51
|
Goudenege S, Poussard S, Dulong S, Cottin P. Biologically active milli-calpain associated with caveolae is involved in a spatially compartmentalised signalling involving protein kinase C alpha and myristoylated alanine-rich C-kinase substrate (MARCKS). Int J Biochem Cell Biol 2005; 37:1900-10. [PMID: 15923133 DOI: 10.1016/j.biocel.2005.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/14/2023]
Abstract
We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.
Collapse
Affiliation(s)
- Sébastien Goudenege
- Laboratoire Biosciences de 1'Aliment, USC-INRA 2009 Université Bordeaux I, Talence, France
| | | | | | | |
Collapse
|
52
|
Calabrese B, Halpain S. Essential Role for the PKC Target MARCKS in Maintaining Dendritic Spine Morphology. Neuron 2005; 48:77-90. [PMID: 16202710 DOI: 10.1016/j.neuron.2005.08.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/20/2005] [Accepted: 08/19/2005] [Indexed: 01/21/2023]
Abstract
Spine morphology is regulated by intracellular signals, like PKC, that affect cytoskeletal and membrane dynamics. We investigated the role of MARCKS (myristoylated, alanine-rich C-kinase substrate) in dendrites of 3-week-old hippocampal cultures. MARCKS associates with membranes via the combined action of myristoylation and a polybasic effector domain, which binds phospholipids and/or F-actin, unless phosphorylated by PKC. Knockdown of endogenous MARCKS using RNAi reduced spine density and size. PKC activation induced similar effects, which were prevented by expression of a nonphosphorylatable mutant. Moreover, expression of pseudophosphorylated MARCKS was, by itself, sufficient to induce spine loss and shrinkage, accompanied by reduced F-actin content. Nonphosphorylatable MARCKS caused spine elongation and increased the mobility of spine actin clusters. Surprisingly, it also decreased spine density via a novel mechanism of spine fusion, an effect that required the myristoylation sequence. Thus, MARCKS is a key factor in the maintenance of dendritic spines and contributes to PKC-dependent morphological plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
53
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|
54
|
Gallant C, You JY, Sasaki Y, Grabarek Z, Morgan KG. MARCKS is a major PKC-dependent regulator of calmodulin targeting in smooth muscle. J Cell Sci 2005; 118:3595-605. [PMID: 16046479 DOI: 10.1242/jcs.02493] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous transducer of intracellular Ca(2+) signals and plays a key role in the regulation of the function of all cells. The interaction of CaM with a specific target is determined not only by the Ca(2+)-dependent affinity of calmodulin but also by the proximity to that target in the cellular environment. Although a few reports of stimulus-dependent nuclear targeting of CaM have appeared, the mechanisms by which CaM is targeted to non-nuclear sites are less clear. Here, we investigate the hypothesis that MARCKS is a regulator of the spatial distribution of CaM within the cytoplasm of differentiated smooth-muscle cells. In overlay assays with portal-vein homogenates, CaM binds predominantly to the MARCKS-containing band. MARCKS is abundant in portal-vein smooth muscle ( approximately 16 microM) in comparison to total CaM ( approximately 40 microM). Confocal images indicate that calmodulin and MARCKS co-distribute in unstimulated freshly dissociated smooth-muscle cells and are co-targeted simultaneously to the cell interior upon depolarization. Protein-kinase-C (PKC) activation triggers a translocation of CaM that precedes that of MARCKS and causes multisite, sequential MARCKS phosphorylation. MARCKS immunoprecipitates with CaM in a stimulus-dependent manner. A synthetic MARCKS effector domain (ED) peptide labelled with a photoaffinity probe cross-links CaM in smooth-muscle tissue in a stimulus-dependent manner. Both cross-linking and immunoprecipitation increase with increased Ca(2+) concentration, but decrease with PKC activation. Introduction of a nonphosphorylatable MARCKS decoy peptide blocks the PKC-mediated targeting of CaM. These results indicate that MARCKS is a significant, PKC-releasable reservoir of CaM in differentiated smooth muscle and that it contributes to CaM signalling by modulating the intracellular distribution of CaM.
Collapse
Affiliation(s)
- Cynthia Gallant
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | | | | | | | |
Collapse
|
55
|
Bullard TA, Borg TK, Price RL. The expression and role of protein kinase C in neonatal cardiac myocyte attachment, cell volume, and myofibril formation is dependent on the composition of the extracellular matrix. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2005; 11:224-34. [PMID: 16060975 DOI: 10.1017/s1431927605050476] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 11/22/2004] [Indexed: 05/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic component of tissues that influences cellular phenotype and behavior. We sought to determine the role of specific ECM substrates in the regulation of protein kinase C (PKC) isozyme expression and function in cardiac myocyte attachment, cell volume, and myofibril formation. PKC isozyme expression was ECM substrate specific. Increasing concentrations of the PKC delta inhibitor rottlerin attenuated myocyte attachment to randomly organized collagen (1, 5, and 10 microM), laminin (5 and 10 microM), aligned collagen (5 and 10 microM), and fibronectin (10 microM). Rottlerin significantly decreased cell volume on laminin and randomly organized collagen, and inhibited myofibril formation on laminin. The PKC alpha inhibitor Gö 6976 inhibited attachment to randomly organized collagen at 6 nM but did not affect cell volume. The general PKC inhibitor Bisindolylmalemide I (10 and 30 microM) did not affect myocyte attachment; however, it significantly decreased cell volume on randomly organized collagen. Our data indicate that PKC isozymes are expressed and utilized by neonatal cardiac myocytes during attachment, cell growth, and myofibril formation. Specifically, it appears that PKC delta and/or its downstream effectors play an important role in the interaction between cardiac myocytes and laminin, providing further evidence that the ECM influences cardiac myocyte behavior.
Collapse
Affiliation(s)
- Tara A Bullard
- Center for Cellular and Molecular Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
56
|
Khundmiri SJ, Dean WL, McLeish KR, Lederer ED. Parathyroid hormone-mediated regulation of Na+-K+-ATPase requires ERK-dependent translocation of protein kinase Calpha. J Biol Chem 2005; 280:8705-13. [PMID: 15637080 DOI: 10.1074/jbc.m408606200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.
Collapse
Affiliation(s)
- Syed J Khundmiri
- Department of Medicine, University of Louisville and Veterans Affairs Medical Center, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
57
|
Sundaram M, Cook HW, Byers DM. The MARCKS family of phospholipid binding proteins: regulation of phospholipase D and other cellular components. Biochem Cell Biol 2004; 82:191-200. [PMID: 15052337 DOI: 10.1139/o03-087] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) are essential proteins that are implicated in coordination of membrane-cytoskeletal signalling events, such as cell adhesion, migration, secretion, and phagocytosis in a variety of cell types. The most prominent structural feature of MARCKS and MRP is a central basic effector domain (ED) that binds F-actin, Ca2+-calmodulin, and acidic phospholipids; phosphorylation of key serine residues within the ED by protein kinase C (PKC) prevents the above interactions. While the precise roles of MARCKS and MRP have not been established, recent attention has focussed on the high affinity of the MARCKS ED for phosphatidylinositol 4,5-bisphosphate (PIP2), and a model has emerged in which calmodulin- or PKC-mediated regulation of these proteins at specific membrane sites could in turn control spatial availability of PIP2. The present review summarizes recent progress in this area and discusses how the above model might explain a role for MARCKS and MRP in activation of phospholipase D and other PIP2-dependent cellular processes.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
58
|
Dulong S, Goudenege S, Vuillier-Devillers K, Manenti S, Poussard S, Cottin P. Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Calpha and calpain proteolytic cleavage. Biochem J 2004; 382:1015-23. [PMID: 15239673 PMCID: PMC1133979 DOI: 10.1042/bj20040347] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 02/08/2023]
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is a major cytoskeletal protein substrate of PKC (protein kinase C) whose cellular functions are still unclear. However numerous studies have implicated MARCKS in the stabilization of cytoskeletal structures during cell differentiation. The present study was performed to investigate the potential role of Ca(2+)-dependent proteinases (calpains) during myogenesis via proteolysis of MARCKS. It was first demonstrated that MARCKS is a calpain substrate in vitro. Then, the subcellular expression of MARCKS was examined during the myogenesis process. Under such conditions, there was a significant decrease in MARCKS expression associated with the appearance of a 55 kDa proteolytic fragment at the time of intense fusion. The addition of calpastatin peptide, a specific calpain inhibitor, induced a significant decrease in the appearance of this fragment. Interestingly, MARCKS proteolysis was dependent of its phosphorylation by the conventional PKCalpha. Finally, ectopic expression of MARCKS significantly decreased the myoblast fusion process, while reduced expression of the protein with antisense oligonucleotides increased the fusion. Altogether, these data demonstrate that MARCKS proteolysis is necessary for the fusion of myoblasts and that cleavage of the protein by calpains is involved in this regulation.
Collapse
Key Words
- actin cytoskeleton
- ca2+
- calpain
- myristoylated alanine-rich c kinase substrate (marcks)
- myogenesis
- protein kinase cα (pkcα)
- bcip, 5-bromo-4-chloroindol-3-yl phosphate
- cs peptide, calpastatin peptide
- dmem, dulbecco's modified eagle's medium
- dtt, dithiothreitol
- fbs, foetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hs, horse serum
- lb, luria–bertani
- marcks, myristoylated alanine-rich c kinase substrate
- nbt, nitro blue tetrazolium
- pkc, protein kinase c
- psd, phosphorylation site domain
- rt, reverse transcriptase
- tbs, tris-buffered saline
Collapse
Affiliation(s)
- Sandrine Dulong
- *Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB (L'Institut des Sciences et Techniques des Aliments de Bordeaux), USC-2009, Avenue des Facultés, 33405 Talence cedex, France
| | - Sebastien Goudenege
- *Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB (L'Institut des Sciences et Techniques des Aliments de Bordeaux), USC-2009, Avenue des Facultés, 33405 Talence cedex, France
| | - Karine Vuillier-Devillers
- *Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB (L'Institut des Sciences et Techniques des Aliments de Bordeaux), USC-2009, Avenue des Facultés, 33405 Talence cedex, France
| | - Stéphane Manenti
- †Centre de Physiopathologie Toulouse Purpan, INSERM U-563, 31024 Toulouse Cedex 3, France
| | - Sylvie Poussard
- *Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB (L'Institut des Sciences et Techniques des Aliments de Bordeaux), USC-2009, Avenue des Facultés, 33405 Talence cedex, France
| | - Patrick Cottin
- *Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB (L'Institut des Sciences et Techniques des Aliments de Bordeaux), USC-2009, Avenue des Facultés, 33405 Talence cedex, France
| |
Collapse
|
59
|
Disatnik MH, Boutet SC, Pacio W, Chan AY, Ross LB, Lee CH, Rando TA. The bi-directional translocation of MARCKS between membrane and cytosol regulates integrin-mediated muscle cell spreading. J Cell Sci 2004; 117:4469-79. [PMID: 15316066 DOI: 10.1242/jcs.01309] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of the cytoskeleton is critical to normal cell function during tissue morphogenesis. Cell-matrix interactions mediated by integrins regulate cytoskeletal dynamics, but the signaling cascades that control these processes remain largely unknown. Here we show that myristoylated alanine-rich C-kinase substrate (MARCKS) a specific substrate of protein kinase C (PKC), is regulated by alpha5beta1 integrin-mediated activation of PKC and is critical to the regulation of actin stress fiber formation during muscle cell spreading. Using MARCKS mutants that are defective in membrane association or responsiveness to PKC-dependent phosphorylation, we demonstrate that the translocation of MARCKS from the membrane to the cytosol in a PKC-dependent manner permits the initial phases of cell adhesion. The dephosphorylation of MARCKS and its translocation back to the membrane permits the later stages of cell spreading during the polymerization and cross-linking of actin and the maturation of the cytoskeleton. All of these processes are directly dependent on the binding of alpha5beta1 integrin to its extracellular matrix receptor, fibronectin. These results demonstrate a direct biochemical pathway linking alpha5beta1 integrin signaling to cytoskeletal dynamics and involving bi-directional translocation of MARCKS during the dramatic changes in cellular morphology that occur during cell migration and tissue morphogenesis.
Collapse
Affiliation(s)
- Marie-Hélène Disatnik
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5235, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Integrin engagement stimulates the activity of numerous signaling molecules, including the Rho family of GTPases, tyrosine phosphatases, cAMP-dependent protein kinase and protein kinase C, and stimulates production of PtdIns(4,5)P2. Integrins promote actin assembly via the recruitment of molecules that directly activate the actin polymerization machinery or physically link it to sites of cell adhesion.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
61
|
Alt A, Gartsbein M, Ohba M, Kuroki T, Tennenbaum T. Differential regulation of alpha6beta4 integrin by PKC isoforms in murine skin keratinocytes. Biochem Biophys Res Commun 2004; 314:17-23. [PMID: 14715240 DOI: 10.1016/j.bbrc.2003.12.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammalian epidermis, alpha6beta4 integrin is expressed exclusively on the basal layer localized to the hemidesmosomes, where it interacts extracellularly with the laminin-5 ligand. During differentiation, loss of alpha6beta4 is associated with keratinocyte detachment from the basement membrane and upward migration. The protein kinase C (PKC) family of isoforms participates in regulation of integrin function and is linked to skin differentiation. Exposure of primary murine keratinocytes to PKC activators specifically downregulates alpha6beta4 expression. Utilizing recombinant adenoviruses, we selectively overexpressed skin PKC isoforms in primary keratinocytes. PKCdelta and PKCzeta induced downregulation of alpha6beta4 protein expression, leading to reduced keratinocyte attachment to laminin-5 and enhanced gradual detachment from the underlying matrix. In contrast, PKCalpha upregulated alpha6beta4 protein expression, leading to increased keratinocyte attachment to laminin-5 and to the underlying matrix. Altogether, these results suggest distinct roles for specific PKC isoforms in alpha6beta4 functional regulation during the early stages of skin differentiation.
Collapse
Affiliation(s)
- Addy Alt
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
62
|
Dedieu S, Poussard S, Mazères G, Grise F, Dargelos E, Cottin P, Brustis JJ. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp Cell Res 2004; 292:187-200. [PMID: 14720518 DOI: 10.1016/j.yexcr.2003.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell migration is a fundamental cellular function particularly during skeletal muscle development. Ubiquitous calpains are well known to play a pivotal role during muscle differentiation, especially at the onset of fusion. In this study, the possible positive regulation of myoblast migration by calpains, a crucial step required to align myoblasts to permit them to fuse, was investigated. Inhibition of calpain activity by different pharmacological inhibitors argues for the involvement of these proteinases during the migration of myoblasts. Moreover, a clonal cell line that fourfold overexpresses calpastatin, the endogenous inhibitor of calpains, and that exhibits deficient calpain activities was obtained. The results showed that the migratory capacity of C2C12 and fusion into multinucleated myotubes were completely prevented in these clonal cells. Calpastatin-overexpressing myoblasts unable to migrate were characterized by rounded morphology, the loss of membrane extensions, the disorganization of stress fibers and exhibited a major defect in new adhesion formation. Surprisingly, the proteolytic patterns of desmin, talin, vinculin, focal adhesion kinase (FAK) and ezrin, radixin, moesin (ERM) proteins are the same in calpastatin-overexpressing myoblasts as compared to control cells. However, an important accumulation of myristoylated alanine-rich C kinase substrate (MARCKS) was observed in cells showing a reduced calpain activity, suggesting that the proteolysis of this actin-binding protein is calpain-dependent and could be involved in both myoblast adhesion and migration.
Collapse
Affiliation(s)
- Stéphane Dedieu
- Laboratoire Biosciences de l'Aliment, Université Bordeaux I, ISTAB USC INRA 429, 33405 Talence Cedex, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Smythe GM, Eby JC, Disatnik MH, Rando TA. A caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes. J Cell Sci 2003; 116:4739-49. [PMID: 14600260 DOI: 10.1242/jcs.00806] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolins are membrane proteins that are the major coat proteins of caveolae, specialized lipid rafts in the plasma membrane that serve as scaffolding sites for many signaling complexes. Among the many signaling molecules associated with caveolins are the Src tyrosine kinases, whose activation regulates numerous cellular functions including the balance between cell survival and cell death. Several mutations in the muscle-specific caveolin, caveolin-3, lead to a form of autosomal dominant muscular dystrophy referred to as limb girdle muscular dystrophy type 1C (LGMD-1C). One of these mutations (here termed the `TFT mutation') results in a deletion of a tripeptide (ΔTFT(63-65)) that affects the scaffolding and oligomerization domains of caveolin-3. This mutation causes a 90-95% loss of caveolin-3 protein levels and reduced formation of caveolae in skeletal muscle fibers. However, the effects of this mutation on the specific biochemical processes and cellular functions associated with caveolae have not been elucidated. We demonstrate that the TFT caveolin-3 mutation in post-mitotic skeletal myotubes causes severely reduced localization of caveolin-3 to the plasma membrane and to lipid rafts, and significantly inhibits caveolar function. The TFT mutation reduced the binding of Src to caveolin-3, diminished targeting of Src to lipid rafts, and caused abnormal perinuclear accumulation of Src. Along with these alterations of Src localization and targeting, there was elevated Src activation in myotubes expressing the TFT mutation and an increased incidence of apoptosis in those cells compared with control myotubes. The results of this study demonstrate that caveolin-3 mutations associated with LGMD-1C disrupt normal cellular signal transduction pathways associated with caveolae and cause apoptosis in muscle cells, all of which may reflect pathogenetic pathways that lead to muscle degeneration in these disorders.
Collapse
Affiliation(s)
- Gayle M Smythe
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California 94305-5235, USA
| | | | | | | |
Collapse
|
64
|
Kennett SB, Roberts JD, Olden K. Requirement of protein kinase C micro activation and calpain-mediated proteolysis for arachidonic acid-stimulated adhesion of MDA-MB-435 human mammary carcinoma cells to collagen type IV. J Biol Chem 2003; 279:3300-7. [PMID: 14607845 DOI: 10.1074/jbc.m305734200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid (AA) stimulation of adhesion of human metastatic breast carcinoma cells to collagen type IV depends on the protein kinase C (PKC) pathway(s) and is associated with the translocation of PKC mu from the cytoplasm to the membrane. In the present study, we have further explored the role of PKC mu in AA-stimulated adhesion. PKC mu activation site serines 738/742 and autophosphorylation site serine 910 are rapidly phosphorylated, and in vitro PKC mu kinase activity is enhanced in response to AA treatment. Inhibition of PKC mu activation blocks AA-stimulated adhesion. A phosphorylated, truncated species of PKC mu was detected in AA-treated cells. This 77-kDa protein contains the kinase domain but lacks a significant portion of the regulatory domains. Inhibition of calpain protease activity blocks generation of the truncated protein, promotes accumulation of the activated, full-length protein in the membrane, and blocks the AA-mediated increase in adhesion. p38 MAPK activity is also required for AA-stimulated adhesion. Activation of PKC mu and p38 are independent events. However, inhibition of p38 activity reduces calpain-mediated proteolysis of PKC mu and in vivo calpain activity, suggesting a role for p38 in regulation of calpain activity and a point for cross-talk between the PKC and MAPK pathways. These results support the hypothesis that AA stimulates activation of PKC mu, which is cleaved by calpain at the cell membrane. The resulting truncated kinase, as well as the full-length kinase, may be required for increased cell adhesion to collagen type IV. Additionally, these studies present the first evidence for calpain cleavage of a non-structural protein leading to the promotion of tumor cell adhesion.
Collapse
Affiliation(s)
- Sarah B Kennett
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
65
|
Dina OA, McCarter GC, de Coupade C, Levine JD. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 2003; 39:613-24. [PMID: 12925276 DOI: 10.1016/s0896-6273(03)00473-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) and epinephrine act directly on nociceptors to produce mechanical hyperalgesia through protein kinase A (PKA) alone or through a combination of PKA, protein kinase C epsilon (PKCepsilon), and extracellular signal-regulated kinase (ERK), respectively. Disruptors of the cytoskeleton (microfilaments, microtubules, and intermediate filaments) markedly attenuated the hyperalgesia in rat paws caused by injection of epinephrine or its downstream mediators. In contrast, the hyperalgesia induced by PGE(2) or its mediators was not affected by any of the cytoskeletal disruptors. These effects were mimicked in vitro, as measured by enhancement of the tetrodotoxin-resistant sodium current. When PGE(2) hyperalgesia was shifted to dependence on PKCepsilon and ERK as well as PKA, as when the tissue is "primed" by prior treatment with carrageenan, it too became dependent on an intact cytoskeleton. Thus, inflammatory mediator-induced mechanical hyperalgesia was differentially dependent on the cytoskeleton such that cytoskeletal dependence correlated with mediation by PKCepsilon and ERK.
Collapse
Affiliation(s)
- Olayinka A Dina
- Department of Medicine, Division of Neuroscience and Biomedical Sciences Program, NIH Pain Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
66
|
Mikule K, Sunpaweravong S, Gatlin JC, Pfenninger KH. Eicosanoid activation of protein kinase C epsilon: involvement in growth cone repellent signaling. J Biol Chem 2003; 278:21168-77. [PMID: 12665507 DOI: 10.1074/jbc.m211828200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Exposure of growing neurons to thrombin or semaphorin 3A stimulates a receptor-mediated signaling cascade that results in collapse of their growth cones. This collapse response necessitates eicosanoid production, as we have shown earlier. The present report investigates whether and which protein kinase C (PKC) isoforms may be activated by such eicosanoids. To examine these questions, we isolated growth cones from fetal rat brain and tested whether thrombin or the eicosanoid, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), could activate endogenous growth cone PKC. We show that both thrombin and 12(S)-HETE stimulate the phosphorylation of the myristoylated alanine-rich protein kinase C substrate, an 87-kDa adhesion site protein. Furthermore, we show both with immunoprecipitated and with recombinant PKC that 12(S)-HETE activation is selective for the epsilon isoform and does not require accessory proteins. Last, we demonstrate that PKC activation is necessary for thrombin-induced growth cone collapse. These data indicate that eicosanoid-mediated repellent effects result from the direct and selective activation of PKCepsilon and suggest the involvement of myristoylated alanine-rich protein kinase C substrate phosphorylation in growth cone collapse.
Collapse
Affiliation(s)
- Keith Mikule
- Department of Cellular and Structural Biology and University of Colorado Cancer Center, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
67
|
Thodeti CK, Albrechtsen R, Grauslund M, Asmar M, Larsson C, Takada Y, Mercurio AM, Couchman JR, Wewer UM. ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. J Biol Chem 2003; 278:9576-84. [PMID: 12509413 DOI: 10.1074/jbc.m208937200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ADAMs (a disintegrin and metalloprotease) comprise a large family of multidomain proteins with cell-binding and metalloprotease activities. The ADAM12 cysteine-rich domain (rADAM12-cys) supports cell attachment using syndecan-4 as a primary cell surface receptor that subsequently triggers beta(1) integrin-dependent cell spreading, stress fiber assembly, and focal adhesion formation. This process contrasts with cell adhesion on fibronectin, which is integrin-initiated but syndecan-4-dependent. In the present study, we investigated ADAM12/syndecan-4 signaling leading to cell spreading and stress fiber formation. We demonstrate that syndecan-4, when present in significant amounts, promotes beta(1) integrin-dependent cell spreading and stress fiber formation in response to rADAM12-cys. A mutant form of syndecan-4 deficient in protein kinase C (PKC)alpha activation or a different member of the syndecan family, syndecan-2, was unable to promote cell spreading. GF109203X and Gö6976, inhibitors of PKC, completely inhibited ADAM12/syndecan-4-induced cell spreading. Expression of syndecan-4, but not syn4DeltaI, resulted in the accumulation of activated beta(1) integrins at the cell periphery in Chinese hamster ovary beta1 cells as revealed by 12G10 staining. Further, expression of myristoylated, constitutively active PKCalpha resulted in beta(1) integrin-dependent cell spreading, but additional activation of RhoA was required to induce stress fiber formation. In summary, these data provide novel insights into syndecan-4 signaling. Syndecan-4 can promote cell spreading in a beta(1) integrin-dependent fashion through PKCalpha and RhoA, and PKCalpha and RhoA likely function in separate pathways.
Collapse
Affiliation(s)
- Charles Kumar Thodeti
- Institute of Molecular Pathology, University of Copenhagen, Frederik V's vej 11, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Liu X, Zhang MIN, Peterson LB, O'Neil RG. Osmomechanical stress selectively regulates translocation of protein kinase C isoforms. FEBS Lett 2003; 538:101-6. [PMID: 12633861 DOI: 10.1016/s0014-5793(03)00150-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osmomechanical stress, resulting in cell swelling and activation/regulation of numerous cellular processes, may play a critical role in cell signaling by selectively regulating translocation of protein kinase C (PKC) isoforms from cytosol to membrane compartments. Western blotting of renal epithelial cell fractions demonstrated the expression of five PKC isoforms. Three of these isoforms (PKCalpha, PKCepsilon, PKCzeta) translocated to the membrane fraction upon exposure of cells to osmomechanical stress (hypotonic medium). Immunohistochemical staining of cells using isoform-specific antibodies further demonstrated translocation of the phorbol ester-sensitive isoforms, PKCalpha and PKCepsilon, to both the plasma membrane and perinuclear sites, reflecting potential initial steps in regulation of specific effector pathways. Indeed, selective inhibition of PKCs indicates a potential role for PKCalpha in modulating a calcium influx channel. It is concluded that osmomechanical stress induces selective translocation of specific PKC isoforms, demonstrating a key role of osmomechanical stress in selectively regulating PKC-dependent signaling pathways.
Collapse
Affiliation(s)
- X Liu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
69
|
Wang XQ, Sun P, Paller AS. Ganglioside modulation regulates epithelial cell adhesion and spreading via ganglioside-specific effects on signaling. J Biol Chem 2002; 277:40410-9. [PMID: 12183467 DOI: 10.1074/jbc.m207117200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides are implicated in regulating cell adhesion and migration on fibronectin by binding with the alpha(5) subunit of alpha(5)beta(1) integrin. However, the effects of gangliosides on cell spreading and related signaling pathways are unknown. Increases in gangliosides GT1b and GD3 inhibited spreading on fibronectin, concurrent with inhibition of Src and focal adhesion kinase. Although antibody blockade of GT1b or GD3 function and gene-modulated ganglioside depletion stimulated spreading and activated Src and focal adhesion kinase, the augmented spreading by disruption of GT1b function, but not by disruption of GD3 function, was inhibited by blockade of Src and focal adhesion kinase activation. In contrast, inhibitors of protein kinase C prevented the stimulation of spreading by GD3 functional inhibition, but not by GT1b functional blockade. Modulation of either GT1b or GD3 content affected phosphoinositol 3-kinase activation, and inhibition of this activation reversed the stimulation of cell spreading by anti-GD3 antibody, anti-GT1b antibody, and ganglioside depletion, suggesting that phosphoinositol 3-kinase is an intermediate in both the FAK/Src and protein kinase C pathways that lead to cell spreading. These studies demonstrate that epithelial cell ganglioside GT1b modulates cell spreading through alpha(5)beta(1)/FAK and phosphoinositol 3-kinase signaling, whereas GD3-modulated spreading appears to involve phosphoinositol 3-kinase-dependent protein kinase C signaling.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Departments of Pediatrics and Dermatology, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA
| | | | | |
Collapse
|