51
|
Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun 2017; 8:15754. [PMID: 28598422 PMCID: PMC5472732 DOI: 10.1038/ncomms15754] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM-IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division.
Collapse
|
52
|
Li MX, Mu DZ. [Mitophagy and nervous system disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:724-729. [PMID: 28606244 PMCID: PMC7390300 DOI: 10.7499/j.issn.1008-8830.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Mitophagy is a process during which the cell selectively removes the mitochondria via the mechanism of autophagy. It is crucial to the functional completeness of the whole mitochondrial network and determines cell survival and death. On the one hand, the damaged mitochondria releases pro-apoptotic factors which induce cell apoptosis; on the other hand, the damaged mitochondria eliminates itself via autophagy, which helps to maintain cell viability. Mitophagy is of vital importance for the development and function of the nervous system. Neural cells rely on autophagy to control protein quality and eliminate the damaged mitochondria, and under normal circumstances, mitophagy can protect the neural cells. Mutations in genes related to mitophagy may cause the development and progression of neurodegenerative diseases. An understanding of the role of mitophagy in nervous system diseases may provide new theoretical bases for clinical treatment. This article reviews the research advances in the relationship between mitophagy and different types of nervous system diseases.
Collapse
Affiliation(s)
- Ming-Xi Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education/Key Laboratory of Development and Related Diseases of Women and Children, Chengdu 610041, China.
| | | |
Collapse
|
53
|
Whitworth AJ, Pallanck LJ. PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ? Curr Opin Genet Dev 2017; 44:47-53. [DOI: 10.1016/j.gde.2017.01.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
|
54
|
Packiriswamy N, Coulson KF, Holcombe SJ, Sordillo LM. Oxidative stress-induced mitochondrial dysfunction in a normal colon epithelial cell line. World J Gastroenterol 2017; 23:3427-3439. [PMID: 28596679 PMCID: PMC5442079 DOI: 10.3748/wjg.v23.i19.3427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine how a normal human colon cell line reacts to microbial challenge as a way to study oxidative stress-induced responses associated with inflammatory bowel disease.
METHODS Normal human colon epithelial cells (ATCC® CRL.1790™) were stimulated with either heat killed E. coli or heat killed murine cecal contents (HKC) and examined for several relevant biomarkers associated with inflammation and oxidative stress including cytokine production, mitochondrial autophagy and oxidant status. TNFα, IL-1β and IL-8 protein concentrations were measured within the supernatants. Fluorescent microscopy was performed to quantify the production of reactive oxygen species (ROS) using an oxidation responsive fluorogenic probe. Mitochondrial morphology and mitochondrial membrane potential was assessed by dual staining using COXIV antibody and a dye concentrating in active mitochondria. Mitochondrial ROS scavenger was used to determine the source of ROS in stimulated cells. Autophagy was detected by staining for the presence of autophagic vesicles. Positive controls for autophagy and ROS/RNS experiments were treated with rapamycin and chloroquine. Mitochondrial morphology, ROS production and autophagy microscopy experiments were analyzed using a custom acquisition and analysis microscopy software (ImageJ).
RESULTS Exposing CRL.1790 cells to microbial challenge stimulated cells to produce several relevant biomarkers associated with inflammation and oxidative stress. Heat killed cecal contents treatment induced a 10-12 fold increase in IL-8 production by CRL.1790 cells compared to unstimulated controls at 6 and 12 h (P < 0.001). Heat killed E. coli stimulation resulted in a 4-5 fold increase in IL-8 compared to the unstimulated control cells at each time point (P < 0.001). Both heat killed E. coli and HKC stimulated robust ROS production at 6 (P < 0.001), and 12 h (P < 0.01). Mitochondrial morphologic abnormalities were detected at 6 and 12 h based on reduced mitochondrial circularity and decreased mitochondrial membrane potential, P < 0.01. Microbial stimulation also induced significant autophagy at 6 and 12 h, P < 0.01. Lastly, blocking mitochondrial ROS generation using mitochondrial specific ROS scavenger reversed microbial challenge induced mitochondrial morphologic abnormalities and autophagy.
CONCLUSION The findings from this study suggest that CRL.1790 cells may be a useful alternative to other colon cancer cell lines in studying the mechanisms of oxidative stress events associated with intestinal inflammatory disorders.
Collapse
|
55
|
Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, Dittmar G, Clague MJ, Mayor U. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Mol Neurodegener 2017; 12:29. [PMID: 28399880 PMCID: PMC5387213 DOI: 10.1186/s13024-017-0170-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkin (PARK2) is an E3 ubiquitin ligase that is commonly mutated in Familial Parkinson's Disease (PD). In cell culture models, Parkin is recruited to acutely depolarised mitochondria by PINK1. PINK1 activates Parkin activity leading to ubiquitination of multiple proteins, which in turn promotes clearance of mitochondria by mitophagy. Many substrates have been identified using cell culture models in combination with depolarising drugs or proteasome inhibitors, but not in more physiological settings. METHODS Here we utilized the recently introduced BioUb strategy to isolate ubiquitinated proteins in flies. Following Parkin Wild-Type (WT) and Parkin Ligase dead (LD) expression we analysed by mass spectrometry and stringent bioinformatics analysis those proteins differentially ubiquitinated to provide the first survey of steady state Parkin substrates using an in vivo model. We further used an in vivo ubiquitination assay to validate one of those substrates in SH-SY5Y cells. RESULTS We identified 35 proteins that are more prominently ubiquitinated following Parkin over-expression. These include several mitochondrial proteins and a number of endosomal trafficking regulators such as v-ATPase sub-units, Syx5/STX5, ALiX/PDCD6IP and Vps4. We also identified the retromer component, Vps35, another PD-associated gene that has recently been shown to interact genetically with parkin. Importantly, we validated Parkin-dependent ubiquitination of VPS35 in human neuroblastoma cells. CONCLUSIONS Collectively our results provide new leads to the possible physiological functions of Parkin activity that are not overtly biased by acute mitochondrial depolarisation.
Collapse
Affiliation(s)
- Aitor Martinez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain.,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Gunnar Dittmar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain. .,Functional Genomics Unit, CIC bioGUNE, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
56
|
Jones E, Gaytan N, Garcia I, Herrera A, Ramos M, Agarwala D, Rana M, Innis-Whitehouse W, Schuenzel E, Gilkerson R. A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1. Cell Mol Life Sci 2017; 74:1347-1363. [PMID: 27858084 PMCID: PMC5346411 DOI: 10.1007/s00018-016-2421-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
As an organellar network, mitochondria dynamically regulate their organization via opposing fusion and fission pathways to maintain bioenergetic homeostasis and contribute to key cellular pathways. This dynamic balance is directly linked to bioenergetic function: loss of transmembrane potential across the inner membrane (Δψ m) disrupts mitochondrial fission/fusion balance, causing fragmentation of the network. However, the level of Δψ m required for mitochondrial dynamic balance, as well as the relative contributions of fission and fusion pathways, have remained unclear. To explore this, mitochondrial morphology and Δψ m were examined via confocal imaging and tetramethyl rhodamine ester (TMRE) flow cytometry, respectively, in cultured 143B osteosarcoma cells. When normalized to the TMRE value of untreated 143B cells as 100%, both genetic (mtDNA-depleted ρ0) and pharmacological [carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated] cell models below 34% TMRE fluorescence were unable to maintain mitochondrial interconnection, correlating with loss of fusion-active long OPA1 isoforms (L-OPA1). Mechanistically, this threshold is maintained by mechanistic coordination of DRP1-mediated fission and OPA1-mediated fusion: cells lacking either DRP1 or the OMA1 metalloprotease were insensitive to loss of Δψ m, instead maintaining an obligately fused morphology. Collectively, these findings demonstrate a mitochondrial 'tipping point' threshold mediated by the interaction of Δψ m with both DRP1 and OMA1; moreover, DRP1 appears to be required for effective OPA1 maintenance and processing, consistent with growing evidence for direct interaction of fission and fusion pathways. These results suggest that Δψ m below threshold coordinately activates both DRP1-mediated fission and OMA1 cleavage of OPA1, collapsing mitochondrial dynamic balance, with major implications for a range of signaling pathways and cellular life/death events.
Collapse
Affiliation(s)
- Edith Jones
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Norma Gaytan
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Iraselia Garcia
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Alan Herrera
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Manuel Ramos
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Divya Agarwala
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Maahrose Rana
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Wendy Innis-Whitehouse
- Department of Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539-2999, USA
| | - Erin Schuenzel
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA
| | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA.
- Department of Clinical Laboratory Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539-2999, USA.
| |
Collapse
|
57
|
Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 2017; 292:7115-7130. [PMID: 28298442 DOI: 10.1074/jbc.m116.762567] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.
Collapse
Affiliation(s)
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | | |
Collapse
|
58
|
Mitochondrial Function and Cell Size: An Allometric Relationship. Trends Cell Biol 2017; 27:393-402. [PMID: 28284466 DOI: 10.1016/j.tcb.2017.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 01/09/2023]
Abstract
Allometric scaling of metabolic rate results in lower total mitochondrial oxygen consumption with increasing organismal size. This is considered a universal law in biology. Here, we discuss how allometric laws impose size-dependent limits to mitochondrial activity at the cellular level. This cell-size-dependent mitochondrial metabolic activity results in nonlinear scaling of metabolism in proliferating cells, which can explain size homeostasis. The allometry in mitochondrial activity can be controlled through mitochondrial fusion and fission machinery, suggesting that mitochondrial connectivity can bypass transport limitations, the presumed biophysical basis for allometry. As physical size affects cellular functionality, cell-size-dependent metabolism becomes directly relevant for development, metabolic diseases, and aging.
Collapse
|
59
|
Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook DG, Ballinger SW, Mentzer RM, Gottlieb RA. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight 2017; 2:e89303. [PMID: 28239650 DOI: 10.1172/jci.insight.89303] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Kyle C Tucker
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | | | | | | | | | - Reza Dabir
- Beaumont Hospital - Dearborn, Dearborn, Michigan, USA
| | | | - Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | | | | |
Collapse
|
60
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|
61
|
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 2016; 12:689-702. [PMID: 27050458 DOI: 10.1080/15548627.2016.1151580] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact "coupling" of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the "coupling" across the double membrane for mitochondrial dynamics and quality control.
Collapse
Affiliation(s)
- Ming Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Ziheng Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yueying Wang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zheng Tan
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Chongzhuo Zhu
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yanjun Li
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhe Han
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Linbo Chen
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Ruize Gao
- c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| | - Lei Liu
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Quan Chen
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China.,c State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University , Tianjin , China
| |
Collapse
|
62
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
63
|
Molina-Jijón E, Aparicio-Trejo OE, Rodríguez-Muñoz R, León-Contreras JC, Del Carmen Cárdenas-Aguayo M, Medina-Campos ON, Tapia E, Sánchez-Lozada LG, Hernández-Pando R, Reyes JL, Arreola-Mendoza L, Pedraza-Chaverri J. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. Biofactors 2016; 42:686-702. [PMID: 27412471 DOI: 10.1002/biof.1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •- ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Biociences and Engineering, CIIEMAD-IPN, Mexico City, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | | | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - José L Reyes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
64
|
Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 2016; 11:1798-816. [PMID: 27583642 PMCID: PMC5040492 DOI: 10.1038/nprot.2016.106] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes ∼2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format.
Collapse
Affiliation(s)
- Mandy Koopman
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Helen Michels
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Beverley M. Dancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, United States
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ellen A.A. Nollen
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
65
|
El-Sikhry HE, Alsaleh N, Dakarapu R, Falck JR, Seubert JM. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria. PLoS One 2016; 11:e0160380. [PMID: 27494529 PMCID: PMC4975494 DOI: 10.1371/journal.pone.0160380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Maintenance of a healthy pool of mitochondria is important for the function and survival of terminally differentiated cells such as cardiomyocytes. Epoxyeicosatrienoic acids (EETs) are epoxy lipids derived from metabolism of arachidonic acid by cytochrome P450 epoxygenases. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. The aim of this study was to investigate whether EET-mediated effects influence mitochondrial quality in HL-1 cardiac cells during starvation. HL-1 cells were subjected to serum- and amino acid free conditions for 24h. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EET-mediated events significantly improved mitochondrial function as assessed by preservation of the ADP/ATP ratio and oxidative respiratory capacity. Starvation induced mitochondrial hyperfusion observed in control cells was attenuated by UA-8. However, EET-mediated events did not affect the expression of mitochondrial dynamic proteins Fis1, DRP-1 or Mfn2. Rather we observed increased levels of OPA-1 oligomers and increased mitochondrial cristae density, which correlated with the preserved mitochondrial function. Increased DNA binding activity of pCREB and Nrf1/2 and increased SIRT1 activity together with elevated mitochondrial proteins suggest EET-mediated events led to preserved mitobiogenesis. Thus, we provide new evidence for EET-mediated events that preserve a healthier pool of mitochondria in cardiac cells following starvation-induced stress.
Collapse
Affiliation(s)
- Haitham E. El-Sikhry
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nasser Alsaleh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rambabu Dakarapu
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John R. Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
66
|
Kagan VE, Jiang J, Huang Z, Tyurina YY, Desbourdes C, Cottet-Rousselle C, Dar HH, Verma M, Tyurin VA, Kapralov AA, Cheikhi A, Mao G, Stolz D, St. Croix CM, Watkins S, Shen Z, Li Y, Greenberg ML, Tokarska-Schlattner M, Boissan M, Lacombe ML, Epand RM, Chu CT, Mallampalli RK, Bayır H, Schlattner U. NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 2016; 23:1140-51. [PMID: 26742431 PMCID: PMC4946882 DOI: 10.1038/cdd.2015.160] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/11/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
Mitophagy is critical for cell homeostasis. Externalization of the inner mitochondrial membrane phospholipid, cardiolipin (CL), to the surface of the outer mitochondrial membrane (OMM) was identified as a mitophageal signal recognized by the microtubule-associated protein 1 light chain 3. However, the CL-translocating machinery remains unknown. Here we demonstrate that a hexameric intermembrane space protein, NDPK-D (or NM23-H4), binds CL and facilitates its redistribution to the OMM. We found that mitophagy induced by a protonophoric uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), caused externalization of CL to the surface of mitochondria in murine lung epithelial MLE-12 cells and human cervical adenocarcinoma HeLa cells. RNAi knockdown of endogenous NDPK-D decreased CCCP-induced CL externalization and mitochondrial degradation. A R90D NDPK-D mutant that does not bind CL was inactive in promoting mitophagy. Similarly, rotenone and 6-hydroxydopamine triggered mitophagy in SH-SY5Y cells was also suppressed by knocking down of NDPK-D. In situ proximity ligation assay (PLA) showed that mitophagy-inducing CL-transfer activity of NDPK-D is closely associated with the dynamin-like GTPase OPA1, implicating fission-fusion dynamics in mitophagy regulation.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA,Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Bridgeside Point, 100 Technology Drive, Suite 350, Pittsburgh, PA 15219, USA. Tel: 412 624 9474; Fax: 412 624 9361; E-mail:
| | - J Jiang
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Huang
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Desbourdes
- University Grenoble Alpes—UJF, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, Grenoble, France,Inserm, U1055, Grenoble, France
| | - C Cottet-Rousselle
- University Grenoble Alpes—UJF, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, Grenoble, France,Inserm, U1055, Grenoble, France
| | - H H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Verma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - V A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Cheikhi
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - G Mao
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - C M St. Croix
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Shen
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Y Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - M L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - M Tokarska-Schlattner
- University Grenoble Alpes—UJF, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, Grenoble, France,Inserm, U1055, Grenoble, France
| | - M Boissan
- Sorbonne Universités, UPMC Univ Paris 06, Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France,AP-HP, Service de Biochimie et Hormonologie, Hôpital Tenon, Paris, France
| | - M-L Lacombe
- Sorbonne Universités, UPMC Univ Paris 06, Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France
| | - R M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - C T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - H Bayır
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Critical Care Medicine, University of Pittsburgh, 3434 Fifth Ave, Pittsburgh, PA 15260, USA. Tel: 412 692 5164; Fax: 412 324 0943; E-mail:
| | - U Schlattner
- University Grenoble Alpes—UJF, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, Grenoble, France,Inserm, U1055, Grenoble, France,University Grenoble Alpes—UJF, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055; BP 53, Grenoble cedex 9, F-38041, France. Tel: +33 476 51 46 71; Fax: +33 476 51 42 18; E-mail:
| |
Collapse
|
67
|
MacVicar T, Langer T. OPA1 processing in cell death and disease - the long and short of it. J Cell Sci 2016; 129:2297-306. [PMID: 27189080 DOI: 10.1242/jcs.159186] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulation of mitochondrial dynamics by the GTPase OPA1, which is located at the inner mitochondrial membrane, is crucial for adapting mitochondrial function and preserving cellular health. OPA1 governs the delicate balance between fusion and fission in the dynamic mitochondrial network. A disturbance of this balance, often observed under stress and pathologic conditions, causes mitochondrial fragmentation and can ultimately result in cell death. As discussed in this Commentary, these morphological changes are regulated by proteolytic processing of OPA1 by the inner-membrane peptidases YME1L (also known as YME1L1) and OMA1. Long, membrane-bound forms of OPA1 are required for mitochondrial fusion, but their processing to short, soluble forms limits fusion and can facilitate mitochondrial fission. Excessive OPA1 processing by the stress-activated protease OMA1 promotes mitochondrial fragmentation and, if persistent, triggers cell death and tissue degeneration in vivo The prevention of OMA1-mediated OPA1 processing and mitochondrial fragmentation might thus offer exciting therapeutic potential for human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas MacVicar
- Institute of Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Thomas Langer
- Institute of Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
68
|
Wang ZH, Clark C, Geisbrecht ER. Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation. Hum Mol Genet 2016; 25:1946-1964. [PMID: 26931463 PMCID: PMC5062585 DOI: 10.1093/hmg/ddw067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
PINK1/Parkin-mediated mitochondrial quality control (MQC) requires valosin-containing protein (VCP)-dependent Mitofusin/Marf degradation to prevent damaged organelles from fusing with the healthy mitochondrial pool, facilitating mitochondrial clearance by autophagy. Drosophila clueless (clu) was found to interact genetically with PINK1 and parkin to regulate mitochondrial clustering in germ cells. However, whether Clu acts in MQC has not been investigated. Here, we show that overexpression of Drosophila Clu complements PINK1, but not parkin, mutant muscles. Loss of clu leads to the recruitment of Parkin, VCP/p97, p62/Ref(2)P and Atg8a to depolarized swollen mitochondria. However, clearance of damaged mitochondria is impeded. This paradox is resolved by the findings that excessive mitochondrial fission or inhibition of fusion alleviates mitochondrial defects and impaired mitophagy caused by clu depletion. Furthermore, Clu is upstream of and binds to VCP in vivo and promotes VCP-dependent Marf degradation in vitro Marf accumulates in whole muscle lysates of clu-deficient flies and is destabilized upon Clu overexpression. Thus, Clu is essential for mitochondrial homeostasis and functions in concert with Parkin and VCP for Marf degradation to promote damaged mitochondrial clearance.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
69
|
Sanz A. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1116-1126. [PMID: 26997500 DOI: 10.1016/j.bbabio.2016.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, University of Newcastle, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
70
|
Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 2016; 153:30-40. [PMID: 26814678 DOI: 10.1016/j.mad.2016.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autophagy is best known as a mechanism involved in cellular recycling of biomolecules during periods of nutritional starvation. More recently, an additional function of autophagy emerged: the selective degradation of functionally impaired or surplus proteins, organelles and invading bacteria. With this function autophagy is integrated in a network of pathways involved in molecular and cellular quality control with a key impact on development and aging. Impairments in the autophagic machinery lead to accelerated aging and the development of diseases. Here we focus on the role of nonselective autophagy and mitophagy, the selective autophagic degradation of mitochondria, on aging and lifespan of biological systems.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
71
|
Sarkar AR, Heo CH, Xu L, Lee HW, Si HY, Byun JW, Kim HM. A ratiometric two-photon probe for quantitative imaging of mitochondrial pH values. Chem Sci 2016; 7:766-773. [PMID: 29896360 PMCID: PMC5953010 DOI: 10.1039/c5sc03708e] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial pH (pHmito) is known to be alkaline (near 8.0) and has emerged as a potential factor for mitochondrial function and disorder. We have developed a ratiometric two-photon probe (CMP1) for quantitative analysis of pHmito in live cells and tissues. This probe is designed to function by controlling the intramolecular charge transfer from 2-naphthol, having an ideal pKa value (7.86 ± 0.05) in the cells to monitor pHmito. This transition results in a marked yellow to red emission color change in response to pH alterations from 6.0 to 9.0. CMP1 exhibits easy loading, selective and robust staining ability of mitochondria, low cytotoxicity, and bright two-photon excited fluorescence in situ, thereby allowing quantitative imaging of the pHmito in live cells and tissues. The ratiometric TPM imaging clearly reveals that subcellular distribution of the pHmito values is heterogeneous, with the pHmito values in the perinuclear region being higher than those at the periphery of the cells. The changes of pHmito values on carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment and autophagic processes were also investigated along with their morphological alterations at specific subcellular positions. We also used CMP1 to visualize the pHmito values of Parkinson's disease model astrocytes as well as living hippocampal tissues. Our results demonstrate that CMP1 will be useful as a quantitative imaging probe to study pHmito in biomedical research.
Collapse
Affiliation(s)
- Avik Ranjan Sarkar
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Cheol Ho Heo
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Lei Xu
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Hyo Won Lee
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Ho Young Si
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Ji Won Byun
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| |
Collapse
|
72
|
Abstract
The mitochondrial 18-kDa translocator protein (TSPO) was originally discovered as a peripheral binding site of benzodiazepines to be later described as a core element of cholesterol trafficking between cytosol and mitochondria from which the current nomenclature originated. The high affinity it exhibits with chemicals (i.e. PK11195) has generated interest in the development of mitochondrial based TSPO-binding drugs for in vitro and in vivo analysis. Increased TSPO expression is observed in numerous pathologies such as cancer and inflammatory conditions of the central nervous system (CNS) that have been successfully exploited via protocols of positron emission tomography (PET) imaging. We endeavoured to dissect the molecular role of TSPO in mitochondrial cell biology and discovered a functional link with quality control mechanisms operated by selective autophagy. This review focuses on the current understanding of this pathway and focuses on the interplay with reactive oxygen species (ROS) and the voltage-dependent anion channel (VDAC), to which TSPO binds, in the regulation of cell mitophagy and hence homoeostasis of the mitochondrial network as a whole.
Collapse
|
73
|
Diot A, Hinks-Roberts A, Lodge T, Liao C, Dombi E, Morten K, Brady S, Fratter C, Carver J, Muir R, Davis R, Green CJ, Johnston I, Hilton-Jones D, Sue C, Mortiboys H, Poulton J. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA. Pharmacol Res 2015. [PMID: 26196248 DOI: 10.1016/j.phrs.2015.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses.
Collapse
Affiliation(s)
- Alan Diot
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Alex Hinks-Roberts
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Tiffany Lodge
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Chunyan Liao
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Eszter Dombi
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Karl Morten
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Stefen Brady
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Carl Fratter
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| | - Janet Carver
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Rebecca Muir
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK
| | - Ryan Davis
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Iain Johnston
- Department of Mathematics, Imperial College London, London, UK
| | | | - Carolyn Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Heather Mortiboys
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, Oxford, UK.
| |
Collapse
|
74
|
MacVicar TDB, Mannack LVJC, Lees RM, Lane JD. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci 2015; 16:13356-80. [PMID: 26110381 PMCID: PMC4490499 DOI: 10.3390/ijms160613356] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/25/2022] Open
Abstract
Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis.
Collapse
Affiliation(s)
- Thomas D B MacVicar
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol BS81TD, UK.
| | - Lilith V J C Mannack
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol BS81TD, UK.
| | - Robert M Lees
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol BS81TD, UK.
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol BS81TD, UK.
| |
Collapse
|
75
|
Abstract
Recent advances in mitochondrial biology have revealed the high diversity and complexity of proteolytic enzymes that regulate mitochondrial function. We have classified mitochondrial proteases, or mitoproteases, on the basis of their function and location, and defined the human mitochondrial degradome as the complete set of mitoproteases that are encoded by the human genome. In addition to their nonspecific degradative functions, mitoproteases perform highly regulated proteolytic reactions that are important in mitochondrial function, integrity and homeostasis. These include protein synthesis, quality control, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Impaired or dysregulated function of mitoproteases is associated with ageing and with many pathological conditions such as neurodegenerative disorders, metabolic syndromes and cancer. A better understanding of the mitochondrial proteolytic landscape and its modulation may contribute to improving human lifespan and 'healthspan'.
Collapse
|
76
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
77
|
Zanellati MC, Monti V, Barzaghi C, Reale C, Nardocci N, Albanese A, Valente EM, Ghezzi D, Garavaglia B. Mitochondrial dysfunction in Parkinson disease: evidence in mutant PARK2 fibroblasts. Front Genet 2015; 6:78. [PMID: 25815004 PMCID: PMC4356157 DOI: 10.3389/fgene.2015.00078] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mutations in PARK2, encoding Parkin, cause an autosomal recessive form of juvenile Parkinson Disease (JPD). The aim of the present study was to investigate the impact of PARK2 mutations on mitochondrial function and morphology in human skin fibroblasts. We analyzed cells obtained from four patients clinically characterized by JPD, harboring recessive mutations in PARK2. By quantitative PCR we found a reduction (<50%) of PARK2 transcript in all patients but one; however Western Blot analysis demonstrated the virtual absence of Parkin protein in all mutant fibroblasts. Respiration assays showed an increment of oxygen consumption, which was uncoupled to ATP cellular levels. This finding was probably due to presence of altered mitochondrial membrane potential (ΔΨm), confirmed by JC-1 analysis. The mitochondrial network was comparable between mutant and control cells but, interestingly, a “chain-like” network was found only in mutant fibroblasts. Dissipation of ΔΨm usually leads to mitochondrial fragmentation in healthy cells and eventually to mitophagy; however, this behavior was not observed in patients' fibroblasts. The absence of mitochondrial fragmentation in mutant Parkin fibroblasts could results in accumulation of damaged mitochondria not targeted to mitophagy. This condition should increase the oxidative stress and lead to cellular dysfunction and death. Our results suggest that PARK2 mutations cause mitochondrial impairment, in particular reduction in ATP cellular levels and alteration of ΔΨm, even in non-neuronal cells and confirm the hypothesis that Parkin holds a pivotal role in pro-fission events.
Collapse
Affiliation(s)
- Maria C Zanellati
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Valentina Monti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Chiara Barzaghi
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Chiara Reale
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Nardo Nardocci
- Unit of Child Neurology, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Alberto Albanese
- Neurology Unit, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Enza M Valente
- Casa Sollievo Della Sofferenza Hospital, Mendel Institute Rome, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children, Foundation of the Carlo Besta Neurological Institute IRCCS, Milan, Italy
| |
Collapse
|
78
|
Liang JR, Martinez A, Lane JD, Mayor U, Clague MJ, Urbé S. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 2015; 16:618-27. [PMID: 25739811 PMCID: PMC4428036 DOI: 10.15252/embr.201439820] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Liang
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Aitor Martinez
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK CIC Biogune Bizkaia Teknologi Parkea, Derio, Spain IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Ugo Mayor
- CIC Biogune Bizkaia Teknologi Parkea, Derio, Spain IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
79
|
Dysregulated Ca2+ homeostasis in Fanconi anemia cells. Sci Rep 2015; 5:8088. [PMID: 25627108 PMCID: PMC4308711 DOI: 10.1038/srep08088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 01/03/2023] Open
Abstract
Fanconi Anemia (FA) is a rare and complex inherited blood disorder associated with bone marrow failure and malignancies. Many alterations in FA physiology appear linked to red-ox unbalance including alterations in the morphology and structure of nuclei, intermediate filaments and mitochondria, defective respiration, reduced ATP production and altered ATP/AMP ratio. These defects are consistently associated with impaired oxygen metabolism indeed treatment with antioxidants N-acetylcysteine (NAC) and resveratrol (RV) does rescue FA physiology. Due to the importance of the intracellular calcium signaling and its key function in the control of intracellular functions we were interested to study calcium homeostasis in FA. We found that FANCA cells display a dramatically low intracellular calcium concentration ([Ca2+]i) in resting conditions. This condition affects cellular responses to stress. The flux of Ca2+ mobilized by H2O2 from internal stores is significantly lower in FANCA cells in comparison to controls. The low basal [Ca2+]i in FANCA appears to be an actively maintained process controlled by a finely tuned interplay between different intracellular Ca2+ stores. The defects associated with the altered Ca2+ homeostasis appear consistently overlapping those related to the unbalanced oxidative metabolism in FA cells underlining a contiguity between oxidative stress and calcium homeostasis.
Collapse
|
80
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
81
|
Wang X, Li H, Zheng A, Yang L, Liu J, Chen C, Tang Y, Zou X, Li Y, Long J, Liu J, Zhang Y, Feng Z. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate. Cell Death Dis 2014; 5:e1521. [PMID: 25393477 PMCID: PMC4260731 DOI: 10.1038/cddis.2014.473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/27/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023]
Abstract
Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both t-BHP- and FCCP-induced MyHC decrease was sufficiently inhibited by HT-AC. Taken together, our data provide evidence indicating that mitochondrial dysfunction-associated OPA1 cleavage may contribute to muscle degeneration, and olive oil compounds could be effective nutrients for preventing the development of muscle disorders.
Collapse
Affiliation(s)
- X Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - H Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - A Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - L Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - C Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Tang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - X Zou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Y Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Liu
- 1] Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China [2] Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Y Zhang
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Z Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
82
|
Tabony AM, Yoshida T, Sukhanov S, Delafontaine P. Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function. Skelet Muscle 2014; 4:20. [PMID: 25625009 PMCID: PMC4306116 DOI: 10.1186/2044-5040-4-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Background Circulating angiotensin II (AngII) is elevated in congestive heart failure (CHF), and leads to skeletal muscle wasting, which is strongly associated with poor patient outcomes. We previously found that AngII upregulates protein phosphatase 2C-alpha (PP2Cα) and dephosphorylates AMP-activated protein kinase (AMPK), a critical regulator of cellular metabolism, in skeletal muscle. Methods To determine the role of PP2Cα in AngII-induced wasting, gastrocnemius (Gas) muscles of FVB mice were injected with scrambled or PP2Cα siRNA and mice were infused with saline or AngII for 4 days. Results Knockdown of PP2Cα reduced AngII wasting, blocked AngII upregulation of PP2Cα, increased p-T172-AMPK, and inhibited AngII-mediated reductions in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), in complex IV activity, and in ATP levels. AngII impaired the rate of autophagy as determined by a 2.4-fold increase in p62/SQSTM1 (p62) accumulation. This induction was reduced by PP2Cα knockdown, which also increased beclin-1 expression and microtubule-associated protein 1 light chain 3 (LC3)-II conversion in AngII-infused Gas. AngII reduced activating S555 phosphorylation of UNC-51-like kinase 1 (ULK1), a critical regulator of autophagosome formation, and increased inhibitory S757 ULK1 phosphorylation and these effects were prevented by PP2Cα siRNA. Conclusions AngII inhibited AMPK activity and reduced PGC-1α and TFAM expression (thereby inhibiting mitochondrial biogenesis) and impaired ULK1 activation and autophagy (thereby also inhibiting clearance of damaged mitochondria), resulting in mitochondrial dysfunction, decreased ATP, and wasting. Knockdown of PP2Cα normalized AMPK activity, PGC-1α, NRF1, and TFAM levels and blocked AngII inhibition of ULK1, leading to improved mitochondrial biogenesis/recycling/function, energy production, and inhibition of AngII-induced wasting. These results demonstrate novel effects of AngII on cellular metabolism that are likely critical in mediating the muscle wasting that is a hallmark of CHF.
Collapse
Affiliation(s)
- Alexander Michael Tabony
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Tadashi Yoshida
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Sergiy Sukhanov
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Patrice Delafontaine
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA ; Heart and Vascular Institute, Tulane University School of Medicine, 1430 Tulane Ave. SL-48, New Orleans, LA, USA
| |
Collapse
|
83
|
Andres AM, Stotland A, Queliconi BB, Gottlieb RA. A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 2014; 78:62-72. [PMID: 25444712 DOI: 10.1016/j.yjmcc.2014.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | | - Bruno B Queliconi
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | |
Collapse
|