51
|
Jensen B, Moorman AFM, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc 2013; 89:302-36. [DOI: 10.1111/brv.12056] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Bjarke Jensen
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Antoon F. M. Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
| |
Collapse
|
52
|
Respiratory Biology during Gravidity inCrotaphytus collarisandGambelia wislizenii. J HERPETOL 2013. [DOI: 10.1670/11-097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
Enok S, Simonsen LS, Wang T. The contribution of gastric digestion and ingestion of amino acids on the postprandial rise in oxygen consumption, heart rate and growth of visceral organs in pythons. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:46-53. [DOI: 10.1016/j.cbpa.2013.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
|
54
|
Crossley DA, Sartori MR, Abe AS, Taylor EW. A role for histamine in cardiovascular regulation in late stage embryos of the red-footed tortoise, Chelonoidis carbonaria Spix, 1824. J Comp Physiol B 2013; 183:811-20. [PMID: 23377695 DOI: 10.1007/s00360-013-0746-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/24/2012] [Accepted: 01/09/2013] [Indexed: 11/27/2022]
Abstract
A chorioallantoic membrane artery in embryos of the red-footed tortoise, Chelonoidis carbonaria was occlusively cannulated for measurement of blood pressure and injection of drugs. Two age groups of embryos in the final 10 % of incubation were categorized by the ratio of embryonic body to yolk mass. All embryos first received cholinergic and β-adrenergic blockade. This revealed that β-adrenergic control was established in both groups whereas cholinergic control was only established in the older group immediately prior to hatching. The study then progressed as two series. Series one was conducted in a subset of embryos treated with histamine before or after injection of ranitidine, the antagonist of H2 receptors. Injection of histamine caused an initial phasic hypertension which recovered, followed by a longer lasting hypertensive response accompanied by a tachycardia. Injection of the H2 receptor antagonist ranitidine itself caused a hypotensive tachycardia with subsequent recovery of heart rate. Ranitidine also abolished the cardiac effects of histamine injection while leaving the initial hypertensive response intact. In series, two embryos were injected with histamine after injection of diphenhydramine, the antagonist to H1 receptors. This abolished the whole of the pressor response to histamine injection but left the tachycardic response intact. These data indicate that histamine acts as a non-adrenergic, non-cholinergic factor, regulating the cardiovascular system of developing reptilian embryos and that its overall effects are mediated via both H1 and H2 receptor types.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX 76203-5017, USA.
| | | | | | | |
Collapse
|
55
|
Slay C, Enok S, Hicks J, Wang T. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python molurus). J Exp Biol 2013; 217:1784-9. [DOI: 10.1242/jeb.092841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Summary
Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and VO2 max via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python molurus). Recent data suggest postprandial cardiac hypertrophy in P. molurus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here we hypothesize that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than fasted controls, which, coupled with a 71% increase in mean arterial pressure suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than fasted controls and 28% larger than fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The "low O2 signal" stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics.
Collapse
|
56
|
Enok S, Simonsen LS, Pedersen SV, Wang T, Skovgaard N. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius). Am J Physiol Regul Integr Comp Physiol 2012; 302:R1176-83. [PMID: 22422667 DOI: 10.1152/ajpregu.00661.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.
Collapse
Affiliation(s)
- Sanne Enok
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
57
|
Munns SL. Gestation increases the energetic cost of breathing in the lizard, Tiliqua rugosa. J Exp Biol 2012; 216:171-80. [DOI: 10.1242/jeb.067827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
High gestational loads result in fetuses that occupy a large proportion of the body cavity and may compress maternal organs. Compression of the lungs results in alterations in breathing patterns during gestation which may affect the oxidative cost of breathing. In this study, the oxidative cost of breathing during gestation was determined in the viviparous skink, Tiliqua rugosa. Radiographic imaging showed progressive lung compression during gestation and a 30% reduction in the lung compression index (rib number at which the caudal margin of the lung was imaged). Pneumotachography and open flow respirometry were used to measure breathing patterns and metabolic rates. Gestation induced a two fold increase in minute ventilation via increases in breathing frequency but no change in inspired tidal volume. The rates of O2 consumption and CO2 production did not change significantly during gestation. Together, these results suggest that a relative hyperventilation occurs during gestation in Tiliqua rugosa. This relative hyperventilation suggests that diffusion and/or perfusion limitations may exist at the lung during gestation. The oxidative cost of breathing was estimated as a percentage of resting metabolic rate using hypercapnia to stimulate ventilation at different stages of pregnancy. The oxidative cost of breathing in non pregnant lizards was 19.96±3.85% and increased 3 fold to 62.80±10.11% during late gestation. This significant increase in the oxidative cost of breathing may have significant consequences for energy budgets during gestation.
Collapse
|
58
|
|
59
|
Zerbe P, Glaus T, Clauss M, Hatt JM, Steinmetz HW. Ultrasonographic evaluation of postprandial heart variation in juvenile Paraguay anacondas (Eunectes notaeus). Am J Vet Res 2011; 72:1253-8. [DOI: 10.2460/ajvr.72.9.1253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Jayne BC, Herrmann MP. Perch size and structure have species-dependent effects on the arboreal locomotion of rat snakes and boa constrictors. J Exp Biol 2011; 214:2189-201. [DOI: 10.1242/jeb.055293] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arboreal habitats create diverse challenges for animal locomotion, but the numerical and phylogenetic diversity of snakes that climb trees suggest that their overall body plan is well suited for this task. Snakes have considerable diversity of axial anatomy, but the functional consequences of this diversity for arboreal locomotion are poorly understood because of the lack of comparative data. We simulated diverse arboreal surfaces to test whether environmental structure had different effects on the locomotion of snakes belonging to two distantly related species with differences in axial musculature and stoutness. On most cylindrical surfaces lacking pegs, both species used concertina locomotion, which always involved periodic stopping and gripping but was kinematically distinct in the two species. On horizontal cylinders that were a small fraction of body diameter, the boa constrictors used a balancing form of lateral undulation that was not observed for rat snakes. For all snakes the presence of pegs elicited lateral undulation and enhanced speed. For both species maximal speeds decreased with increased incline and were greatest on cylinders with intermediate diameters that approximated the diameter of the snakes. The frictional resistances that we studied had small effects compared with those of cylinder diameter, incline and the presence of pegs. The stouter and more muscular boa constrictors were usually faster than the rat snakes when using the gripping gait, whereas rat snakes were faster when using lateral undulation on the surfaces with pegs. Thus, variation in environmental structure had several highly significant effects on locomotor mode, performance and kinematics that were species dependent.
Collapse
Affiliation(s)
- Bruce C. Jayne
- Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA
| | - Michael P. Herrmann
- Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
61
|
Jensen B, Larsen CK, Nielsen JM, Simonsen LS, Wang T. Change of cardiac function, but not form, in postprandial pythons. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:35-42. [PMID: 21605694 DOI: 10.1016/j.cbpa.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/28/2022]
Abstract
Pythons are renowned for a rapid and pronounced postprandial growth of the heart that coincides with a several-fold elevation of cardiac output that lasts for several days. Here we investigate whether ventricular morphology is affected by digestive state in two species of pythons (Python regius and Python molurus) and we determine the cardiac right-to-left shunt during the postprandial period in P. regius. Both species experienced several-fold increases in metabolism and mass of the digestive organs by 24 and 48 h after ingestion of meals equivalent to 25% of body mass. Surprisingly there were no changes in ventricular mass or dimensions as we used a meal size and husbandry conditions similar to studies finding rapid and significant growth. Based on these data and literature we therefore suggest that postprandial cardiac growth should be regarded as a facultative rather than obligatory component of the renowned postprandial response. The cardiac right-to-left shunt, calculated on the basis of oxygen concentrations in the left and right atria and the dorsal aorta, was negligible in fasting P. regius, but increased to 10-15% during digestion. Such shunt levels are very low compared to other reptiles and does not support a recent proposal that shunts may facilitate digestion in reptiles.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Biological Sciences, Zoophysiology, Aarhus University, Denmark.
| | | | | | | | | |
Collapse
|
62
|
Barboza PS, Bennett A, Lignot JH, Mackie RI, McWhorter TJ, Secor SM, Skovgaard N, Sundset MA, Wang T. Digestive challenges for vertebrate animals: microbial diversity, cardiorespiratory coupling, and dietary specialization. Physiol Biochem Zool 2010; 83:764-74. [PMID: 20578844 DOI: 10.1086/650472] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The digestive system is the interface between the supply of food for an animal and the demand for energy and nutrients to maintain the body, to grow, and to reproduce. Digestive systems are not morphologically static but rather dynamically respond to changes in the physical and chemical characteristics of the diet and the level of food intake. In this article, we discuss three themes that affect the ability of an animal to alter digestive function in relation to novel substrates and changing food supply: (1) the fermentative digestion in herbivores, (2) the integration of cardiopulmonary and digestive functions, and (3) the evolution of dietary specialization. Herbivores consume, digest, and detoxify complex diets by using a wide variety of enzymes expressed by bacteria, predominantly in the phyla Firmicutes and Bacteroidetes. Carnivores, such as snakes that feed intermittently, sometimes process very large meals that require compensatory adjustments in blood flow, acid secretion, and regulation of acid-base homeostasis. Snakes and birds that specialize in simple diets of prey or nectar retain their ability to digest a wider selection of prey. The digestive system continues to be of interest to comparative physiologists because of its plasticity, both phenotypic and evolutionary, and because of its widespread integration with other physiological systems, including thermoregulation, circulation, ventilation, homeostasis, immunity, and reproduction.
Collapse
Affiliation(s)
- P S Barboza
- Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Byrnes G, Jayne BC. Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors. J Exp Biol 2010; 213:4249-56. [DOI: 10.1242/jeb.047225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arboreal habitats pose unique challenges for locomotion as a result of their narrow cylindrical surfaces and discontinuities between branches. Decreased diameter of branches increases compliance, which can pose additional challenges, including effects on stability and energy damping. However, the combined effects of substrate diameter and compliance are poorly understood for any animal. We quantified performance, kinematics and substrate deformation while boa constrictors (Boa constrictor) climbed vertical ropes with three diameters (3, 6 and 9 mm) and four tensions (0.5, 1.0, 1.5 and 2.0 body weights). Mean forward velocity decreased significantly with both decreased diameter and increased compliance. Both diameter and compliance had numerous effects on locomotor kinematics, but diameter had larger and more pervasive effects than compliance. Locomotion on the largest diameter had a larger forward excursion per cycle, and the locomotor mode and gripping strategy differed from that on the smaller diameters. On larger diameters, snakes primarily applied opposing forces at the same location on the rope to grip. By contrast, on smaller diameters forces were applied in opposite directions at different locations along the rope, resulting in increased rope deformation. Although energy is likely to be lost during deformation, snakes might use increased surface deformation as a strategy to enhance their ability to grip.
Collapse
Affiliation(s)
- Greg Byrnes
- Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA
| | - Bruce C. Jayne
- Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
64
|
Preston DL, Mosley CAE, Mason RT. Sources of Variability in Recovery Time from Methohexital Sodium Anesthesia in Snakes. COPEIA 2010. [DOI: 10.1643/cp-09-091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Li XM, Cao ZD, Peng JL, Fu SJ. The effect of exercise training on the metabolic interaction between digestion and locomotion in juvenile darkbarbel catfish (Peltebagrus vachelli). Comp Biochem Physiol A Mol Integr Physiol 2010; 156:67-73. [DOI: 10.1016/j.cbpa.2009.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 11/25/2022]
|
66
|
Li KG, Cao ZD, Peng JL, Fu SJ. The metabolic responses and acid–base status after feeding, exhaustive exercise, and both feeding and exhaustive exercise in Chinese catfish (Silurus asotus Linnaeus). J Comp Physiol B 2010; 180:661-71. [DOI: 10.1007/s00360-010-0443-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 11/24/2022]
|
67
|
Jourdan‐Pineau H, Dupont‐Prinet A, Claireaux G, McKenzie D. An Investigation of Metabolic Prioritization in the European Sea Bass, Dicentrarchus labrax. Physiol Biochem Zool 2010; 83:68-77. [DOI: 10.1086/648485] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
68
|
Secor SM, White SE. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. J Exp Biol 2010; 213:78-88. [DOI: 10.1242/jeb.034058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Individually, the metabolic demands of digestion or movement can be fully supported by elevations in cardiovascular performance, but when occurring simultaneously, vascular perfusion may have to be prioritized to either the gut or skeletal muscles. Burmese pythons (Python molurus) experience similar increases in metabolic rate during the digestion of a meal as they do while crawling, hence each would have an equal demand for vascular supply when these two actions are combined. To determine, for the Burmese python, whether blood flow is prioritized when snakes are digesting and moving, we examined changes in cardiac performance and blood flow in response to digestion, movement, and the combination of digestion and movement. We used perivascular blood flow probes to measure blood flow through the left carotid artery, dorsal aorta, superior mesenteric artery and hepatic portal vein, and to calculate cardiac output, heart rate and stroke volume. Fasted pythons while crawling experienced a 2.7- and 3.3-fold increase, respectively, in heart rate and cardiac output, and a 66% decrease in superior mesenteric flow. During the digestion of a rodent meal equaling in mass to 24.7% of the snake's body mass, heart rate and cardiac output increased by 3.3- and 4.4-fold, respectively. Digestion also resulted in respective 11.6- and 14.1-fold increases in superior mesenteric and hepatic portal flow. When crawling while digesting, cardiac output and dorsal aorta flow increased by only 21% and 9%, respectively, a modest increase compared with that when they start to crawl on an empty stomach. Crawling did triggered a significant reduction in blood flow to the digesting gut, decreasing superior mesenteric and hepatic portal flow by 81% and 47%, respectively. When faced with the dual demands of digestion and crawling, Burmese pythons prioritize blood flow, apparently diverting visceral supply to the axial muscles.
Collapse
Affiliation(s)
- Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | | |
Collapse
|
69
|
Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure. J Comp Physiol B 2009; 180:189-98. [DOI: 10.1007/s00360-009-0403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
70
|
Dupont-Prinet A, Claireaux G, McKenzie DJ. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:233-40. [PMID: 19559805 DOI: 10.1016/j.cbpa.2009.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that if European sea bass are exercised after feeding, they can achieve a significantly higher maximum metabolic rate (MMR) than when fasted. They can meet combined metabolic demands of digestion (specific dynamic action, SDA) and maximal aerobic exercise, with no decline in swimming performance. If, however, exposed to mild hypoxia (50% saturation), bass no longer achieve higher MMR after feeding but they swim as well fed as fasted, due to an apparent ability to defer the SDA response. This study explored patterns of cardiac output (Q(A)) and blood flow to the gastrointestinal tract (Q(GI)) associated with the higher MMR after feeding, and with the ability to prioritise swimming in hypoxia. Sea bass (mean mass approximately 325 g, forklength approximately 27 cm) were instrumented with flow probes to measure Q(A) and Q(GI) during an incremental critical swimming speed (U(crit)) protocol in a tunnel respirometer, to compare each animal either fasted or 6h after a meal of fish fillet equal to 3% body mass. Feeding raised oxygen uptake (M(O2)) prior to exercise, an SDA response associated with increased Q(A) (+30%) and Q(GI) (+100%) compared to fasted values. As expected, when exercised the fed bass maintained the SDA load throughout the protocol and achieved 14% higher MMR than when fasted, and the same U(crit) (approximately 100 cm s(-1)). Both fed and fasted bass showed pronounced increases in Q(A) and decreases in Q(GI) during exercise and the higher MMR of fed bass was not associated with higher maximum Q(A) relative to when fasted, or to any differences in Q(GI) at maximum Q(A). In hypoxia prior to exercise, metabolic and cardiac responses to feeding were similar compared to normoxia. Hypoxia caused an almost 60% reduction to MMR and 30% reduction to U(crit), but neither of these traits differed between fed or fasted bass. Despite hypoxic limitations to MMR and U(crit), maximum Q(A) and patterns of Q(GI) during exercise in fasted and fed bass were similar to normoxia. Estimating GI oxygen supply from Q(GI) indicated that the ability of bass to prioritise aerobic exercise over SDA when metabolically limited by hypoxia was linked to an ability to defer elements of the SDA response occurring outside the GI tract.
Collapse
Affiliation(s)
- A Dupont-Prinet
- Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
71
|
Secor SM. Digestive physiology of the Burmese python: broad regulation of integrated performance. ACTA ACUST UNITED AC 2009; 211:3767-74. [PMID: 19043049 DOI: 10.1242/jeb.023754] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As an apparent adaptation to predictably long episodes of fasting, the sit-and-wait foraging Burmese python experiences unprecedented regulation of gastrointestinal and cardiovascular performance with feeding and fasting. The ingestion of a meal signals the quiescent gut tissues to start secreting digestive acid and enzymes, to upregulate intestinal brush-border enzymes and nutrient transporters, and to grow. An integrated phenomenon, digestion is also characterized by increases in the mass, and presumably the function, of the heart, pancreas, liver and kidneys. Once digestion is complete, the python's stomach and small intestine rapidly downregulate performance. Much of the modulation of intestinal function can be explained by the 5-fold increase in microvillus length and apical surface area with feeding, and the subsequent shortening of the microvilli after digestion has finished. Digestion for the Burmese python is a relatively expensive endeavor, evident by the as much as a 44-fold increase in metabolic rate and equivalent in cost to as much as 37% of the meal's energy. Their large metabolic response is supported by substantial increases in ventilation and cardiac output and the apparent catabolism of glucose and lipids. Unmatched in the magnitude of its numerous physiological responses to feeding, the Burmese python is a very attractive model for examining the capacities and regulatory mechanisms of physiological performance.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35405, USA.
| |
Collapse
|
72
|
Skovgaard N, Møller K, Gesser H, Wang T. Histamine induces postprandial tachycardia through a direct effect on cardiac H2-receptors in pythons. Am J Physiol Regul Integr Comp Physiol 2009; 296:R774-85. [DOI: 10.1152/ajpregu.90466.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intrinsic heart rate of most vertebrates studied, including humans, is elevated during digestion, suggesting that a nonadrenergic-noncholinergic factor contributes to the postprandial tachycardia. The regulating factor, however, remains elusive and difficult to identify. Pythons can ingest very large meals, and digestion is associated with a marked rise in metabolism that is sustained for several days. The metabolic rise causes more than a doubling of heart rate and a fourfold rise in cardiac output. This makes the python an interesting model to investigate the postprandial tachycardia. We measured blood pressure and heart rate in fasting Python regius, and at 24 and 48 h after ingestion of a meal amounting to 25% of body wt. Digestion caused heart rate to increase from 25 to 56 min, whereas blood pressure was unchanged. The postprandial rise in heart rate was partially due to a doubling of intrinsic heart rate. The H2-antagonist did not affect heart rate of fasting snakes but decreased heart rate by 15–20 min at 24 h into digestion, whereas it had no effects at 48 h. Thus, the histaminergic tone on the heart rose from none to 30% at 24 h but vanished after 48 h. In anesthetized snakes, histamine caused a systemic vasodilatation and a marked increase in heart rate and cardiac output mediated through a direct effect on H2- receptors. Our study strongly indicates that histamine regulates heart rate during the initial phase of digestion in pythons. This study describes a novel regulation of the vertebrate heart.
Collapse
|
73
|
Bucking C, Wood CM. The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Biol 2008; 211:2533-41. [PMID: 18626089 DOI: 10.1242/jeb.015610] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe investigated the potential acid–base and nitrogenous waste excretion challenges created by voluntary feeding in freshwater rainbow trout,with particular focus on the possible occurrence of an alkaline tide (a metabolic alkalosis created by gastric HCl secretion during digestion). Plasma metabolites (glucose, urea and ammonia) were measured at various time points before and after voluntary feeding to satiation (approximately 5% body mass meal of dry commercial pellets), as was the net flux of ammonia and titratable alkalinity to the water from unfed and fed fish. Arterial blood, sampled by indwelling catheter, was examined for post-prandial effects on pH, plasma bicarbonate and plasma CO2 tension. There was no significant change in plasma glucose or urea concentrations following feeding, whereas plasma ammonia transiently increased, peaking at threefold above resting values at 12 h after the meal and remaining elevated for 24 h. The increased plasma ammonia was correlated with an increase in net ammonia excretion to the water, with fed fish significantly elevating their net ammonia excretion two- to threefold between 12 and 48 h post feeding. These parameters did not change in unfed control fish. Fed fish likewise increased the net titratable base flux to the water by approximately threefold, which resulted in a transition from a small net acid flux seen in unfed fish to a large net base flux in fed fish. Over 48 h, this resulted in a net excretion of 13 867 μmol kg–1more base to the external water than in unfed fish. The arterial blood exhibited a corresponding rise in pH (between 6 and 12 h) and plasma bicarbonate (between 3 and 12 h) following feeding; however, no respiratory compensation was observed, as PaCO2 remained constant. Overall, there was evidence of numerous challenges created by feeding in a freshwater teleost fish, including the occurrence of an alkaline tide, and its compensation by excretion of base to the external water. The possible influence of feeding ecology and environmental salinity on these challenges, as well as discrepancies in the literature, are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| | - Chris M. Wood
- McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
74
|
Secor SM. Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 2008; 179:1-56. [PMID: 18597096 DOI: 10.1007/s00360-008-0283-7] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
Abstract
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| |
Collapse
|
75
|
Cox CL, Secor SM. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. ACTA ACUST UNITED AC 2008; 211:1131-40. [PMID: 18344488 DOI: 10.1242/jeb.015313] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Burmese pythons fasting and feeding cause dramatic regulation of gastric acid production and intestinal nutrient uptake. Predictably, other components of their gastrointestinal tract are similarly regulated with each meal. We therefore assessed the matched regulation of gastrointestinal performance by comparing the postprandial activities and capacities of gastric (pepsin), pancreatic (amylase and trypsin) and intestinal (aminopeptidase-N and maltase) enzymes, and intestinal nutrient uptake. Tissue samples were collected from pythons fasted and at 0.25, 0.5, 1, 2, 3, 4, 6, 10 and 15 days following their consumption of rodent meals equaling 25% of snake body mass. With feeding, pythons experience no significant change in stomach mass, whereas both the pancreas and small intestine doubled in mass. Feeding also triggered a depletion of gastric mucosal pepsinogen, a respective 5.7- and 20-fold increase in the peak activities of pancreatic trypsin and amylase, and a respective 2.3- and 5.5-fold increase in the peak activities of intestinal maltase and aminopeptidase-N. Enzyme activities peaked between 2 and 4 days postfeeding and returned to fasting levels by day 10. Independent of digestive stage, python intestine exhibited a proximal to distal decline in enzyme activity. For both sugars and proteins, intestinal capacities for enzyme activity were significantly correlated with nutrient uptake capacities. The concomitant postprandial upregulation of tissue morphology, intestinal nutrient transport rates and enzyme activities illustrate, for the python, the matched regulation of their gastrointestinal performance with each meal.
Collapse
Affiliation(s)
- Christian L Cox
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| | | |
Collapse
|
76
|
Santos X, Llorente GA. Gastrointestinal responses to feeding in a frequently feeding colubrid snake (Natrix maura). Comp Biochem Physiol A Mol Integr Physiol 2008; 150:75-9. [DOI: 10.1016/j.cbpa.2008.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/08/2008] [Accepted: 03/09/2008] [Indexed: 11/26/2022]
|
77
|
Seebacher F, Franklin CE. Redistribution of blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus). J Comp Physiol B 2007; 177:841-8. [PMID: 17639414 DOI: 10.1007/s00360-007-0181-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences A08, The University of Sydney, NSW 2006, Sydney, Australia.
| | | |
Collapse
|
78
|
Affiliation(s)
- Gerald W Dorn
- Center for Molecular Cardiovascular Research, University of Cincinnati, Ohio 45267-0839, USA.
| |
Collapse
|
79
|
Ott BD, Secor SM. Adaptive regulation of digestive performance in the genus Python. ACTA ACUST UNITED AC 2007; 210:340-56. [PMID: 17210969 DOI: 10.1242/jeb.02626] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adaptive interplay between feeding habits and digestive physiology is demonstrated by the Burmese python, which in response to feeding infrequently has evolved the capacity to widely regulate gastrointestinal performance with feeding and fasting. To explore the generality of this physiological trait among pythons, we compared the postprandial responses of metabolism and both intestinal morphology and function among five members of the genus Python: P. brongersmai, P. molurus, P. regius, P. reticulatus and P. sebae. These infrequently feeding pythons inhabit Africa, southeast Asia and Indonesia and vary in body shape from short and stout (P. brongersmai) to long and slender (P. reticulatus). Following the consumption of rodent meals equaling 25% of snake body mass, metabolic rates of pythons peaked at 1.5 days at levels 9.9- to 14.5-fold of standard metabolic rates before returning to prefeeding rates by day 6-8. Specific dynamic action of these meals (317-347 kJ) did not differ among species and equaled 23-27% of the ingested energy. For each species, feeding triggered significant upregulation of intestinal nutrient transport and aminopeptidase-N activity. Concurrently, intestinal mass doubled on average for the five species, in part due to an 85% increase in mucosal thickness, itself a product of 27-59% increases in enterocyte volume. The integrative response of intestinal functional upregulation and tissue hypertrophy enables each of these five python species, regardless of body shape, to modulate intestinal performance to meet the demands of their large infrequent meals.
Collapse
Affiliation(s)
- Brian D Ott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| | | |
Collapse
|
80
|
McGaw IJ. The interactive effects of exercise and feeding on oxygen uptake, activity levels, and gastric processing in the graceful crab Cancer gracilis. Physiol Biochem Zool 2007; 80:335-43. [PMID: 17390289 DOI: 10.1086/513083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2007] [Indexed: 11/04/2022]
Abstract
Exercise and digestive processes are known to elevate the metabolic rate of organisms independently. In this study, the effects of simultaneous exercise and digestion were examined in the graceful crab Cancer gracilis. This species exhibited resting oxygen uptake levels between 29 and 42 mg O(2) kg(-1) h(-1). In postprandial crabs, oxygen uptake was approximately double that of unfed crabs. During exercise, oxygen uptake increased three- to fourfold, reaching maximal levels of more than 130 mg O(2) kg(-1 ) h(-1). However, there was no difference in oxygen uptake during activity between unfed and postprandial animals. There was also no difference in exercise endurance levels between unfed and postprandial animals; both sets of animals were unable to right themselves after being turned on their backs, reaching exhaustion after 13-15 attempts. To determine whether increased activity affected gastric processes, the passage of a meal through the digestive system was followed using a fluoroscope. Passage of digesta through the gut system was slower in active animals than in resting crabs. Resting crabs cleared the foregut after approximately 18 h, which was significantly faster than the 34.5 h for constantly active animals. Likewise, the midgut region of resting animals was cleared at a faster rate than that of active animals. Because of residual amounts of digesta remaining in the hindgut, no difference in clearance rates of this section of the gut was evident. The slower clearance times of the foregut were due to a significantly slower rate of mastication of food, as evidenced by a lower cardiac stomach contraction rate. Contraction of the pyloric region of the foregut functions to move the digesta along the midgut, and there was a direct correlation between slower contraction rates of this region and the increased time of passage for digesta through the midgut of active animals. Because increased activity levels affected gastric processing, the crabs exhibited a behavioral response. During a 24-h period after feeding, there was a significant reduction in locomotor activity. The findings of this study suggest a prioritization of metabolic responses toward activity at the expense of digestion. This is discussed in relation to the ability of the crabs to balance the demands of competing physiological systems.
Collapse
Affiliation(s)
- Iain J McGaw
- School of Life Sciences, University of Nevada-Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004, USA.
| |
Collapse
|
81
|
Zaar M, Overgaard J, Gesser H, Wang T. Contractile properties of the functionally divided python heart: Two sides of the same matter. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:163-73. [PMID: 17137816 DOI: 10.1016/j.cbpa.2006.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 11/17/2022]
Abstract
The heart of Python regius is functionally divided so that systemic blood pressure is much higher than pulmonary pressure (6.6+/-1.0 and 0.7+/-0.1 kPa, respectively). The present study shows that force production of cardiac strips from the cavum arteriosum and cavum pulmonale exhibits similar force production when stimulated in vitro. The high systemic blood pressure is caused, therefore, by a thicker ventricular wall surrounding the cavum arteriosum rather than differences in the intrinsic properties of the cardiac tissues. Similarly, there were no differences between the contractile properties of right and left atria. Force production was similar in atria and ventricle but the atria contracted and relaxed much faster than the ventricle. Graded hypoxia markedly reduced twitch force of all four cardiac tissues, and this was most pronounced when PO(2) was below 40 kPa. In contrast, the four cardiac tissues were insensitive to acidosis during normoxia although acidosis increased the sensitivity to hypoxia. Adrenergic stimulation increased twitch force of all cardiac tissues, while cholinergic stimulation only affected the atria and reduced twitch force markedly. In spite of the different oxygen availability of the two sides of the heart, the biochemical and functional properties are alike and the differences may instead be overcome by the coronary blood supply.
Collapse
Affiliation(s)
- Morten Zaar
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
82
|
Fu SJ, Cao ZD, Peng JL. Effect of feeding and fasting on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen). Comp Biochem Physiol A Mol Integr Physiol 2006; 146:435-9. [PMID: 17251045 DOI: 10.1016/j.cbpa.2006.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/29/2022]
Abstract
The impact of feeding (fed to satiation, 13.85% body mass) on excess post-exercise oxygen consumption (EPOC, chasing for 2.5 min) was investigated in juvenile southern catfish (Silurus meridionalis Chen) (38.62-57.55 g) at 25. Cutlets of freshly killed loach species without viscera, head and tail were used as the test meal, and oxygen consumption (VO(2)) was adjusted to a standard body mass of 1 kg using a mass exponent of 0.75. Resting VO(2) increased significantly above fasting levels (49.89 versus 148.25 mg O(2) h(-)(1)) in 12 h postprandial catfish. VO(2) and ventilation frequency (V(f)) both increased immediately after exhaustive exercise and slowly returned to pre-exercise values in all experimental groups. The times taken for post-exercise VO(2) to return to the pre-exercise value were 20, 25 and 30 min in 12 h, 60 h and 120 h postprandial catfish, respectively. Peak VO(2) levels were 257.36+/-6.06, 219.32+/-6.32 and 200.91+/-5.50 mg O(2) h(-1) in 12 h, 60 h and 120 h postprandial catfish and EPOC values were 13.85+/-4.50, 27.24+/-3.15 and 41.91+/-3.02 mg O(2) in 12 h, 60 h and 120 h postprandial southern catfish, respectively. There were significant differences in both EPOC and peak VO(2) during the post-exercise recovery process among three experimental groups (p<0.05). These results showed that: (1) neither digestive nor exhaustive exercise could elicit maximal VO(2) in southern catfish, (2) both the digestive process and exercise (also the post-exercise recovery process) were curtailed under postprandial exercise, (3) the change of V(f) was smaller than that of VO(2) during the exhaustive exercise recovery process, (4) for a similar increment in VO(2), the change in V(f) was larger during the post-exercise process than during the digestive process.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour, College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China.
| | | | | |
Collapse
|
83
|
Christel CM, Denardo DF. Absence of exendin-4 effects on postprandial glucose and lipids in the Gila monster, Heloderma suspectum. J Comp Physiol B 2006; 177:129-34. [PMID: 16972064 DOI: 10.1007/s00360-006-0115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/04/2006] [Accepted: 08/09/2006] [Indexed: 11/29/2022]
Abstract
Circulating nutrients serve as energy resources for functioning tissues throughout the body. While the tight regulation of plasma nutrients has been extensively studied in mammals, investigations into specific metabolic regulators in reptiles have been limited and have revealed conflicting results. The peptide exendin-4, which was isolated from the saliva of Gila monsters, Heloderma suspectum, has demonstrated prolonged plasma glucose-lowering properties in mammals. Although exendin-4 has often been labeled a venom protein, circulating plasma levels of exendin-4 have been shown to increase in response to feeding. Because exendin-4 has glucose-regulating effects in mammals, we hypothesized that post-prandial elevation in circulating exendin-4 levels in Gila monsters reduces plasma glucose and triglycerides. To examine the effect of exendin-4 on circulating nutrients, we measured plasma glucose, triglyceride, and cholesterol levels of Gila monsters in response to one of four treatments: fed live mice (a natural post-prandial increase in exendin-4), force-fed dead mice while anesthetized (no post-prandial exendin-4 increase), force-fed dead mice while anesthetized and injected with exendin-4 immediately after feeding (exogenous increase in exendin-4), and force-fed dead mice while anesthetized and injected with exendin-4 24 h after feeding (delayed exogenous increase in exendin-4). After prey ingestion, glucose and triglyceride levels increased significantly over time in all treatment groups, but there was no significant treatment effect. Plasma exendin-4 levels showed significant time and treatment effects, but did not correspond to glucose and triglyceride levels. Our results demonstrate that plasma nutrient levels in Gila monsters respond relatively slowly to feeding and that exendin-4 does not have the same effect on circulating glucose in Gila monsters as it does in mammals. Further studies are necessary to determine whether circulating exendin-4 has an alternate role in regulating other components of energy metabolism such as nutrient uptake rate in the small intestine.
Collapse
Affiliation(s)
- Carolyn M Christel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA.
| | | |
Collapse
|
84
|
Hartzler LK, Munns SL, Bennett AF, Hicks JW. Metabolic and blood gas dependence on digestive state in the Savannah monitor lizard Varanus exanthematicus: an assessment of the alkaline tide. ACTA ACUST UNITED AC 2006; 209:1052-7. [PMID: 16513931 DOI: 10.1242/jeb.02121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large alkaline tide (up to 20 mmol l(-1) increase in bicarbonate concentration [HCO3-] with an accompanied increase in blood pH) has previously been reported for some carnivorous reptiles within 24 h after ingesting a large meal. This phenomenon has been attributed to the secretion of large amounts of H+ ions into the stomach, which is required for digestion of large prey items. To test the generality of this phenomenon in carnivorous reptiles, this study quantified the metabolic and acid-base status of the Savannah monitor lizard, Varanus exanthematicus, during digestion at 35 degrees C. Following a meal of approximately 10% of body mass, V(O2) and V(CO2) were measured continuously and arterial pH, blood gases and strong ions were measured every 8 h for 5 days. During peak digestion (24 h post feeding), V(O2) and V(CO2) increased to approximately threefold fasting values (V(O2), 0.95-2.57 ml min(-1) kg(-1); V(CO2) 0.53-1.63 ml min(-1) kg(-1)) while respiratory exchange ratio (R) remained constant (0.62-0.73). During digestion, arterial P(CO2) increased (from 4.6 kPa to 5.8 kPa), and [HCO3-] also increased (from 24.1 mmol l(-1) to 40.3 mmol l(-1)). In contrast to early studies on crocodilians, arterial pH in V. exanthematicus remained relatively stable during digestion (7.43-7.56). Strong ions contributed little to the acid-base compensation during the alkalosis. Collectively the data indicate that the metabolic alkalosis associated with H+ secretion (as indicated by increased plasma bicarbonate) is partially compensated by a respiratory acidosis.
Collapse
Affiliation(s)
- L K Hartzler
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | | | | | | |
Collapse
|
85
|
Thorarensen H, Farrell AP. Postprandial intestinal blood flow, metabolic rates, and exercise in Chinook salmon (Oncorhynchus tshawytscha). Physiol Biochem Zool 2006; 79:688-94. [PMID: 16826495 DOI: 10.1086/505512] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 11/03/2022]
Abstract
Following a relatively large meal (2% body mass of dry pellets), intestinal blood flow in chinook salmon (Oncorhynchus tshawytscha) increased significantly, up to 81%, between 14 and 29 h postprandially. Also, 15 h postprandially, oxygen consumption (M(2)) was elevated by 128% compared with a measurement of routine M(2) made after 1 wk of fasting. The postprandial increase in MO(2) (the heat increment) was 33 micromol O(2) min(-1) kg(-1). Because intestinal blood flow is known to decrease during swimming activity in fish, we therefore tested the hypothesis that swimming fish would have to make a trade-off between maximum swimming activity and digestive activity by comparing the swimming performance and metabolic rates of fed and fasted chinook salmon. As expected, MO(2) increased exponentially with swimming velocity in both fed and fasted fish. Moreover, the heat increment was irreducible during swimming, such that MO(2) remained approximately 39 micromol O(2) min(-1) kg(-1) higher in fed fish than in fasted fish at all comparable swimming speeds. However, maximum M dot o2 was unaffected by feeding and was identical in both fed and fasted fish (approximately 250 micromol O(2) min(-1) kg(-1)), and, as a result, the critical swimming speed (U(crit)) was 9% lower in the fed fish. Three days after the fish were fed and digestion was completed, MO(2) and U(crit) were not significantly different from those measured in fasted fish. The ability of salmonids to maintain feeding metabolism during prolonged swimming performance is discussed, and it is suggested that reduced swimming performance may be due to postprandial sparing of intestinal blood to support digestion, thereby limiting the allocation of blood flow to locomotory muscles.
Collapse
Affiliation(s)
- Helgi Thorarensen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
86
|
Klein W, Perry SF, Abe AS, Andrade DV. Metabolic Response to Feeding inTupinambis merianae: Circadian Rhythm and a Possible Respiratory Constraint. Physiol Biochem Zool 2006; 79:593-601. [PMID: 16691525 DOI: 10.1086/502818] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2005] [Indexed: 11/03/2022]
Abstract
The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.
Collapse
Affiliation(s)
- Wilfried Klein
- Institut fur Zoologie, Universitat Bonn, Poppelsdorfer Schloss, Germany.
| | | | | | | |
Collapse
|
87
|
Burns JM, Williams TM, Secor SM, Owen-Smith N, Bargmann NA, Castellini MA. New insights into the physiology of natural foraging. Physiol Biochem Zool 2006; 79:242-9. [PMID: 16555184 DOI: 10.1086/499996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2005] [Indexed: 11/03/2022]
Abstract
The purpose of this symposium was to examine how foraging physiology is studied in the field across a diversity of species and habitats. While field studies are constrained by the relatively poor ability to control the experiment, the natural variability in both the environment and animal behavior provides insights into adaptation to change that are usually not tested in the laboratory. Talks in this session examined how foraging energy (both costs and gains) is partitioned over time. "Time," in this case, ranged from evolutionary time (how different animals are designed to most efficiently forage), to long, lifetime periods (development of foraging ability and growth), to short-duration feeding bouts, and ultimately to the minutes to hours following ingestion (metabolic and biochemical changes). From this diversity, two core themes emerged: that foraging strategies and behaviors are limited by physiology and biochemical processes and that time plays a central role in the organization of foraging behaviors and the physiological processes that underlie those behaviors.
Collapse
Affiliation(s)
- Jennifer M Burns
- Department of Biological Sciences, 3211 Providence Drive, University of Alaska, Anchorage, AK 99508, USA
| | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Arvedsen SK, Andersen JB, Zaar M, Andrade D, Abe AS, Wang T. Arterial acid–base status during digestion and following vascular infusion of NaHCO3 and HCl in the South American rattlesnake, Crotalus durissus. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:495-502. [PMID: 16289770 DOI: 10.1016/j.cbpa.2005.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 10/25/2022]
Abstract
Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the "alkaline tide". Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO(3)(-)](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO(2) (PaCO(2)) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO(2). Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO(3) and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO(3)(-)] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L(-1) during digestion and was accompanied by a respiratory compensation where PaCO(2) increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO(3) (7 mmol kg(-1)) resulted in a 10 mmol L(-1) increase in plasma [HCO(3)(-)] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO(2), however, did not change following HCO(3)(-) infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO(3)(-)](pl) was reduced by 4.6 mmol L(-1) within the first 3 h. PaCO(2), however, was not affected and there was no evidence for respiratory compensation. Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli.
Collapse
Affiliation(s)
- Sine K Arvedsen
- Department of Zoophysiology, The University of Aarhus, Denmark; Departamento de Zoologia, Instituto de Biociências, UNESP, Rio Claro, SP, Brazil
| | | | | | | | | | | |
Collapse
|
90
|
Skals M, Skovgaard N, Abe AS, Wang T. Venous tone and cardiac function in the South American rattlesnakeCrotalus durissus: mean circulatory filling pressure during adrenergic stimulation in anaesthetised and fully recovered animals. J Exp Biol 2005; 208:3747-59. [PMID: 16169952 DOI: 10.1242/jeb.01828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe effects of adrenergic stimulation on mean circulatory filling pressure(MCFP), central venous pressure (PCV) and stroke volume(Vs), as well as the effects of altered MCFP through changes of blood volume were investigated in rattlesnakes (Crotalus durissus). MCFP is an estimate of the upstream pressure driving blood towards the heart and is determined by blood volume and the activity of the smooth muscle cells in the veins (venous tone). MCFP can be determined as the plateau in PCV during a total occlusion of blood flow from the heart.V s decreased significantly when MCFP was lowered by reducing blood volume in anaesthetised snakes, whereas increased MCFP through infusion of blood (up to 3 ml kg-1) only led to a small rise in Vs. Thus, it seems that end-diastolic volume is not affected by an elevated MCFP in rattlesnakes. To investigate adrenergic regulation on venous tone, adrenaline as well as phenylephrine and isoproterenol (α- and β-adrenergic agonists, respectively) were infused as bolus injections (2 and 10 μg kg-1). Adrenaline and phenylephrine caused large increases in MCFP and PCV,whereas isoproterenol decreased both parameters. This was also the case in fully recovered snakes. Therefore, adrenaline affects venous tone through bothα- and β-adrenergic receptors, but the α-adrenergic receptor dominates at the dosages used in the present study. Injection of the nitric oxide donor SNP caused a significant decrease in PCV and MCFP. Thus, nitric oxide seems to affect venous tone.
Collapse
Affiliation(s)
- Marianne Skals
- Department of Zoophysiology, Institute of Biological Science, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
91
|
Munns SL, Hartzler LK, Bennett AF, Hicks JW. Terrestrial locomotion does not constrain venous return in the American alligator,Alligator mississippiensis. J Exp Biol 2005; 208:3331-9. [PMID: 16109894 DOI: 10.1242/jeb.01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARYThe effects of treadmill exercise on components of the cardiovascular(heart rate, mean arterial blood pressure, central venous pressure, venous return) and respiratory (minute ventilation, tidal volume, breathing frequency, rate of oxygen consumption, rate of carbon dioxide production)systems and on intra-abdominal pressure were measured in the American alligator, Alligator mississippiensis, at 30°C. Alligators show speed-dependent increases in tidal volume and minute ventilation,demonstrating that the inhibition of ventilation during locomotion that is present in some varanid and iguanid lizards was not present in alligators. Exercise significantly increases intra-abdominal pressure; however,concomitant elevations in central venous pressure acted to increase the transmural pressure of the post caval vein and thus increased venous return. Therefore, despite elevated intra-abdominal pressure, venous return was not limited during exercise in alligators, as was the case in Varanus exanthematicus and Iguana iguana. Respiratory cycle variations in intra-abdominal pressure, central venous pressure and venous return indicate that, at high tidal volumes, inspiration causes a net reduction in venous return during active ventilation and thus may act to limit venous return during exercise. These results suggest that, while tonically elevated intra-abdominal pressure induced by exercise does not inhibit venous return,phasic fluctuations during each breath cycle may contribute to venous flow limitation during exercise.
Collapse
Affiliation(s)
- Suzanne L Munns
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
92
|
Clark TD, Butler PJ, Frappell PB. Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard Varanus rosenbergi. ACTA ACUST UNITED AC 2005; 208:2269-76. [PMID: 15939769 DOI: 10.1242/jeb.01657] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To maximize the period where body temperature (Tb) exceeds ambient temperature (Ta), many reptiles have been reported to regulate heart rate (fH) and peripheral blood flow so that the rate of heat gain in a warming environment occurs more rapidly than the rate of heat loss in a cooling environment. It may be hypothesized that the rate of cooling, particularly at relatively cool Tbs, would be further reduced during postprandial periods when specific dynamic action (SDA) increases endogenous heat production (i.e. the heat increment of feeding). Furthermore, it may also be hypothesized that the increased perfusion of the gastrointestinal organs that occurs during digestion may limit peripheral blood flow and thus compromise the rate of heating. Finally, if the changes in fh are solely for the purpose of thermoregulation, there should be no associated changes in energy demand and, consequently, no hysteresis in the rate of oxygen consumption (V(O2)). To test these hypotheses, seven individual Varanus rosenbergi were heated and cooled between 19 degrees C and 35 degrees C following at least 8 days fasting and then approximately 25 h after consumption of a meal (mean 10% of fasted body mass). For a given Tb between the range of 19-35 degrees C, fh of fasting lizards was higher during heating than during cooling. Postprandial lizards also displayed a hysteresis in fh, although the magnitude was reduced in comparison with that of fasting lizards as a result of a higher fh during cooling in postprandial animals. Both for fasting and postprandial lizards, there was no hysteresis in V(O2) at any Tb throughout the range although, as a result of SDA, postprandial animals displayed a significantly higher V(O2) than fasting animals both during heating and during cooling at Tbs above 24 degrees C. The values of fh during heating at a given Tb were the same for fasting and postprandial animals, which, in combination with a slower rate of heating in postprandial animals, suggests that a prioritization of blood flow to the gastrointestinal organs during digestion is occurring at the expense of higher rates of heating. Additionally, postprandial lizards took longer to cool at Tbs below 23 degrees C, suggesting that the endogenous heat produced during digestion temporarily enhances thermoregulatory ability at lower temperatures, which would presumably assist V. rosenbergi during cooler periods in the natural environment by augmenting temperature-dependent physiological processes.
Collapse
Affiliation(s)
- T D Clark
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | |
Collapse
|
93
|
Skovgaard N, Galli G, Taylor EW, Conlon JM, Wang T. Hemodynamic effects of python neuropeptide γ in the anesthetized python, Python regius. ACTA ACUST UNITED AC 2005; 128:15-26. [PMID: 15721483 DOI: 10.1016/j.regpep.2004.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 12/10/2004] [Indexed: 11/29/2022]
Abstract
The effects of python neuropeptide gamma (NPgamma) on hemodynamic parameters have been investigated in the anesthetized ball python (Python regius). Bolus intra-arterial injections of synthetic python NPgamma (1-300 pmol kg-1) produced a dose-dependent decrease in systemic arterial blood pressure (Psys) concomitant with increases in systemic vascular conductance (Gsys), total cardiac output and stroke volume, but only minor effects on heart rate. The peptide had no significant effect on pulmonary arterial blood pressure (Ppul) and caused only a small increase in pulmonary conductance (Gpul) at the highest dose. In the systemic circulation, the potency of the NK1 receptor-selective agonist [Sar9,Met(0(2))11] substance P was >100-fold greater than the NK2 receptor-selective agonist [betaAla8] neurokinin A-(4-10)-peptide suggesting that the python cardiovascular system is associated with a receptor that resembles the mammalian NK1 receptor more closely than the NK2 receptor. Administration of the inhibitor of nitric oxide synthesis, L-nitro-arginine-methylester (L-NAME; 150 mg kg-1), resulted in a significant (P<0.05) increase in Psys as well as a decrease in Gsys, but no effect on Ppul and Gpul. Conversely, the nitric oxide donor, sodium nitroprusside (SNP; 60 microg kg-1) produced a significant (P<0.05) decrease in Psys along with an increase in Gsys and pulmonary blood flow. However, neither L-NAME nor indomethacin (10 mg kg-1) reduced the cardiovascular responses to NPgamma. Thus, nitric oxide is involved in regulation of basal vascular tone in the python, but neither nitric oxide nor prostaglandins mediate the vasodilatory action of NPgamma.
Collapse
Affiliation(s)
- Nini Skovgaard
- Department of Zoophysiology, Aarhus University, Building 131, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
94
|
Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW. Physiology: postprandial cardiac hypertrophy in pythons. Nature 2005; 434:37-8. [PMID: 15744290 DOI: 10.1038/434037a] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxygen consumption by carnivorous reptiles increases enormously after they have eaten a large meal in order to meet metabolic demands, and this places an extra load on the cardiovascular system. Here we show that there is an extraordinarily rapid 40% increase in ventricular muscle mass in Burmese pythons (Python molurus) a mere 48 hours after feeding, which results from increased gene expression of muscle-contractile proteins. As this fully reversible hypertrophy occurs naturally, it could provide a useful model for investigating the mechanisms that lead to cardiac growth in other animals.
Collapse
Affiliation(s)
- Johnnie B Andersen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
95
|
McCue MD, Bennett AF, Hicks JW. The effect of meal composition on specific dynamic action in burmese pythons (Python molurus). Physiol Biochem Zool 2005; 78:182-92. [PMID: 15778938 DOI: 10.1086/427049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2004] [Indexed: 11/03/2022]
Abstract
We quantified the specific dynamic action (SDA) resulting from the ingestion of various meal types in Burmese pythons (Python molurus) at 30 degrees C. Each snake was fed a series of experimental meals consisting of amino acid mixtures, simple proteins, simple or complex carbohydrates, or lipids as well as meals of whole animal tissue (chicken breast, beef suet, and mouse). Rates of oxygen consumption were measured for approximately 4 d after feeding, and the increment above standard metabolic rate was determined and compared to energy content of the meals. While food type (protein, carbohydrate, and lipid) had a general influence, SDA was highly dependent on meal composition (i.e., amino acid composition and carbohydrate structure). For chicken breast and simple carbohydrates, the SDA coefficient was approximately one-third the energetic content of the meal. Lard, suet, cellulose, and starch were not digested and did not produce measurable SDA. We conclude that the cost of de novo protein synthesis is an important component of SDA after ingestion of protein meals because (1) simple proteins, such as gelatin and collagen, did not stimulate levels of SDA attained after consumption of complete protein, (2) incomplete mixtures of amino acids failed to elicit the SDA of a complete mixture, and (3) the inhibition of de novo protein synthesis with the drug cycloheximide caused a more than 70% decrease in SDA. Stomach distension and mechanical digestion of intact prey did not cause measurable SDA.
Collapse
Affiliation(s)
- M D McCue
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 92697-2525, USA.
| | | | | |
Collapse
|
96
|
Clark TD, Wang T, Butler PJ, Frappell PB. Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard, Varanus rosenbergi. Am J Physiol Regul Integr Comp Physiol 2004; 288:R992-7. [PMID: 15576663 DOI: 10.1152/ajpregu.00593.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of information concerning the cardio-metabolic performance of varanids during exercise is limited to a few species at their preferred body temperature (T(b)) even though, being ectotherms, varanids naturally experience rather large changes in T(b). Although it is well established that absolute aerobic scope declines with decreasing T(b), it is not known whether changes in cardiac output (V(b)) and/or tissue oxygen extraction, (Ca(O2) - Cv(O2)), are in proportion to the rate of oxygen consumption (Vo(2)). To test this, we studied six Rosenberg's goannas (Varanus rosenbergi) while at rest and while maximally exercising on a treadmill both at 25 and 36 degrees C. During maximum exercise both at 25 and 36 degrees C, mass-specific rate of oxygen consumption (Vo(2kg)) increased with an absolute scope of 8.5 ml min(-1) kg(-1) and 15.7 ml min(-1) kg(-1), respectively. Interestingly, the factorial aerobic scope was temperature-independent and remained at 7.0 which, at each T(b), was primarily the result of an increase in V(bkg), governed by approximate twofold increases both in heart rate (f(H)) and cardiac stroke volume (V(Skg)). Both at 25 degrees C and 36 degrees C, the increase in V(bkg) alone was not sufficient to provide all of the additional oxygen required to attain maximal Vo(2kg), as indicated by a decrease in the blood convection requirement V(bkg)/Vo(2kg); hence, there was a compensatory twofold increase in (Ca(O2) - Cv(O2)). Although associated with an increase in hemoglobin-oxygen affinity, a decrease in T(b) did not impair unloading of oxygen at the tissues and act to reduce (Ca(O2) - Cv(O2)); both Ca(O2)) and Cv(O2)) were maintained across T(b). The change in Vo(2kg) with T(b), therefore, is solely reliant on the thermal dependence of V(bkg). Maintaining a high factorial aerobic scope across a range of T(b) confers an advantage in that cooler animals can achieve higher absolute aerobic scopes and presumably improved aerobic performance than would otherwise be achievable.
Collapse
Affiliation(s)
- T D Clark
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
97
|
Hicks JW, Bennett AF. Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir Physiol Neurobiol 2004; 144:215-24. [PMID: 15556104 DOI: 10.1016/j.resp.2004.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
The principal function of the cardiopulmonary system is the matching of oxygen and carbon dioxide transport to the metabolic requirements of different tissues. Increased oxygen demands (VO2), for example during physical activity, result in a rapid compensatory increase in cardiac output and redistribution of blood flow to the appropriate skeletal muscles. These cardiovascular changes are matched by suitable ventilatory increments. This matching of cardiopulmonary performance and metabolism during activity has been demonstrated in a number of different taxa, and is universal among vertebrates. In some animals, large increments in aerobic metabolism may also be associated with physiological states other than activity. In particular, VO2 may increase following feeding due to the energy requiring processes associated with prey handling, digestion and ensuing protein synthesis. This large increase in VO2 is termed "specific dynamic action" (SDA). In reptiles, the increase in VO2 during SDA may be 3-40-fold above resting values, peaking 24-36 h following ingestion, and remaining elevated for up to 7 days. In addition to the increased metabolic demands, digestion is associated with secretion of H+ into the stomach, resulting in a large metabolic alkalosis (alkaline tide) and a near doubling in plasma [HCO3-]. During digestion then, the cardiopulmonary system must meet the simultaneous challenges of an elevated oxygen demand and a pronounced metabolic alkalosis. This paper will compare and contrast the patterns of cardiopulmonary response to similar metabolic increments in these different physiological states (exercise and/or digestion) in a variety of reptiles, including the Burmese python, Python morulus, savannah monitor lizard, Varanus exanthematicus, and American alligator Alligator mississipiensis.
Collapse
Affiliation(s)
- James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
98
|
Munns SL, Hartzler LK, Bennett AF, Hicks JW. Elevated intra-abdominal pressure limits venous return during exercise inVaranus exanthematicus. J Exp Biol 2004; 207:4111-20. [PMID: 15498957 DOI: 10.1242/jeb.01279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARYThe effects of treadmill exercise on components of the cardiovascular(venous return, heart rate, arterial blood pressure) and respiratory systems(minute ventilation, tidal volume, breathing frequency, oxygen consumption,carbon dioxide production) and intra-abdominal pressure were investigated in the Savannah monitor lizard, Varanus exanthematicus B., at 35°C. Compared with resting conditions, treadmill exercise significantly increased lung ventilation, gular pumping, intra-abdominal pressure, mean arterial blood pressure and venous return (blood flow in the post caval vein). However,venous return declines at high levels of activity, and mean arterial pressure and venous return did not attain peak values until the recovery period,immediately following activity. Elevating intra-abdominal pressure in resting lizards (via saline infusion) resulted in significant reductions in venous return when the transmural pressure of the post caval vein became negative (i.e. when intra-abdominal pressure exceeded central venous pressure). Together these results suggest that increments in intra-abdominal pressure compress the large abdominal veins and inhibit venous return. During locomotion, the physical compression of the large abdominal veins may represent a significant limitation to cardiac output and maximal oxygen consumption in lizards.
Collapse
Affiliation(s)
- Suzanne L Munns
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
99
|
Skovgaard N, Wang T. Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard. Respir Physiol Neurobiol 2004; 141:85-97. [PMID: 15234678 DOI: 10.1016/j.resp.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/15/2022]
Abstract
We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.
Collapse
Affiliation(s)
- Nini Skovgaard
- Department of Zoophysiology, Aarhus University, Building 131, 8000 Aarhus C, Denmark
| | | |
Collapse
|
100
|
Andrade DV, De Toledo LF, Abe AS, Wang T. Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. ACTA ACUST UNITED AC 2004; 207:1379-85. [PMID: 15010489 DOI: 10.1242/jeb.00896] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not PCO2 during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol l(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial PCO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial PCO2. The increased arterial PCO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial PCO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than PCO2 normally affects chemoreceptor activity and ventilatory drive.
Collapse
Affiliation(s)
- Denis V Andrade
- Departamento de Zoologia, Universidade Estadual Paulista, 13506-900, Rio Claro SP, Brazil
| | | | | | | |
Collapse
|