by controlling microtubule and actin polymerization. Control of motor protein activity is manifest by increased microtubule "run lengths", and the binding of motor proteins to organelles can be regulated by motor protein receptors. A mechanistic understanding of how organelles control motor protein activity to allow for endocytic sorting presents an exciting avenue for future research.
Collapse
Affiliation(s)
- John W Murray
- Marion Bessin Liver Research Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 517 Ullmann Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
53
|
King SJ, Brown CL, Maier KC, Quintyne NJ, Schroer TA. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell 2003; 14:5089-97. [PMID: 14565986 PMCID: PMC284810 DOI: 10.1091/mbc.e03-01-0025] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
54
|
Reilein AR, Serpinskaya AS, Karcher RL, Dujardin DL, Vallee RB, Gelfand VI. Differential regulation of dynein-driven melanosome movement. Biochem Biophys Res Commun 2003; 309:652-8. [PMID: 12963040 DOI: 10.1016/j.bbrc.2003.08.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoplasmic dyneins are multisubunit minus-end-directed microtubule motors. Different isoforms of dynein are thought to provide a means for independent movement of different organelles. We investigated the differential regulation of dynein-driven transport of pigment organelles (melanosomes) in Xenopus melanophores. Aggregation of melanosomes to the cell center does not change the localization of mitochondria, nor does dispersion of melanosomes cause a change in the perinuclear localization of the Golgi complex, indicating that melanosomes bear a dedicated form of dynein. We examined the subcellular fractionation behavior of dynein light intermediate chains (LIC) and identified at least three forms immunologically, only one of which fractionated with melanosomes. Melanosome aggregation was specifically blocked after injection of an antibody recognizing this LIC. Our data indicate that melanosome-associated dynein is regulated independently of bulk cytoplasmic dynein and involves a subfraction of dynein with a distinct subunit composition.
Collapse
Affiliation(s)
- Amy R Reilein
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
55
|
Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 2003; 39:69-84. [PMID: 12848933 DOI: 10.1016/s0896-6273(03)00397-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.
Collapse
Affiliation(s)
- Jean-Dominique Delcroix
- Department of Neurology and Neurological Sciences, Stanford University, Stanford 94305, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Phagocytosis is a critical host defense mechanism used by macrophages and neutrophils to clear invading pathogens. The complex sequence of events resulting in internalization and degradation of the pathogens is a coordinated process involving lipids, signaling proteins, and the cytoskeleton. Here, we examine the role of the microtubule cytoskeleton in supporting both the engulfment of pathogens and their elimination within phagolysosomes.
Collapse
Affiliation(s)
- Rene E Harrison
- Division of Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
57
|
Zhang J, Li S, Fischer R, Xiang X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 2003; 14:1479-88. [PMID: 12686603 PMCID: PMC153116 DOI: 10.1091/mbc.e02-08-0516] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanism(s) by which microtubule plus-end tracking proteins are targeted is unknown. In the filamentous fungus Aspergillus nidulans, both cytoplasmic dynein and NUDF, the homolog of the LIS1 protein, localize to microtubule plus ends as comet-like structures. Herein, we show that NUDM, the p150 subunit of dynactin, also forms dynamic comet-like structures at microtubule plus ends. By examining proteins tagged with green fluorescent protein in different loss-of-function mutants, we demonstrate that dynactin and cytoplasmic dynein require each other for microtubule plus-end accumulation, and the presence of cytoplasmic dynein is also important for NUDF's plus-end accumulation. Interestingly, deletion of NUDF increases the overall accumulation of dynein and dynactin at plus ends, suggesting that NUDF may facilitate minus-end-directed dynein movement. Finally, we demonstrate that a conventional kinesin, KINA, is required for the microtubule plus-end accumulation of cytoplasmic dynein and dynactin, but not of NUDF.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | |
Collapse
|
58
|
Abstract
In non-polarised mammalian cells, the Golgi apparatus is localised around the centrosome and actively maintained there. Microtubules and molecular motor activity are required for determining both the localisation and organisation of the Golgi apparatus. Other factors, however, also appear necessary for regulating both the static steady-state distribution of this organelle and its relationship with microtubule minus-end-anchoring activities of the centrosome. Several non-motor microtubule-binding proteins have now been found to be associated with the Golgi apparatus. Recent advances suggest that, in addition to important roles in cell motility, polarisation and differentiation, the interplay between Golgi apparatus and centrosome could participate in other physiological processes such as intracellular signalling, mitosis and apoptosis.
Collapse
Affiliation(s)
- Rosa M Rios
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes 6, 41012-Sevilla, Spain.
| | | |
Collapse
|
59
|
Abstract
Centrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis. Destabilization of the centrosomal pool of dynactin does not inhibit dynein-based motility or dynein recruitment to centrosomes, but instead causes abnormal G1 centriole separation and delayed entry into S phase. The correct balance of centrosome-associated dynactin subunits is apparently important for satisfaction of the cell cycle mechanism that monitors centrosome integrity before centrosome duplication and ultimately governs the G1 to S transition. Our results suggest that, in addition to functioning as a microtubule anchor, dynactin contributes to the recruitment of important cell cycle regulators to centrosomes.
Collapse
Affiliation(s)
- Nicholas J Quintyne
- Department of Biology, Johns Hopkins University, Charles & 34th Streets, Baltimore, MD 21218, USA
| | | |
Collapse
|
60
|
Abstract
The Golgi apparatus is a dynamic organelle through which nascent secretory and transmembrane proteins are transported, post-translationally modified and finally packaged into carrier vesicles for transport along the cytoskeleton to a variety of destinations. In the past decade, studies have shown that a number of 'molecular motors' are involved in maintaining the proper structure and function of the Golgi apparatus. Here, we review just some of the many functions performed by these mechanochemical enzymes - dyneins, kinesins, myosins and dynamin - in relation to the Golgi apparatus.
Collapse
Affiliation(s)
- Victoria J Allan
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
61
|
Döhner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, Vallee R, Sodeik B. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 2002; 13:2795-809. [PMID: 12181347 PMCID: PMC117943 DOI: 10.1091/mbc.01-07-0348] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
After fusion of the viral envelope with the plasma membrane, herpes simplex virus type 1 (HSV1) capsids are transported along microtubules (MTs) from the cell periphery to the nucleus. The motor ATPase cytoplasmic dynein and its multisubunit cofactor dynactin mediate most transport processes directed toward the minus-ends of MTs. Immunofluorescence microscopy experiments demonstrated that HSV1 capsids colocalized with cytoplasmic dynein and dynactin. We blocked the function of dynein by overexpressing the dynactin subunit dynamitin, which leads to the disruption of the dynactin complex. We then infected such cells with HSV1 and measured the efficiency of particle binding, virus entry, capsid transport to the nucleus, and the expression of immediate-early viral genes. High concentrations of dynamitin and dynamitin-GFP reduced the number of viral capsids transported to the nucleus. Moreover, viral protein synthesis was inhibited, whereas virus binding to the plasma membrane, its internalization, and the organization of the MT network were not affected. We concluded that incoming HSV1 capsids are propelled along MTs by dynein and that dynein and dynactin are required for efficient viral capsid transport to the nucleus.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Biochemistry, Hannover Medical School, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Vaughan PS, Miura P, Henderson M, Byrne B, Vaughan KT. A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J Cell Biol 2002; 158:305-19. [PMID: 12119357 PMCID: PMC2173134 DOI: 10.1083/jcb.200201029] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A subset of microtubule-associated proteins, including cytoplasmic linker protein (CLIP)-170, dynactin, EB1, adenomatous polyposis coli, cytoplasmic dynein, CLASPs, and LIS-1, has been shown recently to target to the plus ends of microtubules. The mechanisms and functions of this binding specificity are not understood, although a role in encouraging microtubule elongation has been proposed. To extend previous work on the role of dynactin in organelle transport, we analyzed p150(Glued) by live-cell imaging. Time-lapse analysis of p150(Glued) revealed targeting to the plus ends of growing microtubules, requiring the NH2-terminal cytoskeleton-associated protein-glycine rich domain, but not EB1 or CLIP-170. Effectors of protein kinase A modulated microtubule binding and suggested p150(Glued) phosphorylation as a factor in plus-end binding specificity. Using a phosphosensitive monoclonal antibody, we mapped the site of p150(Glued) phosphorylation to Ser-19. In vivo and in vitro analysis of phosphorylation site mutants revealed that p150(Glued) phosphorylation mediates dynamic binding to microtubules. To address the function of dynamic binding, we imaged GFP-p150(Glued) during the dynein-dependent transport of Golgi membranes. Live-cell analysis revealed a transient interaction between Golgi membranes and GFP-p150(Glued)-labeled microtubules just prior to transport, implicating microtubules and dynactin in a search-capture mechanism for minus-end-directed organelles.
Collapse
Affiliation(s)
- Patricia S Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
63
|
Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 2002; 13:1313-28. [PMID: 11950941 PMCID: PMC102271 DOI: 10.1091/mbc.01-10-0525] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.
Collapse
Affiliation(s)
- Martin Sachse
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
64
|
Dunster K, Toh BH, Sentry JW. Early endosomes, late endosomes, and lysosomes display distinct partitioning strategies of inheritance with similarities to Golgi-derived membranes. Eur J Cell Biol 2002; 81:117-24. [PMID: 11998863 DOI: 10.1078/0171-9335-00232] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pattern of inheritance of compartments of the endocytic pathway has been rarely reported, and the precise mechanism(s) are yet to be elucidated. We used antibodies reactive to early endosomes (anti-EEA1), late endosomes (anti-LBPA and anti-LAMP-1), lysosomes (anti-LAMP-1) and trans-Golgi network (TGN) (anti-GOLGA4) to examine the inheritance of these compartments in fixed human HEp-2 cells. Prior to entering M phase, these compartments display a perinuclear bias in their cytoplasmic distribution with areas of local accumulation juxtaposed to the centrosome. The location of these compartments during mitosis was examined relative to each other, the chromosomes, centrosomes and the microtubule network. During M phase early endosomes and TGN-derived compartments share overlapping subcellular distributions. A portion of these compartments display discernible clustering around the separated and migrating centrosomes in prophase. At metaphase these compartments co-localise with the mitotic spindle, are absent at the metaphase plate and do not overlay the astral microtubules. At anaphase these compartments are concentrated between shortening kinetochore microtubules and centrosomes. In addition, they appear distributed over the elongating polar microtubules in the body of the cell. From telophase and into cytokinesis these compartments concentrate around the minus ends of the constricted remnants of polar spindle microtubules and re-establish a prominent presence juxtaposed to the centrosome. In contrast, there is little evidence of movement of late endosomes and lysosomes with migrating centrosomes in prophase, and these compartments are excluded from the mitotic spindle at metaphase. However, by the end of telophase, the subcellular distribution of a portion of late endosomes and lysosomes share overlapping distributions with that of early endosomes. We conclude a portion of endosomal compartments and Golgi-derived membranes undergo ordered partitioning based on the centrosome and mitotic spindle.
Collapse
Affiliation(s)
- Kate Dunster
- Department of Pathology and Immunology, Monash Medical School, Prahran, Victoria, Australia
| | | | | |
Collapse
|
65
|
Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, Goud B. CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol 2002; 156:631-42. [PMID: 11854307 PMCID: PMC2174080 DOI: 10.1083/jcb.200111003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The microtubule cytoskeleton plays a fundamental role in cell organization and membrane traffic in higher eukaryotes. It is well established that molecular motors are involved in membrane-microtubule interactions, but it has also been proposed that nonmotor microtubule-binding (MTB) proteins known as CLIPs (cytoplasmic linker proteins) have basic roles in these processes. We report here the characterization of CLIPR-59, a CLIP-170-related protein localized to the trans-most part of the Golgi apparatus. CLIPR-59 contains an acidic region followed by three ankyrin-like repeats and two CLIP-170-related MTB motifs. We show that the 60-amino acid-long carboxy-terminal domain of CLIPR-59 is necessary and sufficient to achieve Golgi targeting, which represents the first identification of a membrane targeting domain in a CLIP-170-related protein. The MTB domain of CLIPR-59 is functional because it localizes to microtubules when expressed as a fragment in HeLa cells. However, our results suggest that this domain is normally inhibited by the presence of adjacent domains, because neither full-length CLIPR-59 nor a CLIPR-59 mutant missing its membrane-targeting region localize to microtubules. Consistent with this observation, overexpression of CLIPR-59 does not affect the microtubule network. However, CLIPR-59 overexpression strongly perturbs early/recycling endosome-TGN dynamics, implicating CLIPR-59 in the regulation of this pathway.
Collapse
Affiliation(s)
- Franck Perez
- Institut Curie, CNRS UMR144, 75248 Paris, France.
| | | | | | | | | | | |
Collapse
|
66
|
Hoffmann B, Zuo W, Liu A, Morris NR. The LIS1-related protein NUDF of Aspergillus nidulans and its interaction partner NUDE bind directly to specific subunits of dynein and dynactin and to alpha- and gamma-tubulin. J Biol Chem 2001; 276:38877-84. [PMID: 11509576 DOI: 10.1074/jbc.m106610200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NUDF protein of Aspergillus nidulans, which is required for nuclear migration through the fungal mycelium, closely resembles the LIS1 protein required for migration of neurons to the cerebral cortex in humans. Genetic experiments suggested that NUDF influences nuclear migration by affecting cytoplasmic dynein. NUDF interacts with another protein, NUDE, which also affects nuclear migration in A. nidulans. Interactions among LIS1, NUDE, dynein, and gamma-tubulin have been demonstrated in animal cells. In this paper we examine the interactions of the A. nidulans NUDF and NUDE proteins with components of dynein, dynactin, and with alpha- and gamma-tubulin. We show that NUDF binds directly to alpha- and gamma-tubulin and to the first P-loop of the cytoplasmic dynein heavy chain, whereas NUDE binds directly to alpha- and gamma-tubulin, to NUDK (actin-related protein 1), and to the NUDG dynein LC8 light chain. The data suggest a direct role for NUDF in regulation of the dynein heavy chain and an effect on other dynein/dynactin subunits via NUDE. The interactions between NUDE, NUDF, and gamma-tubulin suggest that this protein may also be involved in the regulation of dynein function. Additive interactions between NUDE and dynein and dynactin subunits suggest that NUDE acts as a scaffolding factor between components.
Collapse
Affiliation(s)
- B Hoffmann
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
67
|
Alonso C, Miskin J, Hernáez B, Fernandez-Zapatero P, Soto L, Cantó C, Rodríguez-Crespo I, Dixon L, Escribano JM. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 2001; 75:9819-27. [PMID: 11559815 PMCID: PMC114554 DOI: 10.1128/jvi.75.20.9819-9827.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dynein is a minus-end-directed microtubule-associated motor protein involved in cargo transport in the cytoplasm. African swine fever virus (ASFV), a large DNA virus, hijacks the microtubule motor complex cellular transport machinery during virus infection of the cell through direct binding of virus protein p54 to the light chain of cytoplasmic dynein (LC8). Interaction of p54 and LC8 occurs both in vitro and in cells, and the two proteins colocalize at the microtubular organizing center during viral infection. p50/dynamitin, a dominant-negative inhibitor of dynein-dynactin function, impeded ASFV infection, suggesting an essential role for dynein during virus infection. A 13-amino-acid domain of p54 was sufficient for binding to LC8, an SQT motif within this domain being critical for this binding. Direct binding of a viral structural protein to LC8, a small molecule of the dynein motor complex, could constitute a molecular mechanism for microtubule-mediated virus transport.
Collapse
Affiliation(s)
- C Alonso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|