51
|
Baxter BA, Baross AW, Ryan DJ, Wright BH, Kay AD. The acute and repeated bout effects of multi-joint eccentric exercise on physical function and balance in older adults. Eur J Appl Physiol 2023; 123:2131-2143. [PMID: 37217609 PMCID: PMC10492690 DOI: 10.1007/s00421-023-05226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Eccentric muscle actions generate high levels of force at a low metabolic cost, making them a suitable training modality to combat age-related neuromuscular decline. The temporary muscle soreness associated with high intensity eccentric contractions may explain their limited use in clinical exercise prescription, however any discomfort is often alleviated after the initial bout (repeated bout effect). Therefore, the aims of the present study were to examine the acute and repeated bout effects of eccentric contractions on neuromuscular factors associated with the risk of falling in older adults. METHODS Balance, functional ability [timed up-and-go and sit-to-stand], and lower-limb maximal and explosive strength were measured in 13 participants (67.6 ± 4.9 year) pre- and post-eccentric exercise (0, 24, 48, and 72 hr) in Bout 1 and 14 days later in Bout 2. The eccentric exercise intervention was performed on an isokinetic unilateral stepper ergometer at 50% of maximal eccentric strength at 18 step‧min-1 per limb for 7 min (126 steps per limb). Two-way repeated measures ANOVAs were conducted to identify any significant effects (P ≤ 0.05). RESULTS Eccentric strength significantly decreased (- 13%) in Bout 1 at 24 hr post-exercise; no significant reduction was observed at any other time-point after Bout 1. No significant reductions occurred in static balance or functional ability at any time-point in either bout. CONCLUSION Submaximal multi-joint eccentric exercise results in minimal disruption to neuromuscular function associated with falls in older adults after the initial bout.
Collapse
Affiliation(s)
- Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK.
| | - Anthony W Baross
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Declan J Ryan
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Ben H Wright
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| |
Collapse
|
52
|
Jannas-Vela S, Bustamante A, Zbinden-Foncea H, Peñailillo L. Plasma α-Actin as an Early Marker of Muscle Damage After Repeated Bouts of Eccentric Cycling. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:853-860. [PMID: 35522171 DOI: 10.1080/02701367.2022.2060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Purpose: This study aimed to examine the changes in skeletal muscle (SM) α-actin, myoglobin (Mb) and hydroxyproline (HP) in plasma and other indirect markers of muscle damage after repeated bouts of eccentric cycling. Methods: Ten healthy men (23.3 ± 2.8 years) performed two 30-min eccentric cycling bouts at 100% of maximal concentric power output (230.7 ± 36.9 W) separated by 2 weeks (ECC1 and ECC2). Maximal voluntary isometric contraction (MVIC) peak force of the knee extensor muscles, muscle soreness (SOR), pain pressure threshold (PPT) and plasma levels of SM α-actin, Mb, and HP were measured before, 0.5, 3, 24-168 h after each cycling bout. Results: MVIC peak force decreased on average 10.7 ± 13.1% more after ECC1 than ECC2. SOR was 80% greater and PPT was 12-14% lower after ECC1 than ECC2. Plasma SM α-actin levels increased at 0.5, 3, and 24-72 h after ECC1 (26.1-47.9%), and SM α-actin levels at 24 h after ECC1 were associated with muscle strength loss (r = -0.56, P = .04) and SOR (r = 0.88, P = .001). Mb levels increased at 0.5, 3, and 24 h after ECC1 (200-502%). However, Mb levels at 24 h after ECC1were not associated with muscle strength loss and SOR. HP levels remained unchanged after ECC1. ECC2 did not increase SM α-actin, Mb and HP levels. Conclusion: Our results indicate that α-actin could be used as a potential marker for the early identification of SM damage due to its early appearance in plasma and its association with other indirect markers of muscle damage.
Collapse
|
53
|
Shibata K, Yamaguchi T, Takizawa K, Nosaka K. Comparison in Repetitions to Failure Between Concentric-Only and Eccentric-Only Dumbbell Arm Curl Exercise at Four Different Relative Intensities. J Strength Cond Res 2023; 37:1754-1760. [PMID: 36728005 DOI: 10.1519/jsc.0000000000004470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Shibata, K, Yamaguchi, T, Takizawa, K, and Nosaka, K. Comparison in repetitions to failure between concentric-only and eccentric-only dumbbell arm curl exercise at four different relative intensities. J Strength Cond Res 37(9): 1754-1760, 2023-The repetitions to failure (RF) were compared between concentric-only (CON) and eccentric-only (ECC) arm curl exercise for different intensities based on CON and ECC 1 repetition maximum (1RM), respectively, with 2 different inter-repetition rests. Sixteen healthy male, university students (19-22 years) participated in 6 sessions. In sessions 1 and 2, CON and ECC 1RM strength were determined. In sessions 3 to 6, CON and ECC dumbbell arm curl exercises were performed until momentary failure at the intensity of either 70, 80, 90 or 95% of CON and ECC 1RM, respectively, with the inter-repetition rest of 3 seconds (R3) for one arm and 6 seconds (R6) for the other arm in a pseudo-randomized order. A significant ( p < 0.01) muscle contraction type × intensity interaction effect was evident for both R3 and R6 conditions. RF was greater ( p < 0.01) in ECC than in CON at 70% (34.2 ± 13.3 vs 20.9 ± 5.4), 80% (22.0 ± 6.7 vs 11.6 ± 2.7), 90% (10.1 ± 3.1 vs 5.2 ± 1.3), and 95% (6.8 ± 2.1 vs 2.7 ± 0.8) for R3. RF was also greater ( p < 0.01) for ECC than for CON at 80% (24.5 ± 8.1 vs 15.6 ± 3.6), 90% (10.8 ± 2.8 vs 7.2 ± 1.8) and 95% (6.7 ± 2.4 vs 3.9 ± 1.5) for R6, with greater ( p < 0.05) RF for R6 than R3. Significant ( p < 0.01) correlations in RF were evident between CON and ECC for R3 ( r = 0.86) and R6 ( r = 0.76). Equations to estimate 1RM were derived for CON and ECC at R3 and R6 (e.g., ECC 1RM = Load × 110.0/[110.5-RF] for R3). These results suggest that fatigue is less in ECC than in CON performed at the same relative intensity.
Collapse
Affiliation(s)
- Keisuke Shibata
- Strength and Conditioning Laboratory, Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Taichi Yamaguchi
- Strength and Conditioning Laboratory, Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kazuki Takizawa
- Institute of Physical Development Research, Sapporo, Hokkaido, Japan; and
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
54
|
Rosvoglou A, Fatouros IG, Poulios A, Tsatalas T, Papanikolaou K, Karampina E, Liakou CA, Tsimeas P, Karanika P, Tsoukas D, Katrabasas I, Chatzinikolaou A, Deli CK, Giakas G, Jamurtas AZ, Draganidis D. Recovery kinetics following eccentric exercise is volume-dependent. J Sports Sci 2023; 41:1326-1335. [PMID: 37864292 DOI: 10.1080/02640414.2023.2272101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The present study compared the effect of 75 vs 150 vs 300 intensity-matched eccentric contractions on muscle damage and performance recovery kinetics. Ten healthy males participated in a randomized, cross-over study consisted of 4 experimental trials (ECC75, ECC150, ECC300 and Control - no exercise) with a 4-week washout period in-between. Performance and muscle damage, inflammatory and oxidative stress markers were evaluated at baseline, post-exercise, 24, 48 and 192 hours following each exercise protocol. Concentric and eccentric peak torque decreased similarly in ECC150 and ECC300 during the first 48 h of recovery (p < 0.05) but remained unaffected in ECC75. Countermovement jump indices decreased post-exercise and at 24 h in ECC150 and ECC300, with ECC300 inducing a more pronounced reduction (p < 0.05). Creatine kinase increased until 48 h of recovery in all trials and remained elevated up to 192 h only in ECC300 (p < 0.05). Delayed onset of muscle soreness increased, and knee-joint range of motion decreased in a volume-dependent manner during the first 48 h (p < 0.05). Likewise, a volume-dependent decline of glutathione and a rise of protein carbonyls was observed during the first 48 h of recovery (p < 0.05). Collectively, our results indicate that muscle damage and performance recovery following eccentric exercise is volume dependent, at least in lower limbs.
Collapse
Affiliation(s)
- Anastasia Rosvoglou
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | - Evaggeli Karampina
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Christina A Liakou
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Panagiota Karanika
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Dimitrios Tsoukas
- 5th Orthopaedic Clinic for Advanced Arthroscopic Sports and Regenerative Surgery, Mitera Hospital, Athens, Greece
| | | | - Athanasios Chatzinikolaou
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Giannis Giakas
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
55
|
Lee JB, Katerberg C, Bommarito JC, Power GA, Millar PJ. Blood Pressure Responses to Postexercise Circulatory Occlusion Are Attenuated After Exercise-Induced Muscle Weakness. Med Sci Sports Exerc 2023; 55:1660-1671. [PMID: 37017549 DOI: 10.1249/mss.0000000000003182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
PURPOSE Exercise blood pressure (BP) responses are thought to be determined by relative exercise intensity (percent maximal voluntary contraction (MVC) strength). However, cross-sectional studies report that during a static contraction, higher absolute force is associated with greater BP responses to relative intensity exercise and subsequent muscle metaboreflex activation with postexercise circulatory occlusion (PECO). We hypothesized that a bout of unaccustomed eccentric exercise would reduce knee extensor MVC and subsequently attenuate BP responses to PECO. METHODS Continuous BP, heart rate, muscle oxygenation, and knee extensor electromyography were recorded in 21 young healthy individuals (female, n = 10) during 2 min of 20% MVC static knee extension exercise and 2 min of PECO, performed before and 24 h after 300 maximal knee extensor eccentric contractions to cause exercise-induced muscle weakness. As a control, 14 participants repeated the eccentric exercise 4 wks later to test whether BP responses were altered when exercise-induced muscle weakness was attenuated via the protective effects of the repeated bout effect. RESULTS Eccentric exercise reduced MVC in all participants (144 ± 43 vs 110 ± 34 N·m, P < 0.0001). BP responses to matched relative intensity static exercise (lower absolute force) were unchanged after eccentric exercise ( P > 0.99) but were attenuated during PECO (systolic BP: 18 ± 10 vs 12 ± 9 mm Hg, P = 0.02). Exercise-induced muscle weakness modulated the deoxygenated hemoglobin response to static exercise (64% ± 22% vs 46% ± 22%, P = 0.04). When repeated after 4 wks, exercise-induced weakness after eccentric exercise was attenuated (-21.6% ± 14.3% vs -9.3 ± 9.7, P = 0.0002) and BP responses to PECO were not different from control values (all, P > 0.96). CONCLUSIONS BP responses to muscle metaboreflex activation, but not exercise, are attenuated by exercise-induced muscle weakness, indicating a contribution of absolute exercise intensity on muscle metaboreflex activation.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Carlin Katerberg
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Julian C Bommarito
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| |
Collapse
|
56
|
Chen TC, Huang YC, Chou TY, Hsu ST, Chen MY, Nosaka K. Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise. Eur J Sport Sci 2023; 23:1638-1646. [PMID: 36825876 DOI: 10.1080/17461391.2023.2185163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The present study investigated the effects of a far-infrared radiation (FIR) lamp therapy on changes in muscle damage and proprioception markers after maximal eccentric exercise of the elbow flexors (EF: Study 1) and the knee flexors (KF: Study 2) in comparison to a sham treatment condition. In each study, 24 healthy sedentary women were assigned to a FIR or a sham treatment group (n = 12/group). They performed 72 maximal EF eccentric contractions (Study 1) or 100 maximal KF eccentric contractions (Study 2) with their non-dominant limbs. They received a 30-min FIR (wavelength: 8-14 µm) or sham treatment at 1, 25, 49, 73 and 97 h post-exercise to the exercised muscles. Maximum voluntary isometric contraction (MVC) torque, muscle soreness, plasma creatine kinase activity, and proprioception assessed by position sense, joint reaction angle, and force match were measured before, and 0.5, 24, 48, 72, 96 and 120 h post-exercise. The outcome measures showed significant changes (P < 0.05) at 0.5-hour post-exercise (before treatment) similarly (P > 0.05) between the conditions in both studies. However, changes in all measures at 24-120 h post-exercise were smaller (P < 0.05) for the FIR than sham condition in both studies. For example, MVC torque returned to the baseline by 72 h post-exercise for the FIR condition in both studies, but was still 19 ± 6% (Study 1) or 17 ± 12% (Study 2) lower than the baseline at 120 h post-exercise for the sham condition. These results suggested that the FIR lamp therapy was effective for accelerating recovery from muscle damage.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Yuh-Chuan Huang
- Physical Education Office, Ming Chuan University, Taipei City, Taiwan
| | - Tai-Ying Chou
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan
| | - Sheng-Tsung Hsu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Mei-Yen Chen
- Graduate Institute of Sport, Leisure and Hospitality Management, National Taiwan Normal University, Taipei City, Taiwan
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
57
|
Liu Q, Jin S, Li L, Ayi L, Ding H. Massage protects skeletal muscle from injury during long-term heavy-duty exercise via integrin β1 and laminin 2 channels of basement membrane. BMC Complement Med Ther 2023; 23:266. [PMID: 37495963 PMCID: PMC10369692 DOI: 10.1186/s12906-023-04094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Massage is widely used in exercise-induced skeletal muscle damage (EIMD). It has been proven that massage can improve the morphology and function of damaged skeletal muscle in multiple ways. However, whether massage can protect skeletal muscles from injury during long-term heavy-duty exercise has not yet been determined. METHODS In this study, a rat model of overuse injury was established by eccentric running for 4 weeks, and pressing at constant pressure and frequency and massage were used as intervention methods to explore whether massage could protect skeletal muscle from injury through upregulating integrin and the basement membrane laminin. RESULTS The results showed that compared with the model group, the ultrastructure of skeletal muscle in the massage group was relatively complete and clear, and the maximum isotonic and tetanic contraction forces were significantly increased (P < 0.01). In addition, in the massage group, β1 integrin expression was significantly increased, p-FAK protein expression was decreased, and the co-localization of β1 integrin and the basement membrane laminin 2 was significantly increased (P < 0.01). CONCLUSION Our study shows that during long-term heavy-duty exercise, massage can enhance the cell adhesion function mediated by integrin β1 and laminin 2 to protect skeletal muscle from injury and prevent the occurrence of overuse injury.
Collapse
Affiliation(s)
- Qingsong Liu
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Liubu Ayi
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Insititute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| |
Collapse
|
58
|
CHEN TREVORC, WU SHANGHEN, CHEN HSINLIAN, TSENG WEICHIN, TSENG KUOWEI, KANG HSINGYU, NOSAKA KAZUNORI. Effects of Unilateral Eccentric versus Concentric Training of Nonimmobilized Arm during Immobilization. Med Sci Sports Exerc 2023; 55:1195-1207. [PMID: 36849120 PMCID: PMC10241444 DOI: 10.1249/mss.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
INTRODUCTION The present study tested the hypothesis that eccentric training (ET) of nonimmobilized arm would attenuate negative effects of immobilization and provide greater protective effects against muscle damage induced by eccentric exercise after immobilization, when compared with concentric training (CT). METHODS Sedentary young men were placed to ET, CT, or control group ( n = 12 per group), and their nondominant arms were immobilized for 3 wk. During the immobilization period, the ET and CT groups performed five sets of six dumbbell curl eccentric-only and concentric-only contractions, respectively, at 20%-80% of maximal voluntary isometric contraction (MVCiso) strength over six sessions. MVCiso torque, root-mean square (RMS) of electromyographic activity during MVCiso, and bicep brachii muscle cross-sectional area (CSA) were measured before and after immobilization for both arms. All participants performed 30 eccentric contractions of the elbow flexors (30EC) by the immobilized arm after the cast was removed. Several indirect muscle damage markers were measured before, immediately after, and for 5 d after 30EC. RESULTS ET increased MVCiso (17% ± 7%), RMS (24% ± 8%), and CSA (9% ± 2%) greater ( P < 0.05) than CT (6% ± 4%, 9% ± 4%, 3% ± 2%) for the trained arm. The control group showed decreases in MVCiso (-17% ± 2%), RMS (-26% ± 6%), and CSA (-12% ± 3%) for the immobilized arm, but these changes were attenuated greater ( P < 0.05) by ET (3% ± 3%, -0.1% ± 2%, 0.1% ± 0.3%) than CT (-4% ± 2%, -4% ± 2%, -1.3% ± 0.4%). Changes in all muscle damage markers after 30EC were smaller ( P < 0.05) for the ET and CT than the control group, and ET than the CT group (e.g., peak plasma creatine kinase activity: ET, 860 ± 688 IU·L -1 ; CT, 2390 ± 1104 IU·L -1 ; control, 7819 ± 4011 IU·L -1 ). CONCLUSIONS These results showed that ET of the nonimmobilized arm was effective for eliminating the negative effects of immobilization and attenuating eccentric exercise-induced muscle damage after immobilization.
Collapse
Affiliation(s)
- TREVOR C. CHEN
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, TAIWAN
| | - SHANG-HEN WU
- Department of Physical Education, Health and Recreation, National Chiayi University, Chiayi County, TAIWAN
| | - HSIN-LIAN CHEN
- Department of Physical Education, Health and Recreation, National Chiayi University, Chiayi County, TAIWAN
| | - WEI-CHIN TSENG
- Department of Physical Education, University of Taipei, Taipei City, TAIWAN
| | - KUO-WEI TSENG
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, TAIWAN
| | - HSING-YU KANG
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, TAIWAN
| | - KAZUNORI NOSAKA
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, AUSTRALIA
| |
Collapse
|
59
|
Chen TCC, Kang HY, Tseng WC, Lin SC, Chan CW, Chen HL, Chou TY, Wang HH, Lau WY, Nosaka K. Muscle damage induced by maximal eccentric exercise of the elbow flexors after 3-week immobilization. Scand J Med Sci Sports 2023; 33:382-392. [PMID: 36427271 DOI: 10.1111/sms.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The present study investigated the effects of a 3-week immobilization (IM) on muscle damage induced by maximal eccentric exercise (MaxEC) to test the hypothesis that the IM would make muscles prone to muscle damage. Young healthy sedentary men were pseudo-randomly assigned to IM or control group (n = 12/group). Non-dominant arms of the IM group participants were immobilized at 90° elbow flexion by a cast for 21 days. All participants performed MaxEC consisting of five sets of six elbow flexor contractions by lowering a dumbbell set at 100% of pre-exercise maximal voluntary isometric contraction (MVC) strength of the non-dominant arm. This was performed at 2 days after the cast removal for the IM group. MVC torque, range of motion (ROM), muscle thickness (MT), muscle hardness, position sense (PS), and joint reaction angle (JRA) of the elbow flexors were measured at baseline, post-immobilization, and before, immediately after, and one to 5 days after MaxEC. The IM decreased MVC torque (-17 ± 2%), ROM (-2 ± 1%), MT (-7 ± 3%), and JRA (-12 ± 6%), and increased in muscle hardness (20 ± 6%) and PS (11 ± 2%) (p < 0.05). Changes in MVC (e.g., 2 days: -40 ± 5 vs. -30 ± 9%), ROM (2 days: -11 ± 2 vs. -9 ± 3%), muscle soreness (peak: 63 ± 22 vs. 48 ± 14 mm), plasma CK activity (peak: 7820 ± 4011 vs. 4980 ± 1363 IU/L), PS (maximal change: -23 ± 2 vs. -18 ± 3%), and JRA (maximal change: -37 ± 4 vs. -26 ± 3%) after MaxEC were greater (p < 0.05) for the IM than control group. These results supported the hypothesis and showed that the IM made the muscles more vulnerable to muscle damage induced by eccentric exercise.
Collapse
Affiliation(s)
- Trevor Chung-Ching Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Hsing-Yu Kang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Chin Tseng
- Department of Physical Education, University of Taipei, Taipei, Taiwan
| | - Shih-Che Lin
- Department of Physical Education, National Pingtung University, Pingtung, Taiwan
| | - Chuan-Wei Chan
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Lian Chen
- Department of Physical Education, Health and Recreation, National Chiayi University, Chiayi, Taiwan
| | - Tai-Ying Chou
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Hung-Hao Wang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Wing Yin Lau
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
60
|
Lavin KM, Graham ZA, McAdam JS, O'Bryan SM, Drummer D, Bell MB, Kelley CJ, Lixandrão ME, Peoples B, Tuggle SC, Seay RS, Van Keuren-Jensen K, Huentelman MJ, Pirrotte P, Reiman R, Alsop E, Hutchins E, Antone J, Bonfitto A, Meechoovet B, Palade J, Talboom JS, Sullivan A, Aban I, Peri K, Broderick TJ, Bamman MM. Dynamic transcriptomic responses to divergent acute exercise stimuli in young adults. Physiol Genomics 2023; 55:194-212. [PMID: 36939205 PMCID: PMC10110731 DOI: 10.1152/physiolgenomics.00144.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023] Open
Abstract
Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n = 21, 12 M/9 F, 22 ± 3 yr) or HITT (n = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress.NEW & NOTEWORTHY We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Devin Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Margaret B Bell
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christian J Kelley
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Manoel E Lixandrão
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Brandon Peoples
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Craig Tuggle
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Regina S Seay
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Matthew J Huentelman
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Patrick Pirrotte
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Rebecca Reiman
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Elizabeth Hutchins
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Jerry Antone
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Anna Bonfitto
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Bessie Meechoovet
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joanna Palade
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joshua S Talboom
- Cancer & Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Amber Sullivan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Inmaculada Aban
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kalyani Peri
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Timothy J Broderick
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
61
|
Barquilha G, Dos Santos CMM, Caçula KG, Santos VC, Polotow TG, Vasconcellos CV, Gomes-Santos JAF, Rodrigues LE, Lambertucci RH, Serdan TDA, Levada-Pires AC, Hatanaka E, Cury-Boaventura MF, de Freitas PB, Pithon-Curi TC, Masi LN, Barros MP, Curi R, Gorjão R, Hirabara SM. Fish Oil Supplementation Improves the Repeated-Bout Effect and Redox Balance in 20-30-Year-Old Men Submitted to Strength Training. Nutrients 2023; 15:1708. [PMID: 37049548 PMCID: PMC10096819 DOI: 10.3390/nu15071708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Herein, we investigated the effect of fish oil supplementation combined with a strength-training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in untrained young men. Sixteen men were divided into two groups, supplemented or not with fish oil, and they were evaluated at the pre-training period and post-training period. We investigated changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic exercises at baseline (pre-training period) and decreased during the post-training period in the control group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction and improved the redox state. In summary, our findings demonstrate that, in untrained young men submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox imbalance induced by a single session of intense strength exercises, highlighting this supplementation as a beneficial strategy for young men that intend to engage in strength-training programs.
Collapse
Affiliation(s)
- Gustavo Barquilha
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cesar Miguel Momesso Dos Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- ENAU Faculty, Ribeirão Pires 09424-130, Brazil
- United Metropolitan Colleges, Centro Universitário FMU, Sao Paulo 01503-001, Brazil
| | - Kim Guimaraes Caçula
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Vinícius Coneglian Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tatiana Geraldo Polotow
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cristina Vardaris Vasconcellos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - José Alberto Fernandes Gomes-Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Luiz Eduardo Rodrigues
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Adriana Cristina Levada-Pires
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Paulo Barbosa de Freitas
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Instituto Butantan, Sao Paulo 05503-900, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| |
Collapse
|
62
|
Methenitis S, Theodorou AA, Chatzinikolaou PN, Margaritelis NV, Nikolaidis MG, Paschalis V. The effects of chronic concentric and eccentric training on position sense and joint reaction angle of the knee extensors. Eur J Sport Sci 2023:1-11. [PMID: 36815692 DOI: 10.1080/17461391.2023.2184726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of the present study was to compare the effect of chronic concentric or eccentric training on position sense and joint reaction angle, in healthy, untrained young men. Twenty-four men were randomly assigned into a pure concentric (CT) or a pure eccentric (ET) group and performed for 8 weeks, one training session/week, 75 maximal knee extensors contractions. Before and 48 h after the first (W1) and the last (W8) training sessions, knee joint position sense and joint reaction angle were assessed at three different knee angles (i.e. 30°, 45° and 60°). At the same time points, indirect indices of exercise-induced muscle damage (EIMD) were evaluated (i.e. range of motion [ROM], optimal angle, maximum isometric, concentric and eccentric torques, delayed onset muscle soreness [DOMS] and blood creatine kinase concentrations [CK]). Forty-eight hours post W1, position sense, reaction angle and all EIMD indices were significantly changed for both groups (p < 0.05; η2: 0.125-0.618), however, greater alterations were observed after ET. Significant correlations were found, in both groups, between the training-induced changes of position sense, reaction angles and the changes of EIMD biomarkers (r: -0.855-0.825; p < 0.005). No significant changes were found 48 h post W8 for position sense, reaction angle and EIMD indices (p > 0.285) for both CT or ET groups. In conclusion, exercise-induced changes in position sense and reaction angle, were related to the magnitude of EIMD, and not by the type of muscle contraction per se. HighlightsExercise induced changes in position sense and reaction angle, were related to the magnitude of EIMD, and not by the type of muscle contraction per se.After the 1st training session eccentric exercise caused greater disturbances, compared to concentric exercise, in EIMD indices which caused concomitant disturbances to position sense and knee reaction angle.8 weeks of either eccentric or concentric training leads to preservation of position sense and knee reaction angle 48 h after maximal intensity exercise of either types of muscle contraction.
Collapse
Affiliation(s)
- S Methenitis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.,Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University, Nicosia, Cyprus
| | - P N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
63
|
Brown BA, Ye X, Xin L. The Contralateral Repeated Bout Effect of Elbow Flexors Is Not Observed in Young Women Following Mild Muscle Damage from Eccentric Exercises. Sports (Basel) 2023; 11:sports11030062. [PMID: 36976948 PMCID: PMC10056121 DOI: 10.3390/sports11030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Investigation of the contralateral repeated bout effect (CL-RBE) in women is scarce. Therefore, this study aimed at examining whether CL-RBE exists in women. Twelve healthy women (age: 20.9 ± 2.5 years) performed two bouts of maximal elbow flexor eccentric exercise (3 sets × 15 repetitions per bout) separated by 14 days, using the opposite arms. Surface Electromyography (EMG) was recorded during both exercise bouts. The isokinetic muscle strength (60°/s), muscle soreness, range of motion (ROM), limb girth, and blood creatine kinase activity were measured pre-exercise, and at 24 and 48 h post-exercise with the muscle strength being measured immediately post-exercise as well. Significant main effects of time were observed for muscle strength, muscle soreness and ROM (p < 0.05). There were no significant differences between bouts for all the measured variables including the EMG median frequency (p > 0.05). These results suggest that the CL-RBE of elbow flexors was not evident in young healthy women. This was because the mild muscle damage induced by the initial bout of exercise was either not enough to initiate the CL-RBE or the CL-RBE in women lasted shorter than two weeks. This study provides important information for future studies on CL-RBE in women.
Collapse
Affiliation(s)
- Bailey A Brown
- Snell Prosthetics and Orthotics, Little Rock, AR 72205, USA
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Ling Xin
- Exercise Science Program, Biology Department, Simmons University, Boston, MA 02115, USA
| |
Collapse
|
64
|
Jeon S, Kang M, Ye X. Contralateral protective effect against repeated bout of damaging exercise: A meta-analysis. Res Sports Med 2023; 31:137-156. [PMID: 34304646 DOI: 10.1080/15438627.2021.1954512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose was to summarize the studies examining the contralateral protective effect on the maximal strength in the subsequent bout of muscle-damaging exercise. The literature search was conducted through CINAHL plus, SportDiscus, and PubMed. Hedge's g effect size (ES) and 95% confidence intervals (CIs) were computed using a random effects model. From 14 papers and 25 ESs, the mean ES for contralateral repeated bout effect (CL-RBE) on 1-, 2-, and 3-day post maximal strength were -0.61 (95% CI = -0.80, -0.41), -0.50 (95% CI = -0.67, -0.33), and -0.74 (95% CI = -1.01, -0.48), respectively. For moderator analyses, the mean ESs were not influenced by type (isometric vs. isokinetic) of strength, but CL-RBE on maximal strength was influenced by duration (≤6 weeks) between bouts. Therefore, the meta-analysis demonstrated that an initial bout of exercise induces the protective effect on contralateral limb muscles regardless of the different type of strength, but can be affected by different duration (≤6 weeks) between exercise bouts.
Collapse
Affiliation(s)
- Sunggun Jeon
- School of Kinesiology, Applied Health and Recreation, Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Minsoo Kang
- Department of Health, Exercise Science, and Recreation Management, Health and Sport Analytics Lab, University of Mississippi, University, MS, USA
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT, USA
| |
Collapse
|
65
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
66
|
Lin Z, Blazevich AJ, Abbiss CR, Wilkie JC, Nosaka K. Neuromuscular fatigue and muscle damage following a simulated singles badminton match. Eur J Appl Physiol 2023; 123:1229-1240. [PMID: 36763122 DOI: 10.1007/s00421-023-05148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To understand muscle damage in badminton, changes in neuromuscular function were investigated after simulated badminton singles matches performed by ten state-level male players. METHODS Each participant played eight matches and measurements were taken before, immediately after, and 1 and 24 h after each match. Maximal voluntary isometric contraction (MVC) torque of the knee extensors and flexors, voluntary activation (VA) during MVC and torques generated by doublet (TDoublet), 20 (T20) and 80 Hz (T80) electrical stimulations of the knee extensors were measured from the dominant leg (the racket-hold arm side). Muscle soreness was assessed by a 100-mm visual analogue scale from both legs. The number of lunges performed by each participant in each match was analysed by videos, and its relations to other measures were examined. RESULTS Pre-match knee extensor and flexor MVC torques were 278.4 ± 50.8 Nm and 143.0 ± 36.2 Nm, respectively. Knee extensor MVC torque of the dominant leg decreased immediately (12.0 ± 2.9%) and 1 h post-match (16.0 ± 3.2%), but returned to baseline at 24 h post-match. VA (11.4 ± 2.9%), TDoublet (13.1 ± 6.0%), T20 (31.1 ± 12.3%) and T80 (25.5 ± 7.9%) decreased (p < 0.01) immediately post-match but recovered by 24 h post-match. A significant correlation (r = - 0.64, p < 0.01) was observed between the total number of lunges performed in a match (160-240 times) and the magnitude of decrease in MVC torque (6.4-14.7%). Muscle soreness developed more (p < 0.05) for the dominant (51.5 ± 11.6 mm) than the non-dominant leg (18.8 ± 8.6 mm). CONCLUSION Muscle damage induced by singles badminton matches was minimal, but the more the lunges are performed, the greater the neuromuscular fatigue.
Collapse
Affiliation(s)
- Zengyuan Lin
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- The Badminton Association of Western Australia, 130 Kingsway, Madeley, WA, 6065, Australia.
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jodie Cochrane Wilkie
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
67
|
Da Silva F, Monjo F, Gioda J, Blain GM, Piponnier E, Corcelle B, Colson SS. Knee position sense and knee flexor neuromuscular function are similarly altered after two submaximal eccentric bouts. Eur J Appl Physiol 2023; 123:311-323. [PMID: 36273044 DOI: 10.1007/s00421-022-05063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE This study examined eccentric-induced fatigue effects on knee flexor (KF) neuromuscular function and on knee position sense. This design was repeated across two experimental sessions performed 1 week apart to investigate potential repeated bout effects. METHODS Sixteen participants performed two submaximal bouts of KF unilateral eccentric contractions until reaching a 20% decrease in maximal voluntary isometric contraction force. Knee position sense was evaluated with position-matching tasks in seated and prone positions at 40° and 70° of knee flexion so that KF were either antagonistic or agonistic during the positioning movement. The twitch interpolation technique was used to assess KF neuromuscular fatigue. Perceived muscle soreness was also assessed. Measurements were performed before, immediately (POST) and 24 h after (POST24) each eccentric bout. RESULTS No repeated bout effect on neuromuscular function and proprioceptive parameters was observed. At POST, central and peripheral factors contributed to the force decrement as shown by significant decreases in voluntary activation level (- 3.8 ± 4.8%, p < 0.01) and potentiated doublet torque at 100 Hz (- 10 ± 15.8%, p < 0.01). At this time point, position-matching errors significantly increased by 1.7 ± 1.9° in seated position at 40° (p < 0.01). At POST24, in presence of muscle soreness (p < 0.05), although KF neuromuscular function had recovered, position-matching errors increased by 0.6 ± 2.6° in prone position at 40° (p < 0.01). CONCLUSION These results provide evidence that eccentric-induced position sense alterations may arise from central and/or peripheral mechanisms depending on the testing position.
Collapse
Affiliation(s)
- Flavio Da Silva
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France.
| | - Florian Monjo
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| | - Jennifer Gioda
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| | - Gregory M Blain
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| | - Enzo Piponnier
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| | - Baptiste Corcelle
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| | - Serge S Colson
- Laboratoire Motricité Humaine Expertise Sport Santé (UPR 6312), Ecole Universitaire de Recherche HEALTHY: Ecosystèmes des Sciences de la Santé, Université Côte d'Azur, Campus STAPS-Sciences du Sport, 261, Boulevard du Mercantour, 06205, Nice Cedex 03, France
| |
Collapse
|
68
|
van der Groen O, Latella C, Nosaka K, Edwards D, Teo WP, Taylor JL. Corticospinal and intracortical responses from both motor cortices following unilateral concentric versus eccentric contractions. Eur J Neurosci 2023; 57:619-632. [PMID: 36512398 DOI: 10.1111/ejn.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
Cross-education is the phenomenon where training of one limb can cause neuromuscular adaptations in the opposite untrained limb. This effect has been reported to be greater after eccentric (ECC) than concentric (CON) strength training; however, the underpinning neurophysiological mechanisms remain unclear. Thus, we compared responses to transcranial magnetic stimulation (TMS) in both motor cortices following single sessions of unilateral ECC and CON exercise of the elbow flexors. Fourteen healthy adults performed three sets of 10 ECC and CON right elbow flexor contractions at 75% of respective maximum on separate days. Elbow flexor maximal voluntary isometric contraction (MVIC) torques were measured before and after exercise, and responses to single- and paired-pulse TMS were recorded from the non-exercised left and exercised right biceps brachii. Pre-exercise and post-exercise responses for ECC and CON were compared by repeated measures analyses of variance (ANOVAs). MVIC torque of the exercised arm decreased (p < 0.01) after CON (-30 ± 14%) and ECC (-39 ± 13%) similarly. For the non-exercised left biceps brachii, resting motor threshold (RMT) decreased after CON only (-4.2 ± 3.9% of maximum stimulator output [MSO], p < 0.01), and intracortical facilitation (ICF) decreased (-15.2 ± 20.0%, p = 0.038) after ECC only. For the exercised right biceps, RMT increased after ECC (8.6 ± 6.2% MSO, p = 0.014) but not after CON (6.4 ± 8.1% MSO, p = 0.066). Thus, unilateral ECC and CON elbow flexor exercise modulated excitability differently for the non-exercised hemisphere. These findings suggest that responses after a single bout of exercise may not reflect longer term adaptations.
Collapse
Affiliation(s)
- Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Christopher Latella
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| | - Dylan Edwards
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Janet L Taylor
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Neuroscience Research Australia, Randwick, Australia
| |
Collapse
|
69
|
Chalchat E, Martin V, Charlot K, Bourrilhon C, Baugé S, Bourdon S, Gruel A, Lepetit B, Banzet S, Garcia-Vicencio S, Siracusa J. Circulating microRNA levels after exercise-induced muscle damage and the repeated bout effect. Am J Physiol Regul Integr Comp Physiol 2023; 324:R58-R69. [PMID: 36374177 DOI: 10.1152/ajpregu.00096.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuromuscular system can quickly adapt to exercise-induced muscle damage (EIMD), such that it is less affected by subsequent damaging exercise, a phenomenon known as the repeated bout effect (RBE). Circulating muscle-specific microRNAs (myomiRs) may be able to potentially predict the long-lasting maximal voluntary contraction (MVC) torque deficit (>24 h), an indicator of EIMD. We aimed to investigate: 1) how plasma myomiR levels are modified by the RBE and 2) whether plasma myomiRs can predict the long-lasting MVC torque deficit. Nineteen participants performed two identical bouts of loaded downhill walking separated by 2 wk. MVC torque, creatine kinase (CK) activity, myoglobin (Mb) concentration, and myomiR levels were measured before and up to 48 h after exercise. Correlation and multiple regression analyses were performed to assess the ability of these markers to predict the largest MVC torque loss beyond 24 h postexercise. Similar to MVC torque, CK activity, and the Mb concentration, the relative abundance of certain myomiRs (hsa-miR-1-3p, and hsa-miR-133a-3p) was less affected after the second bout of exercise relative to the first bout. The CK activity, Mb concentration, and level of several myomiRs (hsa-miR-1-3p, hsa-miR-133a-3p, and hsa-miR-206) correlated with long-lasting MVC torque loss. Multiple regression showed that the best combination of markers to predict the long-lasting deficit of MVC torque included several myomiRs, Mb, and CK. Certain myomiR levels increased less after exercise bout 2 than after exercise bout 1, indicating the presence of the RBE. The measurement of myomiR levels in combination with Mb concentrations and CK activity could improve the prediction of the long-lasting MVC torque deficit.NEW & NOTEWORTHY The present study is the first to show that plasma muscle-specific microRNA (myomiR) levels can be modified by the repeated bout effect, as their levels increased less after the second exercise bout relative to the first. This study is also the first to suggest that myomiR levels could be used to partially predict maximal voluntary contraction torque loss at 24 h postexercise (i.e., the magnitude of exercise-induced muscle damage). Interestingly, the combined measurement of certain myomiR levels with those of myoglobin and creatine kinase improved the predictive value.
Collapse
Affiliation(s)
- Emeric Chalchat
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France.,Institut Universitaire de France, Paris, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Cyprien Bourrilhon
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Stéphane Baugé
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Stéphanie Bourdon
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Arnaud Gruel
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Benoit Lepetit
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, Clamart, France.,INSERM UMRS-MD 1197, Université de Paris-Saclay, Clamart, France
| | - Sebastian Garcia-Vicencio
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France.,Human Motion Analysis, Humanfab, Aix-en-Provence, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, Bretigny-Sur-Orge, France.,Le Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université de Evry, Institut de Recherches Biomédicales des Armées, Université Paris Saclay, Evry, France
| |
Collapse
|
70
|
Coratella G, Beato M, Bertinato L, Milanese C, Venturelli M, Schena F. Including the Eccentric Phase in Resistance Training to Counteract the Effects of Detraining in Women: A Randomized Controlled Trial. J Strength Cond Res 2022; 36:3023-3031. [PMID: 34537804 PMCID: PMC10842669 DOI: 10.1519/jsc.0000000000004039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Coratella, G, Beato, M, Bertinato, L, Milanese, C, Venturelli, M, and Schena, F. Including the eccentric phase in resistance training to counteract the effects of detraining in women: a randomized controlled trial. J Strength Cond Res 36(11): 3023-3031, 2022-The current study compared the effects of concentric-based (CONC), eccentric-based (ECC), and traditional concentric-eccentric (TRAD) resistance training on muscle strength, mass, and architecture and the postdetraining retention of the training-induced effects in women. Sixty women were randomly assigned to unilateral volume-equated CONC, ECC, or TRAD knee extension training or control ( N = 15 per group). Before training, after an 8-week intervention period, and after an 8-week detraining period, isokinetic concentric, eccentric, and isometric torque were measured. In addition, thigh lean mass was assessed by dual X-ray absorptiometry and vastus lateralis thickness, pennation angle, and fascicle length by ultrasound. After training, concentric and isometric torque increased ( p < 0.05) similarly in all groups, whereas eccentric torque increased more in ECC than that in CONC (+13.1%, effect size (ES): 0.71 [0.04-1.38]) and TRAD (+12.6%, ES: 0.60 [0.12-1.08]). Thigh lean mass increased in ECC (+6.1%, ES: 0.47 [0.27-0.67]) and TRAD (+3.1%, ES: 0.33 [0.01-0.65]). Vastus lateralis thickness and pennation angle increased ( p < 0.05) similarly in all groups, whereas fascicle elongation was visible in ECC (+9.7%, ES: 0.92 [0.14-1.65]) and TRAD (+7.1%, ES: 0.64 [0.03-1.25]). After detraining, all groups retained ( p < 0.05) similar concentric torque. ECC and TRAD preserved eccentric torque ( p < 0.05), but ECC more than TRAD (+17.9%, ES: 0.61 [0.21-1.21]). All groups preserved isometric torque ( p < 0.05), but ECC more than CONC (+14.2%, ES: 0.71 [0.04-1.38]) and TRAD (+13.8%, ES: 0.65 [0.10-1.20]). Thigh lean mass and vastus lateralis fascicle length were retained only in ECC ( p < 0.05), pennation angle was preserved in all groups ( p < 0.05), and thickness was retained in CONC and ECC ( p < 0.05). Including the eccentric phase in resistance training is essential to preserve adaptations after detraining.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom;
| | - Luciano Bertinato
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Chiara Milanese
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Massimo Venturelli
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Federico Schena
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
- CeRISM Research Center, University of Verona, Rovereto, Italy
| |
Collapse
|
71
|
Xu F, Zeng J, Liu X, Lai J, Xu J. Exercise-Induced Muscle Damage and Protein Intake: A Bibliometric and Visual Analysis. Nutrients 2022; 14:nu14204288. [PMID: 36296973 PMCID: PMC9610071 DOI: 10.3390/nu14204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Numerous studies have covered exercise-induced muscle damage (EIMD) topics, ranging from nutritional strategies to recovery methods, but few attempts have adequately explored and analyzed large volumes of scientific output. The purpose of this study was to assess the scientific output and research activity regarding EIMD and protein intake by conducting a bibliometric and visual analysis. Relevant publications from 1975-2022 were retrieved from the Web of Science Core Collection database. Quantitative and qualitative variables were collected, including the number of publications and citations, H-indexes, journals of citation reports, co-authorship, co-citation, and the co-occurrence of keywords. There were 351 total publications, with the number of annual publications steadily increasing. The United States has the highest total number of publications (26.21% of total publications, centrality 0.44). Institutional cooperation is mostly geographically limited, with few transnational cooperation links. EIMD and protein intake research is concentrated in high-quality journals in the disciplines of Sport Science, Physiology, Nutrition, and Biochemistry & Molecular Biology. The top ten journals in the number of publications are mostly high-quality printed journals, and the top ten journals in centrality have an average impact factor of 13.845. The findings of the co-citation clusters and major keyword co-occurrence reveal that the most discussed research topics are "exercise mode", "nutritional strategies", "beneficial outcomes", and "proposed mechanisms". Finally, we identified the following research frontiers and research directions: developing a comprehensive understanding of new exercise or training models, nutritional strategies, and recovery techniques to alleviate EIMD symptoms and accelerate recovery; applying the concept of hormesis in EIMD to induce muscle hypertrophy; and investigating the underlying mechanisms of muscle fiber and membrane damage.
Collapse
Affiliation(s)
- Fei Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| | - Jinshu Zeng
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Liu
- Division of Library and Information Services, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaming Lai
- San Diego Jewish Academy, San Diego, CA 92130, USA
| | - Jing Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| |
Collapse
|
72
|
Ličen U, Kozinc Ž. Using Shear-Wave Elastography to Assess Exercise-Induced Muscle Damage: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7574. [PMID: 36236672 PMCID: PMC9571996 DOI: 10.3390/s22197574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Shear-wave elastography is a method that is increasingly used to assess muscle stiffness in clinical practice and human health research. Recently, shear-wave elastography has been suggested and used to assess exercise-induced muscle damage. This review aimed to summarize the current knowledge of the utility of shear-wave elastography for assessment of muscle damage. In general, the literature supports the shear-wave elastography as a promising method for assessment of muscle damage. Increases in shear modulus are reported immediately and up to several days after eccentric exercise, while studies using shear-wave elastography during and after endurance events are showing mixed results. Moreover, it seems that shear modulus increases are related to the decline in voluntary strength loss. We recommend that shear modulus is measured at multiple muscles within a muscle group and preferably at longer muscle lengths. While further studies are needed to confirm this, the disruption of calcium homeostasis seems to be the primary candidate for the underlying mechanism explaining the increases in shear modulus observed after eccentric exercise. It remains to be investigated how well the changes in shear modulus correlate with directly assessed amount of muscle damage (biopsy).
Collapse
Affiliation(s)
- Urška Ličen
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Žiga Kozinc
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|
73
|
Abdelkader M, Hammami R, Drury B, Clark N, Sandercock G, Shaw I, Shaw BS, Chortane SG, Moran J. A randomised controlled trial of 1- versus 2-day per week formats of Nordic hamstring training on explosive athletic tasks in prepubertal soccer players. J Sports Sci 2022; 40:2173-2181. [PMID: 36383389 DOI: 10.1080/02640414.2022.2145737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This randomised controlled trial examined the effect of volume-equated programmes of Nordic hamstring exercise (NHE) training, executed at frequencies of 1- or 2-days per week, on explosive athletic tasks (30 m sprint, 15 m manoeuvrability and standing long jump [SLJ]) in male youth soccer players (mean age: 10.3 ± 0.5 years). Players were divided into an experimental group (n = 31) which was further subdivided into 1-day (n = 16) and 2-days (n = 15) per week training conditions, and a control group (n = 14). There were significant group-by-time interactions for 30-m sprint (p < 0.001, d = 0.6), SLJ (p = 0.001, d = 1.27) and 15 m manoeuvrability (p < 0.001, d = 0.61). The experimental group demonstrated small to moderate effect sizes in 30-m sprint (d = 0.42, p = 0.077), SLJ (d = 0.97, p < 0.001) and 15 m manoeuvrability (d = 0.61, p < 0.001). The control group showed small significant performance decrements or no change in these variables. There were no significant differences between the 1-day and 2-day training groups. In two of the three tests (30 m sprint, SLJ) the 2-day group demonstrated larger effect sizes. The NHE enhances explosive athletic task performance in prepubertal youth soccer players and there may be only small advantages to spreading training over two days instead of one.
Collapse
Affiliation(s)
- Mahmoudi Abdelkader
- Research Unit Sports Performance, Health and Society, Higher Institute of Sport and Physical Education of Ksar-Said, Universite de La Manouba, Tunis, Tunisia
| | - Raouf Hammami
- Research Unit Sports Performance, Health and Society, Higher Institute of Sport and Physical Education of Ksar-Said, Universite de La Manouba, Tunis, Tunisia.,Research Laboratory: Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Ben Drury
- Department of Sport, Hartpury University, Gloucestershire, UK
| | - Nicholas Clark
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
| | - Gavin Sandercock
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
| | - Ina Shaw
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
| | - Brandon S Shaw
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
| | - Sabri Gaied Chortane
- Research Unit Sports Performance, Health and Society, Higher Institute of Sport and Physical Education of Ksar-Said, Universite de La Manouba, Tunis, Tunisia
| | - Jason Moran
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
| |
Collapse
|
74
|
Amundsen R, Heimland JS, Thorarinsdottir S, Møller M, Bahr R. Effects of High and Low Training Volume with the Nordic Hamstring Exercise on Hamstring Strength, Jump Height, and Sprint Performance in Female Football Players: A Randomised Trial. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:7133928. [PMID: 38655155 PMCID: PMC11022781 DOI: 10.1155/2022/7133928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 04/26/2024]
Abstract
The evidence-based hamstring strengthening programme for prevention of hamstring injuries is not adopted by football teams because of its high training volume. This study on female football players investigated if high-volume training with the Nordic hamstring exercise is more effective on hamstring strength, jump height, and sprint performance than low-volume training. We also examined the time course of changes in muscle strength during the intervention period. Forty-five female football players were randomised to a high- (21 sessions, 538 total reps) or low-volume group (10 sessions, 144 total reps) and performed an 8-week training intervention with the Nordic hamstring exercise during the preseason. We tested hamstring strength (maximal eccentric force with NordBord and maximal eccentric torque with isokinetic dynamometer), jump height, and 40 m sprint before and after the intervention. The NordBord test was also performed during training weeks 4 and 6. Both groups increased maximal eccentric force (high-volume: 29 N (10%), 95% CI: 19-38 N, p < 0.001, low-volume: 37 N (13%), 95% CI: 18-55 N, p = 0.001), but there were no between-group differences (p = 0.38). Maximal eccentric torque, jump height, and sprint performance did not change. Maximal eccentric force increased from the pretest to week 6 (20 N (7%), 95% CI: 8 to 31 N, p < 0.001), but not week 4 (8 N (3%), 95% CI: -2 to 18 N, p = 0.22). High training volume with the Nordic hamstrings exercise did not lead to greater adaptations in strength, jump height, or speed than a low-volume programme. Players in both groups had to train for at least 6 weeks to improve maximal eccentric force significantly.
Collapse
Affiliation(s)
- Roar Amundsen
- Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| | - Janita Sæther Heimland
- Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| | - Solveig Thorarinsdottir
- Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| | - Merete Møller
- Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Roald Bahr
- Department of Sports Medicine, Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
75
|
Coratella G. Appropriate Reporting of Exercise Variables in Resistance Training Protocols: Much more than Load and Number of Repetitions. SPORTS MEDICINE - OPEN 2022; 8:99. [PMID: 35907047 PMCID: PMC9339067 DOI: 10.1186/s40798-022-00492-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022]
Abstract
Manipulating resistance training variables is crucial to plan the induced stimuli correctly. When reporting the exercise variables in resistance training protocols, sports scientists and practitioners often refer to the load lifted and the total number of repetitions. The present conceptual review explores all within-exercise variables that may influence the strength and hypertrophic gains, and the changes in muscle architecture. Together with the (1) load and (2) the number of repetitions, (3) performing repetitions to failure or not to failure, (4) the displacement of the load or the range of movement (full or partial), (5) the portion of the partial movement to identify the muscle length at which the exercise is performed, (6) the total time under tension, the duration of each phase and the position of the two isometric phases, (7) whether the concentric, eccentric or concentric-eccentric phase is performed, (8) the use of internal or external focus and (9) the inter-set rest may all have repercussions on the adaptations induced by each resistance exercise. Manipulating one or more variable allows to increase, equalize or decrease the stimuli related to each exercise. Sports scientists and practitioners are invited to list all aforementioned variables for each exercise when reporting resistance training protocols.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
76
|
Markus I, Constantini K, Goldstein N, Amedi R, Bornstein Y, Stolkovsky Y, Vidal M, Lev-Ari S, Balaban R, Leibou S, Blumenfeld-Katzir T, Ben-Eliezer N, Peled D, Assaf Y, Jensen D, Constantini N, Dubnov-Raz G, Halperin I, Gepner Y. Age Differences in Recovery Rate Following an Aerobic-Based Exercise Protocol Inducing Muscle Damage Among Amateur, Male Athletes. Front Physiol 2022; 13:916924. [PMID: 35774290 PMCID: PMC9239318 DOI: 10.3389/fphys.2022.916924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Compare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Methods: Twenty-eight Y (n = 14, 26.1 ± 2.9y, 74.5 ± 9.3 kg) and MA (n = 14, 43.6 ± 4.1y, 77.3 ± 12.9 kg) physically active males, completed a 60-min downhill running (DHR) on a treadmill at −10% incline and at 65% of maximal heart rate (HR). Biochemical, biomechanical, psychological, force production and muscle integrity (using MRI diffusion tensor imaging) markers were measured at baseline, immediately-post, and up to 48H post DHR. Results: During the DHR, HR was lower (p < 0.05) in MA compared to Y, but running pace and distance covered were comparable between groups. No statistical or meaningful differences were observed between groups for any of the outcomes. Yet, Significant (p < 0.05) time-effects within each group were observed: markers of muscle damage, cadence and perception of pain increased, while TNF-a, isometric and dynamic force production and stride-length decreased. Creatine-kinase at 24H-post and 48H-post were correlated (p < 0.05, r range = −0.57 to 0.55) with pain perception, stride-length, and cadence at 24H-post and 48H-post. Significant (p < 0.05) correlations were observed between isometric force production at all time-points and IL-6 at 48H-post DHR (r range = −0.62 to (−0.74). Conclusion: Y and MA active male amateur athletes recover in a comparable manner following an EIMD downhill protocol. These results indicate that similar recovery strategies can be used by trainees from both age groups following an aerobic-based EIMD protocol.
Collapse
Affiliation(s)
- Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Constantini
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Goldstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Amedi
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Bornstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Stolkovsky
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Vidal
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy Balaban
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Stav Leibou
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States
| | - David Peled
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montreal, QC, Canada
| | - Naama Constantini
- Shaare Zedek Medical center affiliated to the Hebrew University, Jerusalem, Israel
| | - Gal Dubnov-Raz
- Sports and Exercise Medicine Clinic, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Israel Halperin
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
- *Correspondence: Yftach Gepner,
| |
Collapse
|
77
|
Chen TC, Huang MJ, Lima LCR, Chou TY, Wang HH, Tu JH, Lin SC, Nosaka K. Changes in Insulin Sensitivity and Lipid Profile Markers Following Initial and Secondary Bouts of Multiple Eccentric Exercises. Front Physiol 2022; 13:917317. [PMID: 35733998 PMCID: PMC9207458 DOI: 10.3389/fphys.2022.917317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
An acute bout of eccentric exercise affects insulin sensitivity and lipid profile, but how the magnitude of muscle damage affects them is not clear. We compared changes in blood insulin sensitivity and lipid markers after the first (EC1) and second (EC2) eccentric exercise bouts. Fifteen sedentary young men performed arm, leg and trunk muscle eccentric exercises, and repeated them 2 weeks later. Fasting blood samples were taken before, 2 h and 1–5 days after each exercise bout to analyze plasma creatine kinase (CK) activity, serum glucose (GLU), insulin, homeostasis model assessment (HOMA), triacylglycerols (TG), total (TC) and low- (LDLC) and high-density lipoprotein cholesterol (HDLC) concentrations as well as TC/HDLC ratio. Changes in these measures were compared between bouts and relationships to peak plasma CK activity were analyzed. Plasma CK activity increased (p < 0.05) after EC1 (peak: 101,668 ± 58,955 IU/L) but not after EC2. The magnitude of changes in GLU (peak after EC1: 26 ± 10% vs. EC2: 7 ± 6%), insulin (46 ± 27% vs. 15 ± 8%), HOMA (86 ± 48% vs. 24 ± 15%), TC (−20 ± 5% vs. −6 ± 4%), TG (−32 ± 11% vs. −6 ± 3%), LDHC (−47 ± 15% vs. −12 ± 9%), HDLC (35 ± 26% vs. 7 ± 4%), and TC/HDLC ratio (−139 ± 13% vs. −11 ± 7%) were significantly greater after EC1 than EC2. Peak plasma CK activity was significantly (p < 0.05) correlated with the peak changes in blood insulin sensitivity and lipid markers for the combined data of EC1 and EC2. These results suggest that the greater the magnitude of muscle damage, the greater the magnitude of changes in the insulin sensitivity to a negative direction and lipid markers to a positive direction.
Collapse
Affiliation(s)
- Trevor C. Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- *Correspondence: Trevor C. Chen,
| | - Min-Jyue Huang
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Cowan, WA, Australia
| | - Leonardo C. R. Lima
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tai-Ying Chou
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan
| | - Hung-Hao Wang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Jui-Hung Tu
- Department of Physical Education, National Pingtung University, Pingtung City, Taiwan
| | - Shi-Che Lin
- Department of Physical Education, National Pingtung University, Pingtung City, Taiwan
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Cowan, WA, Australia
| |
Collapse
|
78
|
Yildirim A, Belviranli M, Okudan N. Protective effect by low-intensity downhill running training against muscle damage and oxidative stress after high-intensity downhill running in rats. AN ACAD BRAS CIENC 2022; 94:e20200265. [PMID: 35507975 DOI: 10.1590/0001-3765202220200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of low-intensity eccentric exercise training performed before high-intensity eccentric exercise on muscle damage markers, oxidative stress and antioxidant defense. Twenty-two rats were divided into 3 groups; control (CON; n = 6), high-intensity eccentric exercise (HE; n = 8) and low-intensity eccentric exercise training plus high-intensity eccentric exercise (LET + HE; n = 8). Rats in the HE group performed HE at once. Rats in the LET + HE group performed LET and then HE protocol was applied. Blood and vastus intermedius muscle samples were taken 24 hours after the last exercise session for analyses of muscle damage, oxidative stress, and antioxidant defense markers. Muscle damage markers were higher in the HE group than the CON (137%-488%) and the LET + HE groups (82%-110%) (P < 0.05). Oxidative stress marker was higher in the HE group than the CON (65%) and the LET + HE (50%) groups (P < 0.05). Antioxidant defense markers were higher in the LTE + HE group than the HE group (39%-51%) (P < 0.05). In conclusion, low-intensity eccentric exercise training performed before high-intensity eccentric exercise conferred a protective effect against muscle damage by reducing oxidative stress and increasing antioxidant defense.
Collapse
Affiliation(s)
- Aysel Yildirim
- Selçuk University, Division of Sports Physiology, Department of Physiology, Faculty of Medicine, Selçuklu, 42131, Konya, Turkey
| | - Muaz Belviranli
- Selçuk University, Division of Sports Physiology, Department of Physiology, Faculty of Medicine, Selçuklu, 42131, Konya, Turkey
| | - Nilsel Okudan
- Selçuk University, Division of Sports Physiology, Department of Physiology, Faculty of Medicine, Selçuklu, 42131, Konya, Turkey
| |
Collapse
|
79
|
Khassetarash A, Vernillo G, Krüger RL, Edwards WB, Millet GY. Neuromuscular, biomechanical, and energetic adjustments following repeated bouts of downhill running. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:319-329. [PMID: 34098176 PMCID: PMC9189713 DOI: 10.1016/j.jshs.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 05/14/2023]
Abstract
PURPOSE This study used downhill running as a model to investigate the repeated bout effect (RBE) on neuromuscular performance, running biomechanics, and metabolic cost of running. METHODS Ten healthy recreational male runners performed two 30-min bouts of downhill running (DR1 and DR2) at a -20% slope and 2.8 m/s 3 weeks apart. Neuromuscular fatigue, level running biomechanics during slow and fast running, and running economy parameters were recorded immediately before and after the downhill bouts, and at 24 h, 48 h, 72 h, 96 h, and 168 h thereafter (i.e., follow-up days). RESULTS An RBE was confirmed by attenuated muscle soreness and serum creatine kinase rise after DR2 compared to DR1. An RBE was also observed in maximum voluntary contraction (MVC) force loss and voluntary activation where DR2 resulted in attenuated MVC force loss and voluntary activation immediately after the run and during follow-up days. The downhill running protocol significantly influenced level running biomechanics; an RBE was observed in which center of mass excursion and, therefore, lower-extremity compliance were greater during follow-up days after DR1 compared to DR2. The observed changes in level running biomechanics did not influence the energy cost of running. CONCLUSION This study demonstrated evidence of adaptation in neural drive as well as biomechanical changes with the RBE after DR. The higher neural drive resulted in attenuated MVC force loss after the second bout. It can be concluded that the RBE after downhill running manifests as changes to global and central fatigue parameters and running biomechanics without substantially altering the energy cost of running.
Collapse
Affiliation(s)
- Arash Khassetarash
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - Gianluca Vernillo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada; Department of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy
| | - Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada; Inter-university Laboratory of Human Movement Biology, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne 42023, France; Institut Universitaire de France (IUF), Paris 75231, France.
| |
Collapse
|
80
|
Chalchat E, Siracusa J, Bourrilhon C, Charlot K, Martin V, Garcia-Vicencio S. Muscle Shear Elastic Modulus Provides an Indication of the Protection Conferred by the Repeated Bout Effect. Front Physiol 2022; 13:877485. [PMID: 35574495 PMCID: PMC9098813 DOI: 10.3389/fphys.2022.877485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The neuromuscular system is able to quickly adapt to exercise-induced muscle damage (EIMD), such that it is less affected by subsequent damaging exercise, a phenomenon known as the repeated bout effect (RBE). The objective was to determine whether the mechanical properties of the quadriceps, as evaluated by shear wave elastography (SWE), were less affected when a second bout of eccentric-biased exercise was performed 2 weeks later. It was hypothesized that the first bout would confer protection against extensive muscle damage through an adaptation of the muscle stiffness before the second bout (i.e., higher muscle stiffness).Methods: Sixteen males performed two identical bouts of downhill walking separated by 2 weeks (45 min at 4.5 km.h−1; gradient: 25%; load: 30% of the body mass). Rectus femoris (RF) and vastus lateralis (VL) resting shear elastic modulus (µ) and EIMD symptoms were measured before and up to 7 days following the exercise bouts. Changes in neuromuscular function was evaluated by maximal voluntary contraction torque, voluntary activation level, evoked mechanical response to single and double (10 and 100 Hz doublets) electrical stimulation. An index of protection (IP) was calculated for EIMD symptoms to assess magnitude the RBE.Results: EIMD symptoms were less affected after the second than the first exercise bout. RF and VL-µ increased (p < 0.001) only after the first exercise. RF µ was elevated up to 2 weeks after the end of the first exercise (p < 0.001) whereas VL µ was only increased up to 24 h. The increase in µ observed 2 weeks after the end of the first exercise was correlated with the IP; i.e., attenuation of alterations in muscle µ, 10 Hz-doublet amplitude and rate of torque development after the second exercise bout (p < 0.05).Conclusion: We showed that muscle µ assessed by SWE was sensitive to the RBE, with a differential effect between VL and RF. The persistent increase in µ was associated with the attenuation of neuromuscular impairments observed after the second bout, suggesting that the increased muscle stiffness could be a “protective” adaptation making muscles more resistant to the mechanical strain associated to eccentric contractions.
Collapse
Affiliation(s)
- Emeric Chalchat
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
- *Correspondence: Emeric Chalchat,
| | - Julien Siracusa
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sebastian Garcia-Vicencio
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
81
|
di Corcia M, Tartaglia N, Polito R, Ambrosi A, Messina G, Francavilla VC, Cincione RI, della Malva A, Ciliberti MG, Sevi A, Messina G, Albenzio M. Functional Properties of Meat in Athletes' Performance and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5145. [PMID: 35564540 PMCID: PMC9102337 DOI: 10.3390/ijerph19095145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Physical activity (PA) and sport play an essential role in promoting body development and maintaining optimal health status both in the short and long term. Despite the benefits, a long-lasting heavy training can promote several detrimental physiological changes, including transitory immune system malfunction, increased inflammation, and oxidative stress, which manifest as exercise-induced muscle damages (EIMDs). Meat and derived products represent a very good source of bioactive molecules such as proteins, lipids, amino acids, vitamins, and minerals. Bioactive molecules represent dietary compounds that can interact with one or more components of live tissue, resulting in a wide range of possible health consequences such as immune-modulating, antihypertensive, antimicrobial, and antioxidative activities. The health benefits of meat have been well established and have been extensively reviewed elsewhere, although a growing number of studies found a significant positive effect of meat molecules on exercise performance and recovery of muscle function. Based on the limited research, meat could be an effective post-exercise food that results in favorable muscle protein synthesis and metabolic performance.
Collapse
Affiliation(s)
- Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Gaetana Messina
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | | | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| |
Collapse
|
82
|
Engel T, Schraplau A, Wochatz M, Kopinski S, Sonnenburg D, Schomoeller A, Risch L, Kaplick H, Mayer F. Feasability of An Eccentric Isokinetic Protocol to Induce Trunk
Muscle Damage: A Pilot Study. Sports Med Int Open 2022; 6:E9-E17. [PMID: 35313534 PMCID: PMC8934203 DOI: 10.1055/a-1757-6724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022] Open
Abstract
AbstractEccentric exercise is discussed as a treatment option for clinical populations,
but specific responses in terms of muscle damage and systemic inflammation after
repeated loading of large muscle groups have not been conclusively
characterized. Therefore, this study tested the feasibility of an isokinetic
protocol for repeated maximum eccentric loading of the trunk muscles. Nine
asymptomatic participants (5 f/4 m;
34±6 yrs; 175±13 cm; 76±17 kg)
performed three isokinetic 2-minute all-out trunk strength tests (1x concentric
(CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension,
60°/s, ROM 55°). Outcomes were peak torque, torque
decline, total work, and indicators of muscle damage and inflammation (over
168 h). Statistics were done using the Friedman test (Dunn’s
post-test). For ECC1 and ECC2, peak torque and total work were increased and
torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered
torque and work outcomes. Muscle damage markers were highest after ECC1
(soreness 48 h, creatine kinase 72 h; p<0.05). Their
overall responses (area under the curve) were abolished post-ECC2 compared to
post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and
attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis
factor-α were not detectable. All markers showed high inter-individual
variability. The protocol was feasible to induce muscle damage indicators after
exercising a large muscle group, but the pilot results indicated only weak
systemic inflammatory responses in asymptomatic adults.
Collapse
Affiliation(s)
- Tilman Engel
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Anne Schraplau
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Monique Wochatz
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Stephan Kopinski
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Dominik Sonnenburg
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Anne Schomoeller
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Lucie Risch
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Hannes Kaplick
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| | - Frank Mayer
- University Outpatient Clinic, Sports Medicine & Sports
Orthopaedics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
83
|
Does Physical Conditioning Influence Performance Attenuation and Recovery in Gaelic Football? Int J Sports Physiol Perform 2022; 17:862-870. [PMID: 35240577 DOI: 10.1123/ijspp.2021-0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study investigated the influence of components of fitness on measures of performance attenuation and recovery following Gaelic football match play. METHODS Measurements of players' anthropometric characteristics, body composition, running speed, lower-body strength and power, blood lactate concentrations, running economy, and maximal aerobic capacity (V˙O2max) were taken over 2 separate days 1 week prior to a competitive match. Creatine kinase, countermovement jump height, drop jump height, contact time, reactive strength index, and perceptual responses were tested prematch, at full time, 24 hours postmatch, and 48 hours postmatch. RESULTS Multiple components of fitness were associated with reduced performance attenuation and improved recovery responses (adjusted R2 = 9.8%-27.6%; P < .05). Players were divided into higher-standard and lower-standard V˙O2max (higher standard: 57.4 [4.2] mL·kg-1·min-1; lower standard: 45.3 [3.8] mL·kg-1·min-1) and relative squat (higher standard: 1.46 [0.11] 1-repetition-maximum kg·body mass-1; lower standard: 1.20 [0.08] 1-repetition-maximum kg·body mass-1) groups. After adjusting for prematch baseline differences, there were significant differences between V˙O2max groups in drop jump height at 24 hours postmatch (ηp2=.078-.154; P < .05) and countermovement jump height at 48 hours postmatch (ηp2=.134; P < .05), where the lower-standard group displayed larger decrements. In addition, there were significant differences between relative squat groups at all postmatch time points in contact time (ηp2=.156-.194; P < .05) and reactive strength index (ηp2=.127-.223; P < .05) and in perceptual responses at 24 hours postmatch (ηp2=.152; P < .05), where the lower-standard group expressed larger decrements. CONCLUSION Coaches should prioritize the development of aerobic capacity and neuromuscular function as an effective method of reducing performance attenuation and enhancing recovery kinetics in Gaelic football.
Collapse
|
84
|
Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 2022; 52:441-461. [PMID: 34822138 DOI: 10.1007/s40279-021-01585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.
Collapse
|
85
|
Dias SS, Weber MG, Padoin S, Andrello AC, Jussiani EI, de Paula Ramos S. Circulating Concentration of Chemical Elements During Exercise-Induced Muscle Damage and the Repeated Bout Effect. Biol Trace Elem Res 2022; 200:1060-1070. [PMID: 33904125 DOI: 10.1007/s12011-021-02737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
The objective of the study was to evaluate the circulating levels of chemical elements after exercise-induced muscle damage (EIMD) followed by the repeated bout effect (RBE). Seven physically active subjects (26.5 ± 4.0 years) performed two sessions of EIMD (5 sets of 20 drop jumps), the second session 14 days after the first for RBE assessment. Blood collections, countermovement jump (CMJ), squat jump (SJ), and delayed-onset muscle soreness (DOMS) were performed before (Pre), after (Post), and 24, 48, and 72 h after the exercise session. Creatine kinase (CK) was detected by biochemical analysis and the concentration of chemical elements by total reflection X-ray fluorescence (TXRF). Differences between time points and sessions were assessed with two-way ANOVA and the effect size (ES). EIMD induced a reduction in the CMJ at 24 h (P < 0.05) and an increase in DOMS at 24 h (P < 0.01) and 48 h (P < 0.01), and CK at 72 h (P < 0.05). RBE alleviated all symptoms of EIMD in the second session (P > 0.05). EIMD induced a large to very large ES for Zn reduction at 24 h (- 1.37) and 72 h (- 0.93) and Br (- 0.83) at 72 h. RBE presented large to very large ES for the increase in P at 48 h (0.92); Cl at 24 h (1.04); K at 24 h (0.91), 48 h (1.10), and 72 h (0.96); Ca at 72 h (0.92); and Fe at 24 h (0.85). RBE influenced the concentration of elements associated with fatigue (K, Ca, Cl), inflammatory response, and glucose metabolism (Zn).
Collapse
Affiliation(s)
- Silas Seolin Dias
- Associate Postgraduate Program in Physical Education UEL-UEM, State University of Londrina, Londrina, Brazil
| | - Martim Gomes Weber
- Associate Postgraduate Program in Physical Education UEL-UEM, State University of Londrina, Londrina, Brazil
| | - Susana Padoin
- Associate Postgraduate Program in Physical Education UEL-UEM, State University of Londrina, Londrina, Brazil
| | | | | | - Solange de Paula Ramos
- Study Groups on Tissue Regeneration, Adaptation, and Repair, State University of Londrina, Londrina, Brazil.
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP: 86099-100, Brazil.
| |
Collapse
|
86
|
Khassetarash A, Baggaley M, Vernillo G, Millet GY, Edwards WB. The repeated bout effect influences lower-extremity biomechanics during a 30-min downhill run. Eur J Sport Sci 2022; 23:510-519. [PMID: 35225166 DOI: 10.1080/17461391.2022.2048083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The repeated bout effect in eccentric-biased exercises is a well-known phenomenon, wherein a second bout of exercise results in attenuated strength loss and soreness compared to the first bout. We sought to determine if the repeated bout effect influences changes in lower-extremity biomechanics over the course of a 30-min downhill run. Eleven male participants completed two bouts of 30-min downhill running (DR1 and DR2) at 2.8 m.s-1 and -11.3° on an instrumented treadmill. Three-dimensional kinematics and ground reaction forces were recorded and used to quantify changes in spatiotemporal parameters, external work, leg stiffness, and lower extremity joint-quasi-stiffness throughout the 30-min run. Maximum voluntary isometric contraction (MVIC) and perceived quadriceps pain were assessed before-after, and throughout the run, respectively. DR2 resulted in attenuated loss of MVIC (P = 0.004), and perceived quadriceps pain (P < 0.001) compared to DR1. In general, participants ran with an increased duty factor towards the end of each running bout; however, increases in duty factor during DR2 (+5.4%) were less than during DR1 (+8.8%, P < 0.035). Significant reductions in leg stiffness (-11.7%, P = 0.002) and joint quasi-stiffness (up to -25.4%, all P < 0.001) were observed during DR1 but not during DR2. Furthermore, DR2 was associated with less energy absorption and energy generation than DR1 (P < 0.004). To summarize, the repeated bout effect significantly influenced lower-extremity biomechanics over the course of a downhill run. Although the mechanism(s) underlying these observations remain(s) speculative, strength loss and/or perceived muscle pain are likely to play a key role.HighlightsA 30-min downhill running bout increased contact time and reduced flight time transitioning to an increased duty factor.Lower-extremity stiffness also decreased and mechanical energy absorption increased over the course of the first 30-min downhill running bout.When the same bout of 30-min downhill running was performed three weeks later, the observed changes to lower extremity biomechanics were significantly attenuated.The findings from this study demonstrated, for this first time, a repeated bout effect for lower extremity biomechanics associated with downhill running.
Collapse
Affiliation(s)
- Arash Khassetarash
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Michael Baggaley
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France
- Institut Universitaire de France (IUF)
| | - W. Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
87
|
Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K. Early Detection of Prolonged Decreases in Maximal Voluntary Contraction Force after Eccentric Exercise of the Knee Extensors. Med Sci Sports Exerc 2022; 54:267-279. [PMID: 35029591 DOI: 10.1249/mss.0000000000002797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE We examined whether the magnitude of muscle damage indicated by changes in maximal voluntary isometric contraction (MVIC) strength 1 to 3 d after unaccustomed eccentric exercise (ECC) was correlated with changes in central and peripheral neuromuscular parameters immediately post-ECC. METHODS Twenty participants (19-36 yr) performed six sets of eight eccentric contractions of the knee extensors. Rate of force development (RFD) during knee extensor MVIC, twitch force, rate of force development (RFDRT) and rate of relaxation (RRRT) of the resting twitch, maximal M-wave (MMAX), voluntary activation, silent period duration, motor-evoked potentials (MEP) and short-interval intracortical inhibition were assessed before, immediately after, and 1 to 3 d post-ECC. Relationships between changes in these variables immediately post-ECC and changes in MVIC strength at 1 to 3 d post-ECC were examined by Pearson product-moment (r) or Spearman correlations. RESULTS Maximal voluntary isometric contraction strength decreased (-22.2% ± 18.4%) immediately postexercise, and remained below baseline at 1 (-16.3% ± 15.2%), 2 (-14.7% ± 13.2%) and 3 d post-ECC (-8.6% ± 15.7%). Immediately post-ECC, RFD (0-30-ms: -38.3% ± 31.4%), twitch force (-45.9% ± 22.4%), RFDRT (-32.5% ± 40.7%), RRRT (-38.0% ± 39.7%), voluntary activation (-21.4% ± 16.5%) and MEP/MMAX at rest (-42.5% ± 23.3%) also decreased, whereas the silent period duration at 10%-MVIC increased by 26.0% ± 12.2% (P < 0.05). Decreases in RFD at 0 to 30 ms, 0 to 50 ms, and 0 to 100 ms immediately post-ECC were correlated (P < 0.05) with changes in MVIC strength at 1 d (r = 0.56-0.60) and 2 d post-ECC (r = 0.53-0.63). Changes in MEP/MMAX at 10%-MVIC immediately post-ECC were correlated with changes in MVIC strength at 1 d (r = -0.53) and 2 d (r = -0.54) post-ECC (P < 0.05). CONCLUSIONS The magnitude of decrease in MVIC strength at 1 to 3 d after ECC was associated with the magnitude of changes in RFD and MEP/MMAX immediately post-ECC. However, based on individual data, these markers were not sensitive for the practical detection of muscle damage.
Collapse
Affiliation(s)
| | | | | | | | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, AUSTRALIA
| |
Collapse
|
88
|
Stotz A, Maghames E, Mason J, Groll A, Zech A. Maximum isometric torque at individually-adjusted joint angles exceeds eccentric and concentric torque in lower extremity joint actions. BMC Sports Sci Med Rehabil 2022; 14:13. [PMID: 35063013 PMCID: PMC8783437 DOI: 10.1186/s13102-022-00401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022]
Abstract
Background Previous research indicates the high relevance of optimal joint angles for individual isometric strength assessment. The objective was to compare lower limb peak isometric muscle strength abilities at the strongest joint angles with those of dynamic contractions in healthy young adults. Methods Eighteen young male adults performed maximum concentric, isometric, and eccentric contractions of the ankle, knee, and hip flexors and extensors, and hip adductors and abductors in a randomized sequence on an isokinetic dynamometer (ISOMED 2000). Angular velocity was set at 60°/s. The peak of concentric contraction torque curves was used to define optimal joint angles best suited to generate maximum torque during isometric contractions. Maximum voluntary contraction torque of all contraction conditions was adjusted for limb weight and analyzed via a generalized linear mixed gamma regression model (GLMM). Results The gamma GLMM revealed strongly significant effects for all three categorical covariates (contraction types, muscle group, and test order) (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p < 2 \times 10^{ - 16}$$\end{document}p<2×10-16). Eccentric contraction increases the muscle torque (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\beta }_{k} = 0.147$$\end{document}β^k=0.147) compared to concentric contraction, and isometric contraction even more (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\beta }_{k} = 0.258$$\end{document}β^k=0.258). A moderate individual-specific variation was found (random effects standard deviation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma_{b} = 0.093$$\end{document}σb=0.093). Conclusion The results support the importance of optimal joint angles for isometric maximum strength assessment. When such conditions are given, isometric contractions can produce higher muscle torques than eccentric contractions in the lower body.
Collapse
Affiliation(s)
- Andreas Stotz
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, 07749, Jena, Germany.
| | - Ebrahem Maghames
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, 07749, Jena, Germany
| | - Joel Mason
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, 07749, Jena, Germany
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Astrid Zech
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, 07749, Jena, Germany
| |
Collapse
|
89
|
Benefits on Hematological and Biochemical Parameters of a High-Intensity Interval Training Program for a Half-Marathon in Recreational Middle-Aged Women Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010498. [PMID: 35010758 PMCID: PMC8744745 DOI: 10.3390/ijerph19010498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023]
Abstract
(1) Background: half-marathon races are popular among recreational runners, with increases in participation among middle-aged and women. We aimed to determine the effects of two half-marathon training programs on hematological and biochemical markers in middle-aged female recreational runners; (2) Methods: ten women (40 ± 7 years) followed moderate intensity continuous training (MICT), based on running volume below 80% V˙O2max, and another ten women followed high intensity interval training (HIIT) at 80%–100% V˙O2max, with less volume, and combined with eccentric loading exercise. Hematology, plasma osmolality, and plasma markers of metabolic status, muscle damage, inflammatory, and oxidative stress were measured before (S1) and after (S2) training and 24 h after the half-marathon (S3); (3) Results: both training programs had similar moderate effects at S2. However, the acute response at S3 induced different alterations. There was a greater decrease in cholesterol and triglyceride levels in MICT and reductions in markers of damage and inflammation in HIIT. Greater variability in some plasma markers at S3 in MICT suggests that there is inter-individual variability in the response to training; (4) Conclusions: HIIT led to better adaptation to the competition maybe because of the repeated exposure to higher oxygen consumption and eccentric loading exercise.
Collapse
|
90
|
Tabuchi A, Tanaka Y, Takagi R, Shirakawa H, Shibaguchi T, Sugiura T, Poole DC, Kano Y. Ryanodine receptors mediate high intracellular Ca 2+ and some myocyte damage following eccentric contractions in rat fast-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2022; 322:R14-R27. [PMID: 34755549 DOI: 10.1152/ajpregu.00166.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| | - Ryo Takagi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Tsubasa Shibaguchi
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Takao Sugiura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
91
|
Pincheira PA, Boswell MA, Franchi MV, Delp SL, Lichtwark GA. Biceps femoris long head sarcomere and fascicle length adaptations after 3 weeks of eccentric exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:43-49. [PMID: 34509714 PMCID: PMC8847943 DOI: 10.1016/j.jshs.2021.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 08/05/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Eccentric exercise increases muscle fascicle lengths; however, the mechanisms behind this adaptation are still unknown. This study aimed to determine whether biceps femoris long head (BFlh) fascicle length increases in response to 3 weeks of eccentric exercise training are the result of an in-series addition of sarcomeres within the muscle fibers. METHODS Ten recreationally active participants (age = 27 ± 3 years; mass = 70 ± 14 kg; height = 174 ± 9 cm; mean ± SD) completed 3 weeks of Nordic hamstring exercise (NHE) training on a custom exercise device that was instrumented with load cells. We collected in vivo sarcomere and muscle fascicle images of the BFlh in 2 regions (central and distal) by using microendoscopy and 3 dimension ultrasonography. We then estimated sarcomere length, sarcomere number, and fascicle length before and after the training intervention. RESULTS Eccentric knee flexion strength increased after the training (15%; p < 0.001; ηp2 = 0.75). Further, we found a significant increase in fascicle length (21%; p < 0.001; ηp2 = 0.81) and sarcomere length (17%; p < 0.001; ηp2 = 0.90) in the distal but not in the central portion of the muscle. The estimated number of sarcomeres in series did not change in either region. CONCLUSION Fascicle length adaptations appear to be heterogeneous in the BFlh in response to 3 weeks of NHE training. An increase in sarcomere length, rather than the addition of sarcomeres in series, appears to underlie increases in fascicle length in the distal region of the BFlh. The mechanism driving regional increases in fascicle and sarcomere length remains unknown, but we speculate that it may be driven by regional changes in the passive tension of muscle or connective tissue adaptations.
Collapse
Affiliation(s)
- Patricio A Pincheira
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Melissa A Boswell
- Department of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Scott L Delp
- Department of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
92
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
93
|
Huang TH, Nosaka K, Chen TC. Changes in blood bone markers after the first and second bouts of whole-body eccentric exercises. Scand J Med Sci Sports 2021; 32:521-532. [PMID: 34951069 DOI: 10.1111/sms.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
The present study compared the first (EC1) and second (EC2) bouts of whole-body eccentric exercises to examine the effects of the magnitude of muscle damage on changes in blood bone markers. Fifteen sedentary young men performed nine eccentric exercises of arm, leg and trunk muscles, and repeated them two weeks later. Blood samples were taken before and two hours and one to five days following each bout to analyze plasma creatine kinase (CK) activity and myoglobin concentration, serum tartrate resistant acid phosphatase (TRAP), type 1 C-terminal telopeptide (CTX-1), procollagen type I N-terminal propeptide (P1NP), bone-specific alkaline phosphatase (BAP), undercarboxylated-osteocalcin (ucOCN), carboxylated-osteocalcin (cOCN), and leptin concentrations. All except ucOCN changed significantly (P<0.05) after both bouts. When comparing bouts for peak changes, P1NP (bone formation marker) and CTX-1 (bone resorption marker) increased less after EC2 (peak: 137±96% and 7±6%, respectively) than after EC1 (146±80% and 30±21%, respectively), whereas BAP (bone formation marker) increased more after EC2 (18±16%) than after EC1 (4±15%) (P<0.05). Leptin (49±58%) and cOCN (14±10%) increased more (P<0.05) after EC2 than after EC1 (-30±15%, 9±26%). Significant (P<0.05) correlations were evident between peak CK activity and peak CTX-1 (r=0.847), P1NP (r=0.815), BAP (r=-0.707), ucOCN (r=0.627), cCON (r=-0.759) and leptin (r=-0.740) changes after EC1, but many of these correlations disappeared after EC2. This was also found for the relationships between other muscle damage markers (myoglobin, muscle soreness and muscle strength) and the bone markers. It was concluded that bone turnover was affected by eccentric exercise, but muscle damage was unfavorable for bone formation.
Collapse
Affiliation(s)
- Tsang-Hai Huang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia
| | - Trevor C Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| |
Collapse
|
94
|
de Lima LCR, Bueno Junior CR, de Oliveira Assumpção C, de Menezes Bassan N, Barreto RV, Cardozo AC, Greco CC, Denadai BS. The Impact of ACTN3 Gene Polymorphisms on Susceptibility to Exercise-Induced Muscle Damage and Changes in Running Economy Following Downhill Running. Front Physiol 2021; 12:769971. [PMID: 34867477 PMCID: PMC8634444 DOI: 10.3389/fphys.2021.769971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1-4 days after a 30-min downhill run (-15%). Neuromuscular function was compromised (P < 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (-24.9 ± 6.9% vs. -16.3 ± 6.5%, respectively) and 4 days (-16.6 ± 14.9% vs. -4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L-1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L-1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.
Collapse
Affiliation(s)
- Leonardo Coelho Rabello de Lima
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Faculty of Biological and Health Sciences, School of Physical Education, Centro Universitário da Fundação Hermínio Ometto, Araras, Brazil.,School of Physical Education, Campus Liceu Salesiano, Centro Universitário Salesiano de São Paulo, Campinas, Brazil
| | | | - Claudio de Oliveira Assumpção
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Physical Education and Sports Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Natália de Menezes Bassan
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Adalgiso Coscrato Cardozo
- Biomechanics Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
95
|
|
96
|
Jeon S, Ye X, Miller WM, Song JS. Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 4:44-53. [PMID: 35782782 PMCID: PMC9219313 DOI: 10.1016/j.smhs.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022] Open
Abstract
To examine the contralateral repeated bout effect (CL-RBE) on muscle damage markers and motor unit (MU) control strategies, seventeen healthy adults performed two bouts of 60 eccentric contractions with elbow flexor (EF group; n = 9) or index finger abductor (IA group; n = 8) muscles, separated by 1 week. All participants randomly performed eccentric exercise on either the right or left arm or hand muscles, and muscle damage markers and submaximal trapezoid contraction tests were conducted pre, post, 1- and 2-day post eccentric protocol. One week after the first bout, the same exercise protocol and measurements were performed on the contralateral muscles. Surface electromyographic (EMG) signals were collected from biceps brachii (BB) or first dorsal interosseous (FDI) during maximal and submaximal tests. The linear regression analyses were used to examine MU recruitment threshold versus mean firing rate and recruitment threshold versus derecruitment threshold relationships. EMG amplitude from BB (bout 1 vs. bout 2 = 65.71% ± 22.92% vs. 43.05% ± 18.97%, p = 0.015, d = 1.077) and the y-intercept (group merged) from the MU recruitment threshold versus derecruitment threshold relationship (bout 1 vs. bout 2 = −7.10 ± 14.20 vs. 0.73 ± 16.24, p = 0.029, d = 0.513) at 50% MVIC were significantly different between two bouts. However, other muscle damage markers did not show any CL-RBE in both muscle groups. Therefore, despite changes in muscle excitation and MU firing behavior, our results do not support the existence of CL-RBE on BB and FDI muscles.
Collapse
|
97
|
Sonkodi B, Varga E, Hangody L, Poór G, Berkes I. Finishing stationary cycling too early after anterior cruciate ligament reconstruction is likely to lead to higher failure. BMC Sports Sci Med Rehabil 2021; 13:149. [PMID: 34823577 PMCID: PMC8613948 DOI: 10.1186/s13102-021-00377-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Background Anterior cruciate ligament injury arises when the knee anterior ligament fibers are stretched, partially torn, or completely torn. Operated patients either end up re-injuring their reconstructed anterior cruciate ligament or majority develop early osteoarthritis regardless of the remarkable improvements of surgical techniques and the widely available rehabilitation best practices. New mechanism theories of non-contact anterior cruciate ligament injury and delayed onset muscle soreness could provide a novel perspective how to respond to this clinical challenge. Main body A tri-phasic injury model is proposed for these non-contact injuries. Mechano-energetic microdamage of the proprioceptive sensory nerve terminals is suggested to be the first-phase injury that is followed by a harsher tissue damage in the second phase. The longitudinal dimension is the third phase and that is the equivalent of the repeated bout effect of delayed onset muscle soreness. Current paper puts this longitudinal injury phase into perspective as the phase when the long-term memory consolidation and reconsolidation of this learning related neuronal injury evolves and the phase when the extent of the neuronal regeneration is determined. Reinstating the mitochondrial energy supply and ‘breathing capacity’ of the injured proprioceptive sensory neurons during this period is emphasized, as avoiding fatigue, overuse, overload and re-injury. Conclusions Extended use, minimum up to a year or even longer, of a current rehabilitation technique, namely moderate intensity low resistance stationary cycling, is recommended preferably at the end of the day. This exercise therapeutic strategy should be a supplementation to the currently used rehabilitation best practices as a knee anti-aging maintenance effort.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary.
| | - Endre Varga
- Department of Traumatology, University of Szeged, Szeged, Hungary
| | - László Hangody
- Department of Traumatology, Semmelweis University, Budapest, Hungary
| | - Gyula Poór
- National Institute of Musculoskeletal Diseases, Budapest, Hungary.,Semmelweis University Medical School, Budapest, Hungary
| | - István Berkes
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| |
Collapse
|
98
|
Impact of Training Protocols on Lifting Velocity Recovery in Resistance Trained Males and Females. Sports (Basel) 2021; 9:sports9110157. [PMID: 34822356 PMCID: PMC8618037 DOI: 10.3390/sports9110157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that sex differences exist in recovery following strength training. This study aimed to investigate the differences in recovery kinetics between resistance trained males and females following two different back squat (BSq) protocols. The first protocol (eight females and eight males) consisted of five sets of five repetitions at 80% of their one-repetition maximum (1RM) in the BSq (SMRT), while the second (seven females and eight males) consisted of five sets to muscular failure (MF) with a 4–6RM load (RMRT). The recovery was quantified with the mean concentric velocity (MV) at 80% of the 1RM immediately before and 5 min, 24, 48, and 72 h after the training protocol. Following the SMRT, a significant between-sex difference, favoring the females, was observed at 5 min, 24 h, and 48 h following the SMRT (p < 0.05, Effect Size (ES) = 1.01–2.25). Following the RMRT, only the males experienced a significant drop in performance after 5 min compared to the baseline (p = 0.025, ES = 1.34). However, no sex differences were observed at any timepoint (p > 0.05). These results suggest that males experienced more fatigue than females following a protocol where the volume relative to the 1RM was matched, while no differences in fatigue were evident following a protocol in which multiple sets were performed to MF.
Collapse
|
99
|
Haas G, Dunn A, Madsen J, Genovese P, Chauvin H, Au J, Ziemkiewicz N, Johnson D, Paoli A, Lin A, Pullen N, Garg K. Biomimetic sponges improve muscle structure and function following volumetric muscle loss. J Biomed Mater Res A 2021; 109:2280-2293. [PMID: 33960118 PMCID: PMC9838030 DOI: 10.1002/jbm.a.37212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries such as volumetric muscle loss (VML) due to significant loss of various cellular and acellular components. Currently, there are no approved therapies for the treatment of muscle tissue following trauma. In this study, biomimetic sponges composed of gelatin, collagen, laminin-111, and FK-506 were used for the treatment of VML in a rodent model. We observed that biomimetic sponge treatment improved muscle structure and function while modulating inflammation and limiting the extent of fibrotic tissue deposition. Specifically, sponge treatment increased the total number of myofibers, type 2B fiber cross-sectional area, myosin: collagen ratio, myofibers with central nuclei, and peak isometric torque compared to untreated VML injured muscles. As an acellular scaffold, biomimetic sponges may provide a promising clinical therapy for VML.
Collapse
Affiliation(s)
- Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Peter Genovese
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Hannah Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - David Johnson
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Allison Paoli
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Lin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Nicholas Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
100
|
Deceleration Training in Team Sports: Another Potential 'Vaccine' for Sports-Related Injury? Sports Med 2021; 52:1-12. [PMID: 34716561 PMCID: PMC8761154 DOI: 10.1007/s40279-021-01583-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
High-intensity horizontal decelerations occur frequently in team sports and are typically performed to facilitate a reduction in momentum preceding a change of direction manoeuvre or following a sprinting action. The mechanical underpinnings of horizontal deceleration are unique compared to other high-intensity locomotive patterns (e.g., acceleration, maximal sprinting speed), and are characterised by a ground reaction force profile of high impact peaks and loading rates. The high mechanical loading conditions observed when performing rapid horizontal decelerations can lead to tissue damage and neuromuscular fatigue, which may diminish co-ordinative proficiency and an individual’s ability to skilfully dissipate braking loads. Furthermore, repetitive long-term deceleration loading cycles if not managed appropriately may propagate damage accumulation and offer an explanation for chronic aetiological consequences of the ‘mechanical fatigue failure’ phenomenon. Training strategies should look to enhance an athlete’s ability to skilfully dissipate braking loads, develop mechanically robust musculoskeletal structures, and ensure frequent high-intensity horizontal deceleration exposure in order to accustom individuals to the potentially damaging effects of intense decelerations that athletes will frequently perform in competition. Given the apparent importance of horizontal decelerations, in this Current Opinion article we provide considerations for sport science and medicine practitioners around the assessment, training and monitoring of horizontal deceleration. We feel these considerations could lead to new developments in injury-mitigation and physical development strategies in team sports.
Collapse
|