51
|
Competition Nutrition Practices of Elite Male Professional Rugby Union Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105398. [PMID: 34070155 PMCID: PMC8158491 DOI: 10.3390/ijerph18105398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Thirty-four elite male professional rugby union players from the New Zealand Super Rugby championship completed dietary intakes via the Snap-N-Send method during a seven-day competition week. Mean seven-day absolute energy intake was significantly higher for forwards (4606 ± 719 kcal·day−1) compared to backs (3761 ± 618 kcal·day−1; p < 0.01; d = 1.26). Forwards demonstrated significantly higher mean seven-day absolute macronutrient intakes compared to backs (p < 0.03; d = 0.86–1.58), but no significant differences were observed for mean seven-day relative carbohydrate (3.5 ± 0.8 vs. 3.7 ± 0.7 g·kg·day−1), protein (2.5 ± 0.4 vs. 2.4 ± 0.5 g·kg·day−1), and fat (1.8 ± 0.4 vs. 1.8 ± 0.5 g·kg·day−1) intakes. Both forwards and backs reported their highest energy (5223 ± 864 vs. 4694 ± 784 kcal·day−1) and carbohydrate (4.4 ± 1.2 vs. 5.1 ± 1.0 g·kg·day−1) intakes on game day, with ≈62% of total calories being consumed prior to kick-off. Mean pre-game meal composition for all players was 1.4 ± 0.5 g·kg−1 carbohydrate, 0.8 ± 0.2 g·kg−1 protein, and 0.5 ± 0.2 g·kg−1 fat. Players fell short of daily sports nutrition guidelines for carbohydrate and appeared to “eat to intensity” by increasing or decreasing energy and carbohydrate intake based on the training load. Despite recommendations and continued education, many rugby players select what would be considered a “lower” carbohydrate intake. Although these intakes appear adequate to be a professional RU player, further research is required to determine optimal dietary intakes.
Collapse
|
52
|
Moura RF, De Moraes WMAM, De Castro BM, Nogueira ALP, Trindade TB, Schoenfeld BJ, Prestes J. Carbohydrate refeed does not modify GVT-performance following energy restriction in bodybuilders. Clin Nutr ESPEN 2021; 43:308-316. [PMID: 34024532 DOI: 10.1016/j.clnesp.2021.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/15/2022]
Abstract
Bodybuilding is a sport in which competitors' physiques are judged on their muscular size, symmetry, and leanness, as displayed in a number of different poses. In the pre-competitive period, bodybuilders attempt to reduce body fat stores as much as possible while maintaining fat-free mass (FFM). This is achieved via a sustained negative energy balance, generally induced by a combination of decreased energy intake and increased energy expenditure. This study aimed to assess the ability of bodybuilders to resist fatigue during resistance exercise based German Volume Training (GVT), as well as the affective response after carbohydrate refeed following four weeks of moderate or severe energy restriction. Eleven male bodybuilders (28.4 ± 2.3 years old) with experience in competitions were randomized into two groups: Moderate Energy Restriction (MER; n = 6) or Severe Energy Restriction (SER; n = 5). On the 2nd day (during energy restriction) and 7th day (during refeed) of the fourth week, both groups completed two leg press protocols involving the GVT method. After the first and last workout protocol subjects were assessed for muscle soreness using the visual-analog scale (VAS), rating of perceived exertion (RPE), affective response, lactate, and creatine kinase. Anthropometric analysis indicated that a reduction of 3.7 and 3.2% in body mass corresponded to a loss of 16.0 and 17.6% of fat mass for the MER and SER groups, respectively, with both groups maintaining FFM. Blood CK and VAS values were reduced only in SER. Our results suggest that a carbohydrate refeed may help to attenuate the perception of muscle soreness and maintain exercise performance, especially when severe energy restriction is combined with an intense training protocol such as GVT.
Collapse
Affiliation(s)
- Ronaldo Ferreira Moura
- Post-Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC - Bloco G, 71966-700, Taguatinga, Federal District, Brazil.
| | - Wilson Max Almeida Monteiro De Moraes
- Post-Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC - Bloco G, 71966-700, Taguatinga, Federal District, Brazil.
| | - Bruno Magalhães De Castro
- Post-Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC - Bloco G, 71966-700, Taguatinga, Federal District, Brazil.
| | - André Luiz Pinto Nogueira
- Center Estacio of Brasilia, Brasília Federal District Brazil G Sul 9, Q CS 11, 72035-509, Taguatinga, Federal District, Brazil.
| | - Thiago Barbosa Trindade
- Post-Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC - Bloco G, 71966-700, Taguatinga, Federal District, Brazil.
| | | | - Jonato Prestes
- Post-Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC - Bloco G, 71966-700, Taguatinga, Federal District, Brazil.
| |
Collapse
|
53
|
Burke LM, Slater GJ, Matthews JJ, Langan-Evans C, Horswill CA. ACSM Expert Consensus Statement on Weight Loss in Weight-Category Sports. Curr Sports Med Rep 2021; 20:199-217. [PMID: 33790193 DOI: 10.1249/jsr.0000000000000831] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Weight-category sports are defined by the requirement of a weigh-in before competition to provide performance equity and reduced injury risks by eliminating size discrepancies. Athletes in these sports try to gain a theoretical advantage by competing in weight divisions that are lower than their day-to-day body mass (BM), using a combination of chronic strategies (body-fat losses) and acute manipulations over a period of hours to days before weigh-in ("making weight"). Strategies to support safer practices include minimal competition weight classification based on preseason body composition, reductions in the period between weigh-in and competition, and prohibition of unhealthy weight loss techniques. At an individual level, expert guidance by a sports nutrition professional can help an athlete to establish a pragmatic and long-term approach to BM management, recognizing the nuances of their sport, to achieve favorable outcomes for both health and performance.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, AUSTRALIA
| | - Gary J Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, AUSTRALIA
| | | | - Carl Langan-Evans
- Applied Sport Physiology and Nutrition Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool, Merseyside, UNITED KINGDOM
| | - Craig A Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
54
|
Buga A, Kackley ML, Crabtree CD, Sapper TN, Mccabe L, Fell B, LaFountain RA, Hyde PN, Martini ER, Bowman J, Pan Y, Scandling D, Brownlow ML, O'Connor A, Simonetti OP, Kraemer WJ, Volek JS. The Effects of a 6-Week Controlled, Hypocaloric Ketogenic Diet, With and Without Exogenous Ketone Salts, on Body Composition Responses. Front Nutr 2021; 8:618520. [PMID: 33869263 PMCID: PMC8044842 DOI: 10.3389/fnut.2021.618520] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Ketogenic diets (KDs) that elevate beta-hydroxybutyrate (BHB) promote weight and fat loss. Exogenous ketones, such as ketone salts (KS), also elevate BHB concentrations with the potential to protect against muscle loss during caloric restriction. Whether augmenting ketosis with KS impacts body composition responses to a well-formulated KD remains unknown. Purpose: To explore the effects of energy-matched, hypocaloric KD feeding (<50 g carbohydrates/day; 1.5 g/kg/day protein), with and without the inclusion of KS, on weight loss and body composition responses. Methods: Overweight and obese adults were provided a precisely defined hypocaloric KD (~75% of energy expenditure) for 6 weeks. In a double-blind manner, subjects were randomly assigned to receive ~24 g/day of a racemic BHB-salt (KD + KS; n = 12) or placebo (KD + PL; n = 13). A matched comparison group (n = 12) was separately assigned to an isoenergetic/isonitrogenous low-fat diet (LFD). Body composition parameters were assessed by dual x-ray absorptiometry and magnetic resonance imaging. Results: The KD induced nutritional ketosis (>1.0 mM capillary BHB) throughout the study (p < 0.001), with higher fasting concentrations observed in KD + KS than KD + PL for the first 2 weeks (p < 0.05). There were decreases in body mass, whole body fat and lean mass, mid-thigh muscle cross-sectional area, and both visceral and subcutaneous adipose tissues (p < 0.001), but no group differences between the two KDs or with the LFD. Urine nitrogen excretion was significantly higher in KD + PL than LFD (p < 0.01) and trended higher in KD + PL compared to KD + KS (p = 0.076), whereas the nitrogen excretion during KD + KS was similar to LFD (p > 0.05). Conclusion: Energy-matched hypocaloric ketogenic diets favorably affected body composition but were not further impacted by administration of an exogenous BHB-salt that augmented ketosis. The trend for less nitrogen loss with the BHB-salt, if manifested over a longer period of time, may contribute to preserved lean mass.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | | | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Lauren Mccabe
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Brandon Fell
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Rich A. LaFountain
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Parker N. Hyde
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Emily R. Martini
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jessica Bowman
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Yue Pan
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Debbie Scandling
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Milene L. Brownlow
- Research and Development Department, Metagenics, Inc., Aliso Viejo, CA, United States
| | - Annalouise O'Connor
- Research and Development Department, Metagenics, Inc., Aliso Viejo, CA, United States
| | - Orlando P. Simonetti
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
55
|
Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int J Sport Nutr Exerc Metab 2021; 31:292-301. [PMID: 33741748 DOI: 10.1123/ijsnem.2020-0356] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022]
Abstract
Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the literature that warrant future study.
Collapse
|
56
|
Abstract
We aimed to assess the effects of spirulina supplementation during gradual weight loss on serum concentrations of follistatin (FST), myostatin (MST), insulin-like growth factor 1 (IGF-1), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and body composition in competitive wrestlers. Forty competitive wrestlers (age: 22 (sem 2) years) were randomly assigned to one of two groups: gradual weight loss + spirulina (SP; n 20) or gradual weight loss + placebo (PL; n 20). Subjects in both groups lost weight according to a designed diet over 12 d and were required to reduce baseline body mass (BM) by 4%. Subjects in the SP group received two tablets of spirulina, while subjects in the PL received two tablets of placebo before each meal. Concentrations of mentioned serum markers and body composition were measured before and after the interventions. BM (SP = -3·1 kg and PL = -2·9 kg), body fat percentage (BFP) (SP = -2·1 % and PL = -0·6 %), fat mass (FM) (SP = -2·2 kg and PL = -0·9 kg) and skeletal muscle mass (SP = -1·4 kg and PL = -1·5 kg) significantly decreased in both groups (P < 0·05). The changes in BFP and FM were significantly greater in SP compared with the PL group (P < 0·001). Additionally, MST (SP = -0·1 ng/ml), AST (SP = -2·1 u/l) and ALT (SP = -2·7 u/l) concentrations significantly diminished in SP group (P = 0·005), while FST (PL = -0·1 ng/ml) and IGF-1 (PL = -2·6 ng/ml) concentrations significantly decreased in PL group (P < 0·05). Spirulina supplementation during gradual weight loss is beneficial in reducing BFP, FM, MST and liver enzymes while maintaining IGF-1 and FST concentrations in competitive wrestlers.
Collapse
|
57
|
Martínez-Gómez MG, Roberts BM. Metabolic Adaptations to Weight Loss: A Brief Review. J Strength Cond Res 2021; 36:2970-2981. [PMID: 33677461 DOI: 10.1519/jsc.0000000000003991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Martínez-Gómez, MG and Roberts, BM. Metabolic adaptations to weight loss: A brief review. J Strength Cond Res XX(X): 000-000, 2021-As the scientific literature has continuously shown, body mass loss attempts do not always follow a linear fashion nor always go as expected even when the intervention is calculated with precise tools. One of the main reasons why this tends to happen relies on our body's biological drive to regain the body mass we lose to survive. This phenomenon has been referred to as "metabolic adaptation" many times in the literature and plays a very relevant role in the management of obesity and human weight loss. This review will provide insights into some of the theoretical models for the etiology of metabolic adaptation as well as a quick look into the physiological and endocrine mechanisms that underlie it. Nutritional strategies and dietetic tools are thus necessary to confront these so-called adaptations to body mass loss. Among some of these strategies, we can highlight increasing protein needs, opting for high-fiber foods or programming-controlled diet refeeds, and diet breaks over a large body mass loss phase. Outside the nutritional aspects, it might be wise to increase the physical activity and thus the energy flux of an individual when possible to maintain diet-induced body mass loss in the long term. This review will examine these protocols and their viability in the context of adherence and sustainability for the individual toward successful body mass loss.
Collapse
Affiliation(s)
- Mario G Martínez-Gómez
- CarloSportNutrition, Spain; and University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
58
|
Pearson AG, Alexander L, Witard OC, Coughlin TE, Tipton KD, Walshe IH. A hypoenergetic diet with decreased protein intake does not reduce lean body mass in trained females. Eur J Appl Physiol 2021; 121:771-781. [PMID: 33258997 PMCID: PMC7892501 DOI: 10.1007/s00421-020-04555-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Increasing protein intake during energy restriction (ER) attenuates lean body mass (LBM) loss in trained males. However, whether this relationship exists in trained females is unknown. This study examined the impact of higher compared to lower protein intakes (35% versus 15% of energy intake) on body composition in trained females during 2 weeks of severe ER. METHODS Eighteen well-trained females completed a 1-week energy balanced diet (HD100), followed by a 2-week hypoenergetic (40% ER) diet (HD60). During HD60, participants consumed either a high protein (HP; 35% protein, 15% fat) or lower protein (CON; 15% protein, 35% fat) diet. Body composition, peak power, leg strength, sprint time, and anaerobic endurance were assessed at baseline, pre-HD60, and post-HD60. RESULTS Absolute protein intake was reduced during HD60 in the CON group (from 1.6 to 0.9 g·d·kgBM-1) and maintained in the HP group (~ 1.7 g·d·kgBM-1). CON and HP groups decreased body mass equally during HD60 (- 1.0 ± 1.1 kg; p = 0.026 and - 1.1 ± 0.7 kg; p = 0.002, respectively) and maintained LBM. There were no interactions between time point and dietary condition on exercise performance. CONCLUSION The preservation of LBM during HD60, irrespective of whether absolute protein intake is maintained or reduced, contrasts with findings in trained males. In trained females, the relationship between absolute protein intake and LBM change during ER warrants further investigation. Future recommendations for protein intake during ER should be expressed relative to body mass, not total energy intake, in trained females.
Collapse
Affiliation(s)
- Alice G Pearson
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Lee Alexander
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK
| | - Oliver C Witard
- Centre of Human and Applied Physiological Research, King's College London, London, UK
| | - Thomas E Coughlin
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK
| | - Kevin D Tipton
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Ian H Walshe
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK.
| |
Collapse
|
59
|
Ashtary-Larky D, Bagheri R, Asbaghi O, Tinsley GM, Kooti W, Abbasnezhad A, Afrisham R, Wong A. Effects of resistance training combined with a ketogenic diet on body composition: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 62:5717-5732. [PMID: 33624538 DOI: 10.1080/10408398.2021.1890689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We evaluated the effects of ketogenic diets (KDs) on body mass (BM), fat mass (FM), fat-free mass (FFM), body mass index (BMI), and body fat percentage (BFP) compared to non-KDs in individuals performing resistance training (RT). Online electronic databases including PubMed, the Cochrane Library, Web of Science, Embase, SCOPUS, and Ovid were searched to identify initial studies until February 2021. Data were pooled using both fixed and random-effects methods and were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). Out of 1372 studies, 13 randomized controlled trials (RCTs) that enrolled 244 volunteers were included. The pooled results demonstrated that KDs significantly decreased BM [(WMD = -3.67 kg; 95% CI: -4.44, -2.90, p < 0.001)], FM [(WMD = -2.21 kg; 95% CI: -3.09, -1.34, p < 0.001)], FFM [(WMD = -1.26 kg; 95% CI: -1.82, -0.70, p < 0.001)], BMI [(WMD = -1.37 kg.m-2; 95% CI: -2.14, -0.59, p = 0.022)], and BFP [(WMD = -2.27%; 95% CI: -3.63, -0.90, p = 0.001)] compared to non-KDs. We observed beneficial effects of KDs compared to non-KDs on BM and body fat (both FM and BFP) in individuals performing RT. However, adherence to KDs may have a negative effect on FFM, which is not ameliorated by the addition of RT.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbasnezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Afrisham
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Texas, USA
| |
Collapse
|
60
|
Effects of a Protein-Rich, Low-Glycaemic Meal Replacement on Changes in Dietary Intake and Body Weight Following a Weight-Management Intervention-The ACOORH Trial. Nutrients 2021; 13:nu13020376. [PMID: 33530530 PMCID: PMC7910938 DOI: 10.3390/nu13020376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Although meal replacement can lead to weight reduction, there is uncertainty whether this dietary approach implemented into a lifestyle programme can improve long-term dietary intake. In this subanalysis of the Almased Concept against Overweight and Obesity and Related Health Risk (ACOORH) study (n = 463), participants with metabolic risk factors were randomly assigned to either a meal replacement-based lifestyle intervention group (INT) or a lifestyle intervention control group (CON). This subanalysis relies only on data of participants (n = 119) who returned correctly completed dietary records at baseline, and after 12 and 52 weeks. Both groups were not matched for nutrient composition at baseline. These data were further stratified by sex and also associated with weight change. INT showed a higher increase in protein intake related to the daily energy intake after 12 weeks (+6.37% [4.69; 8.04] vs. +2.48% [0.73; 4.23], p < 0.001) of intervention compared to CON. Fat and carbohydrate intake related to the daily energy intake were more strongly reduced in the INT compared to CON (both p < 0.01). After sex stratification, particularly INT-women increased their total protein intake after 12 (INT: +12.7 g vs. CON: −5.1 g, p = 0.021) and 52 weeks (INT: +5.7 g vs. CON: −16.4 g, p = 0.002) compared to CON. Protein intake was negatively associated with weight change (r = −0.421; p < 0.001) after 12 weeks. The results indicate that a protein-rich dietary strategy with a meal replacement can improve long-term nutritional intake, and was associated with weight loss.
Collapse
|
61
|
de Barros TR, Salerno VP, Ponce T, Mainenti MRM. Body Composition Modifications Due to the "Search, Rescue and Survival Training" in Male Military Firefighter Cadets. Mil Med 2021; 187:e160-e166. [PMID: 33399870 DOI: 10.1093/milmed/usaa571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION To train and prepare cadets for a career as firefighters in Rio de Janeiro, the second-year students of the Officers Training Course are submitted to a Search, Rescue, and Survival Training (SRST) course, which is characterized by long periods of high physical exertion and sleep restriction during a 9-day instruction module, and food restriction during a 7-day survival module. The present study investigated changes in the body composition of 39 male cadets submitted to SRST during training and 4 weeks of recovery with no restrictions in food consumption. MATERIALS AND METHODS Each cadet was evaluated by anthropometric measurements at six time points: pre-SRST; after the first module; after the second module; and after 1, 2, and 4 weeks of recovery. Measurements included body girths and skinfolds, to estimate trunk (chest and waist) and limbs (arm and thigh) dimensions, as well as body composition. Repeated measures ANOVA and Friedman test were applied (depending on each data distribution). RESULTS Statistically significant decreases in body weight (76.2; 69.8-87.2 to 63.9; 58.9-73.5 kg) and fat free mass (FFM, 69.2; 63.7-77.2 to 60.1; 56.2-68.0 kg) were observed following the second module of SRST. Following a single week of recovery, the FFM returned to pre-SRST values. Body weight returned to pre-training levels in 2 weeks. Body fat percentage and mass also significantly decreased during SRST (9.0; 7.7-12.3 to 6.5; 5.1-9.3% and 6.9; 5.6-10.0 to 6.9; 5.6-10.0 kg, respectively), which showed a slower and more gradual recovery that reached pre-SRST values after 4 weeks. The girths of arm, thigh, chest and waist significantly decreased due to SRST. The girths of the limbs (arm and thigh) returned to pre-training values after one month of recovery, while the girths of the trunk (chest and waist) did not return to pre-SRST values during the study period. CONCLUSIONS The findings suggest that men who experience periods of high energy demands and sleep restriction followed by a period of food restriction will endure unavoidable physical consequences that can be mostly reversed by a 1-month recovery.
Collapse
Affiliation(s)
- Thiago Ramos de Barros
- Dom Pedro II Military Firefighter Academy, Rio de Janeiro Fire Department, Rio de Janeiro, State of Rio de Janeiro 21660-001, Brazil.,Physical Education College of the Brazilian Army, Brazilian Army, Rio de Janeiro, State of Rio de Janeiro 22291-090, Brazil.,Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Verônica Pinto Salerno
- Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Thalita Ponce
- Dom Pedro II Military Firefighter Academy, Rio de Janeiro Fire Department, Rio de Janeiro, State of Rio de Janeiro 21660-001, Brazil.,Department of Biosciences Physical Activity, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Míriam Raquel Meira Mainenti
- Physical Education College of the Brazilian Army, Brazilian Army, Rio de Janeiro, State of Rio de Janeiro 22291-090, Brazil
| |
Collapse
|
62
|
Campbell BI. A Reply to Contrary to the Conclusions Stated in the Paper, Only Dry Fat-Free Mass Was Different between Groups upon Reanalysis-Comment on: "Intermittent Energy Restriction Attenuates the Loss of Fat-Free Mass in Resistance Trained Individuals: A Randomized Controlled Trial". J Funct Morphol Kinesiol 2020; 5:jfmk5040086. [PMID: 33467301 PMCID: PMC7739255 DOI: 10.3390/jfmk5040086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
We would like to thank Dr [...].
Collapse
Affiliation(s)
- Bill I Campbell
- Exercise Science Program, Performance and Physique Enhancement Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
63
|
Ambegaonkar JP, Brown AF. Nutrition Periodization in Dancers. Phys Med Rehabil Clin N Am 2020; 32:65-73. [PMID: 33198899 DOI: 10.1016/j.pmr.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dancers' energy demands fluctuate across the season. Accordingly, dancers should adapt their training and nutrition. Still, how to periodize nutrition in dancers remains unclear. This article aims to (1) introduce nutrition periodization and (2) provide recommendations for nutrition periodization in dancers. During preseason, dancers design, rehearse, and train. During in-season, dancers have one or more daily performances. During postseason, dancers rest and prepare for the next season. Nutrition periodization is the strategic and timed nutrient intake to meet varying seasonal energy demands. Overall, nutrition periodization can support dancers' training goals, enhance their performance, and support optimal recovery.
Collapse
Affiliation(s)
- Jatin P Ambegaonkar
- Sports Medicine Assessment Research and Testing (SMART) Laboratory, George Mason University, 201-F, K Johnson Hall, MSN 4E5, 10890 George Mason Circle, Manassas, VA 20110, USA.
| | - Ann F Brown
- Human Performance Laboratory, Department of Movement Sciences, University of Idaho, College of Education Health & Human Sciences, Physical Education Building 104, 875 Perimeter Drive MS 2401, Moscow, ID 83844, USA
| |
Collapse
|
64
|
Ross JA, Thomas DT, Winters JD, Royer SD, Halagarda CJ, Sheppard R, Abt J, Heebner NR. Military Protein Intake Related to Strength and Fat Mass Independent of Energy Intake. Mil Med 2020; 185:e1671-e1678. [PMID: 32633753 DOI: 10.1093/milmed/usaa151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Kinetic military units operate in austere training environments and deprivation not commonly experienced by competitive athletes. Nutritional strategies to protect against decrements in performance and potential injury risk may differ for these two groups. A cross sectional analysis was conducted to determine energy and macronutrient characteristics associated with performance metrics. MATERIALS AND METHODS 78 male subjects (age: 28.4 ± 6.0 years, height: 178.3 ± 6.7 cm, mass: 84.3 ± 9.4 kg, 8.5 ± 5.8 years of service) assigned to Marine Corps Forces Special Operations Command completed a 1-day performance assessment. Body mass, lean body mass, fat mass (FM), aerobic capacity (VO2max), lactate inflection point (LT), anaerobic power, anaerobic capacity, knee flexion strength, knee extension strength, peak knee flexion strength, and peak knee extension strength outcome values were recorded. Dietary intake was collected using automated self-administered 24-hour dietary recall (ASA24). Performance assessment scores were compared with macronutrient intake and controlled for energy intake using analysis of covariance. RESULTS Differences in knee flexion strength, knee extension strength, peak knee flexion strength, and peak knee extension strength were significant across low (LPRO), medium (MPRO), and high (HPRO) protein intake groups (p < 0.05) with LPRO performance metrics significantly lower than both MPRO and HPRO and MPRO significantly lower than HPRO. FM was significantly higher in LPRO than MPRO or HPRO (p < 0.05). Low carbohydrate intake (LCHO) was associated with greater body mass and FM compared with high (HCHO) (p < 0.05). There was no association between fat intake and any variable. CONCLUSIONS Increases in protein intake may have beneficial performance effects independent of total energy intake, while moderate increases in carbohydrate intake may not be sufficient to enhance physical performance in a special operations population.
Collapse
Affiliation(s)
- Jeremy A Ross
- Sports Medicine Research Institute, University of Kentucky, 720 Sports Center Dr. Lexington, KY 40506
| | - D Travis Thomas
- Sports Medicine Research Institute, University of Kentucky, 720 Sports Center Dr. Lexington, KY 40506
| | - Joshua D Winters
- Sports Medicine Research Institute, University of Kentucky, 720 Sports Center Dr. Lexington, KY 40506
| | - Scott D Royer
- Sports Medicine Research Institute, University of Kentucky, 720 Sports Center Dr. Lexington, KY 40506
| | | | - Ryan Sheppard
- United States Marine Forces Special Operations Command, SC Box 20116 Camp Lejeune, NC 28542
| | - John Abt
- Children's Health Andrews Institute for Orthopaedics and Sports Medicine, 7211 Preston Rd. Suite T1200, Plano, TX 75024
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, 720 Sports Center Dr. Lexington, KY 40506
| |
Collapse
|
65
|
Coelho MOC, Monteyne AJ, Dunlop MV, Harris HC, Morrison DJ, Stephens FB, Wall BT. Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health. Nutr Rev 2020; 78:486-497. [PMID: 31841152 DOI: 10.1093/nutrit/nuz077] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.
Collapse
Affiliation(s)
- Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hannah C Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Douglas J Morrison
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
66
|
The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: a randomised controlled trial. Br J Nutr 2020; 124:1044-1051. [PMID: 32513334 DOI: 10.1017/s0007114520002019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Normal-weight obesity (NWO) syndrome is associated with metabolic diseases. The present study aimed to investigate the effects of 12 weeks of a high-protein (HP) v. a standard protein (SP) diet on appetite, anthropometry and body composition in NWO women. In this clinical trial, fifty NWO women were randomly allocated to HP (n 25) or SP (n 25) diet groups. Women in the HP and SP groups consumed 25 and 15 % of their total energy intake from protein for 12 weeks. Weight, fat mass (FM), lean body mass (LBM), waist circumference (WC) and appetite were evaluated at baseline and following their 3-month intervention. After 12 weeks, the LBM was higher in HP compared with no significant changes in the SP group (mean between-group difference = 1·5 kg; 95 % CI 3·1, 0·01; effect size (d) = 0·4). Furthermore, the HP group had lower FM (mean between-group difference -1·1 kg; 95 % CI 1, -3·3; d = -0·2), body fat percentage (BFP) (mean between-group difference -2 %; 95 % CI 0·7, -5·2; d = -0·3) and WC (mean between-group difference -1·4 cm; 95 % CI 0·6, -3·6; d = -0·2) at the end of the study in comparison with the SP group. In both groups, weight and appetite were unchanged over time without significant differences between groups. Twelve weeks of euenergetic diets with different dietary protein contents resulted in no significant weight loss in women with NWO. However, an HP diet significantly improved body composition (LBM, FM, BFP and WC) in this population.
Collapse
|
67
|
Kazemi A, Speakman JR, Soltani S, Djafarian K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: A systematic review and meta-analysis. Clin Nutr 2020; 39:1705-1716. [DOI: 10.1016/j.clnu.2019.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
|
68
|
Bernardi M, Fedullo AL, Bernardi E, Munzi D, Peluso I, Myers J, Lista FR, Sciarra T. Diet in neurogenic bowel management: A viewpoint on spinal cord injury. World J Gastroenterol 2020; 26:2479-2497. [PMID: 32523306 PMCID: PMC7265150 DOI: 10.3748/wjg.v26.i20.2479] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to offer dietary advice for individuals with spinal cord injury (SCI) and neurogenic bowel dysfunction. With this in mind, we consider health conditions that are dependent on the level of lesion including skeletal muscle atrophy, autonomic dysreflexia and neurogenic bladder. In addition, SCI is often associated with a sedentary lifestyle, which increases risk for osteoporosis and diseases associated with chronic low-grade inflammation, including cardiovascular and chronic kidney diseases. The Mediterranean diet, along with exercise and dietary supplements, has been suggested as an anti-inflammatory intervention in individuals with SCI. However, individuals with chronic SCI have a daily intake of whole fruit, vegetables and whole grains lower than the recommended dietary allowance for the general population. Some studies have reported an increase in neurogenic bowel dysfunction symptoms after high fiber intake; therefore, this finding could explain the low consumption of plant foods. Low consumption of fibre induces dysbiosis, which is associated with both endotoxemia and inflammation. Dysbiosis can be reduced by exercise and diet in individuals with SCI. Therefore, to summarize our viewpoint, we developed a Mediterranean diet-based diet and exercise pyramid to integrate nutritional recommendations and exercise guidelines. Nutritional guidelines come from previously suggested recommendations for military veterans with disabilities and individuals with SCI, chronic kidney diseases, chronic pain and irritable bowel syndrome. We also considered the recent exercise guidelines and position stands for adults with SCI to improve muscle strength, flexibility and cardiorespiratory fitness and to obtain cardiometabolic benefits. Finally, dietary advice for Paralympic athletes is suggested.
Collapse
Affiliation(s)
- Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy
- Italian Paralympic Committee, Rome 00191, Italy
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Anna Lucia Fedullo
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70121, Italy
| | - Diego Munzi
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome 00178, Italy
| | - Jonathan Myers
- VA Palo Alto Health Care System and Stanford University, Cardiology Division, Palo Alto, CA 94025, United States
| | | | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| |
Collapse
|
69
|
Ó Catháin C, Fleming J, Renard M, Kelly DT. Dietary Intake of Gaelic Football Players during Game Preparation and Recovery. Sports (Basel) 2020; 8:sports8050062. [PMID: 32429175 PMCID: PMC7281517 DOI: 10.3390/sports8050062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
It is well established that dietary intake can influence performance and modulate recovery in field-based invasion team sports such as soccer and rugby. However, very limited research currently exists examining dietary intake of Gaelic football players. This research aimed to examine the dietary intake of Gaelic football players 2 days prior to competition, on game day, and for 2 days post-competition. A five-day paper-based food diary was completed by 45 players (25 elite and 20 sub-elite). Preliminary inspection of diaries eliminated 11 participants, and analysis of Goldberg cut-offs identified 1 player as an under-reporter, leaving 33 players in the final analysis. Playing level had no effect on energy, carbohydrate, or fat intake. Average intake of energy was 2938 ± 618 kcal.day−1, carbohydrate was 3.7 ± 1.42 g.kgbm−1.day−1, and fat was 1.34 ± 0.61 g.kgbm−1.day−1. However, elite players consumed 24.1% more protein than sub-elite players (2.2 ± 0.67 vs. 1.8 ± 0.62 g.kgbm−1.day−1). Regardless of playing level, players consumed inadequate amounts of carbohydrate to support optimal performance and recovery and consumed protein and fat in line with general sport nutrition guidelines. Given the unique demands placed on Gaelic football players, it may be necessary to develop nutrition guidelines specific to Gaelic football. Additionally, the design and implementation of Gaelic football-specific education-based interventions may be necessary to address the highlighted nutritional inadequacies.
Collapse
Affiliation(s)
- Ciarán Ó Catháin
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
- Correspondence:
| | - James Fleming
- School of Sport Health and Applied Sciences, St Mary’s University, Twickenham TW1 4SX, UK;
| | - Michèle Renard
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
| | - David T. Kelly
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
| |
Collapse
|
70
|
Øfsteng SJ, Garthe I, Jøsok Ø, Knox S, Helkala K, Knox B, Ellefsen S, Rønnestad BR. No effect of increasing protein intake during military exercise with severe energy deficit on body composition and performance. Scand J Med Sci Sports 2020; 30:865-877. [DOI: 10.1111/sms.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ina Garthe
- Norwegian Olympic Sport Center Oslo Norway
| | - Øyvind Jøsok
- Inland Norway University of Applied Sciences Lillehammer Norway
- Norwegian Defence Cyber Academy Lillehammer Norway
| | - Silje Knox
- Norwegian Defence Cyber Academy Lillehammer Norway
| | | | - Ben Knox
- Norwegian Defence Cyber Academy Lillehammer Norway
| | - Stian Ellefsen
- Inland Norway University of Applied Sciences Lillehammer Norway
- Innlandet Hospital Trust Brumunddal Norway
| | | |
Collapse
|
71
|
Brown AF, Welsh T, Panton LB, Moffatt RJ, Ormsbee MJ. Higher-protein intake improves body composition index in female collegiate dancers. Appl Physiol Nutr Metab 2020; 45:547-554. [DOI: 10.1139/apnm-2019-0517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aesthetic athletes strive to attain an ideal body image and the physical demands placed on dancers make their body composition and fitness equally as important as their technique. Body composition has shown positive changes in response to increased protein intake and may improve aesthetics of dance performance. The purpose of this study was to determine the extent to which supplemental whey protein (PRO) would improve body composition in female collegiate dancers compared with an isocaloric placebo (PLA). Twenty-one (age, 19.6 ± 1.4 years) female collegiate dancers were randomly assigned to consume PRO or PLA (25 g, 3×/day) for 12 weeks. Laboratory testing at weeks 0, 6, and 12 included 24-h urine collection, body composition (dual-energy X-ray absorptiometry), resting metabolic rate, and performance. Data were reported as means ± SD. Significance was accepted at p < 0.05. Body weight, fat mass, and lean soft tissue did not change between groups or over time. Body composition index (BCI = [(LSTpost− LSTpre) + (FMpre− FMpost)]; where LST is lean soft tissue, FM is fat mass, pre is pre-intervention, and post is post-intervention) significantly improved over time in PRO (+0.6 ± 1.9) but not PLA (−1.8 ± 3.1; p = 0.048); however, neither group demonstrated changes in laboratory performance tests. Protein supplementation for 12 weeks significantly improved BCI and provided a simple way to improve the diet in female collegiate dancers.Novelty Twelve weeks of protein supplementation does not change body weight in female collegiate dancers. BCI improves following protein supplementation in female collegiate dancers.
Collapse
Affiliation(s)
- Ann F. Brown
- College of Education, Health & Human Sciences, Department of Movement Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute of Sport Sciences and Medicine, College of Human Sciences, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Tom Welsh
- School of Dance, Florida State University, Tallahassee, FL 32306, USA
| | - Lynn B. Panton
- Institute of Sport Sciences and Medicine, College of Human Sciences, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert J. Moffatt
- Institute of Sport Sciences and Medicine, College of Human Sciences, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Michael J. Ormsbee
- Institute of Sport Sciences and Medicine, College of Human Sciences, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
72
|
Jukic I, Calleja-González J, Cos F, Cuzzolin F, Olmo J, Terrados N, Njaradi N, Sassi R, Requena B, Milanovic L, Krakan I, Chatzichristos K, Alcaraz PE. Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19. Sports (Basel) 2020; 8:E56. [PMID: 32344657 PMCID: PMC7240607 DOI: 10.3390/sports8040056] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In December of 2019, there was an outbreak of a severe acute respiratory syndrome caused by the Coronavirus 2 (SARS-CoV-2 or COVID-19) in China. The virus rapidly spread into the whole World causing an unprecedented pandemic and forcing governments to impose a global quarantine, entering an extreme unknown situation. The organizational consequences of quarantine/isolation are: absence of organized training and competition, lack of communication among athletes and coaches, inability to move freely, lack of adequate sunlight exposure, inappropriate training conditions. Based on the current scientific, we strongly recommend encouraging the athlete to reset their mindset to understand quarantine as an opportunity for development, organizing appropriate guidance, educating and encourage athletes to apply appropriate preventive behavior and hygiene measures to promote immunity and ensuring good living isolation conditions. The athlete's living space should be equipped with cardio and resistance training equipment (portable bicycle or rowing ergometer). Some forms of body mass resistance circuit-based training could promote aerobic adaptation. Sports skills training should be organized based on the athlete's needs. Personalized conditioning training should be carried out with emphasis on neuromuscular performance. Athletes should also be educated about nutrition (Vitamin D and proteins) and hydration. Strategies should be developed to control body composition. Mental fatigue should be anticipated and mental controlled. Adequate methods of recovery should be provided. Daily monitoring should be established. This is an ideal situation in which to rethink personal life, understanding the situation, that can be promoted in these difficult times that affect practically the whole world.
Collapse
Affiliation(s)
- Igor Jukic
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia; (I.J.); (L.M.); (I.K.)
- Biotrenning Ltd., 10000 Zagreb, Croatia
| | - Julio Calleja-González
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia; (I.J.); (L.M.); (I.K.)
- Faculty of Education and Sport, University of Basque Country, 01007 Vitoria-Gasteiz, Spain
- Strength and Conditioning Society, 00118 Rome, Italy; (F.C.); (P.E.A.)
| | - Francesc Cos
- Strength and Conditioning Society, 00118 Rome, Italy; (F.C.); (P.E.A.)
- National Institute of Physical Education (INEFC), University of Barcelona, 08038 Barcelona, Spain
| | | | - Jesús Olmo
- Football Science Institute, 18016 Granada, Spain; (J.O.); (B.R.)
| | - Nicolas Terrados
- Unidad Regional de Medicina Deportiva, Avilés and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33401 Oviedo, Spain;
| | - Nenad Njaradi
- Football Club Deportivo Alavés, 01007 Vitoria-Gasteiz, Spain;
| | | | - Bernardo Requena
- Football Science Institute, 18016 Granada, Spain; (J.O.); (B.R.)
| | - Luka Milanovic
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia; (I.J.); (L.M.); (I.K.)
- Biotrenning Ltd., 10000 Zagreb, Croatia
| | - Ivan Krakan
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia; (I.J.); (L.M.); (I.K.)
- Biotrenning Ltd., 10000 Zagreb, Croatia
| | | | - Pedro E. Alcaraz
- Strength and Conditioning Society, 00118 Rome, Italy; (F.C.); (P.E.A.)
- Research Center for High Performance Sport, UCAM, 30107 Murcia, Spain
| |
Collapse
|
73
|
Four Weeks of Time-Restricted Feeding Combined with Resistance Training Does Not Differentially Influence Measures of Body Composition, Muscle Performance, Resting Energy Expenditure, and Blood Biomarkers. Nutrients 2020; 12:nu12041126. [PMID: 32316561 PMCID: PMC7231047 DOI: 10.3390/nu12041126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, interest in time-restricted feeding (TRF) has increased from reports highlighting improvements in body composition and muscular performance measures. Twenty-six recreationally active males were randomly assigned to either TRF (n = 13; ~22.9 years; 82.0 kg; 178.1 cm; 8 h eating window, 25% caloric deficit, 1.8 g/kg/day protein) or normal diet (ND; n = 13; ~22.5 years; 83.3 kg; 177.5 cm; normal meal pattern; 25% caloric deficit, 1.8 g/kg/day protein) groups. Participants underwent 4-weeks of supervised full body resistance training. Changes in body composition (fat mass (FM), fat free mass (FFM), and body fat percentage (BF%)), skeletal muscle cross sectional area (CSA) and muscle thickness (MT) of the vastus lateralis (VL), rectus femoris, (RF), and biceps brachii (BB) muscles, resting energy expenditure (REE), muscular performance, blood biomarkers, and psychometric parameters were assessed. Significant (p < 0.05) decreases were noted in BM, FM, BF%, testosterone, adiponectin, and REE, along with significant increases in BP1RM, LP1RM, VJHT, VJPP, VLCSA, BBCSA, and BBMT in both groups. Plasma cortisol levels were significantly elevated at post (p = 0.018) only in ND. Additionally, FFM was maintained equally between groups. Thus, a TRF style of eating does not enhance reductions in FM over caloric restriction alone during a 4-week hypocaloric diet.
Collapse
|
74
|
Intermittent Energy Restriction Attenuates the Loss of Fat Free Mass in Resistance Trained Individuals. A Randomized Controlled Trial. J Funct Morphol Kinesiol 2020; 5:jfmk5010019. [PMID: 33467235 PMCID: PMC7739314 DOI: 10.3390/jfmk5010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
There is a lack of research into how lean, resistance trained (RT) individuals respond to intermittent energy restricted diets. Therefore, we investigated body composition changes in RT-individuals during continuous energy restriction or intermittent restriction. A total of 27 males and females (25 ± 6.1 years; 169 ± 9.4 cm; 80 ± 15.6 kg) were randomized to a ~25% caloric restricted diet Refeed (RF; n = 13) or Continuous group (CN; n = 14) in conjunction with 4-days/week resistance training for 7-weeks. RF implemented two consecutive days of elevated carbohydrate (CHO) intake, followed by 5-days of caloric restriction each week. CN adhered to a continuous 7-week caloric restriction. Body mass (BM), fat mass (FM), fat-free mass (FFM), dry fat-free mass (dFFM), and resting metabolic rate (RMR) were assessed pre/post-diet. Both groups significantly reduced BM (RF: baseline = 76.4 ± 15.6 kg, post-diet = 73.2 ± 13.8 kg, Δ3.2 kg; CN: baseline = 83.1 ± 15.4 kg, post-diet = 79.5 ± 15 kg, Δ3.6 kg) and FM (RF: baseline = 16.3 ± 4 kg, post-diet = 13.5 ± 3.6 kg, Δ2.8 kg; CN: baseline = 16.7 ± 4.5 kg, post-diet = 14.4 ± 4.9 kg, Δ2.3 kg) with no differences between groups. FFM (RF: baseline = 60.1 ± 13.8 kg, post-diet = 59.7 ± 13.0 kg, 0.4 kg; CN: baseline = 66.4 ± 15.2 kg, post-diet = 65.1 ± 15.2 kg, Δ1.3 kg p = 0.006), dFFM (RF: baseline = 18.7 ± 5.0 kg, post-diet = 18.5 ± 4.5 kg, Δ0.2 kg; CN: baseline =21.9 ± 5.7 kg, post-diet = 20.0 ± 5.7 kg, Δ1.9 kg), and RMR (RF: baseline = 1703 ± 294, post-diet = 1665 ± 270, Δ38 kcals; CN: baseline = 1867 ± 342, post-diet = 1789 ± 409, Δ78 kcals) were better maintained in the RF group. A 2-day carbohydrate refeed preserves FFM, dryFFM, and RMR during energy restriction compared to continuous energy restriction in RT-individuals.
Collapse
|
75
|
Female Collegiate Dancers Body Composition, Macronutrient and Micronutrient Intake Over Two Academic Years: A Longitudinal Analysis. J Funct Morphol Kinesiol 2020; 5:jfmk5010017. [PMID: 33467233 PMCID: PMC7739405 DOI: 10.3390/jfmk5010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
Collegiate dancers face unique challenges to maintain a lean aesthetic, optimal diet, and a high-performance level due to the various stressors in college. The purpose of this study was to examine changes in body composition (BC) and diet over two years. Participants (N = 17, 19.6 ± 1.6 years) completed two laboratory sessions per semester. Sessions included height and weight, BC, dietary intake, and a health history questionnaire. Regardless of rigorous dance training and variations in the academic calendar, no significant changes in BC or diet were observed within semesters of over two years. BMI was normal (24.9 ± 4.1 kg/m2) with fat mass exceeding 30% at all timepoints. Fat mass was negatively correlated with carbohydrate, fat, and protein intake (g/kg/day; r = -0.291, p = 0.004; r = -0.372, p < 0.0001; r = -0.398, p < 0.0001; respectively). Energy intake was within the recommended daily allowance (2040 ± 710 kcal/day), however may be insufficient for an active dance population. Protein (1.1 ± 0.5 g/kg), carbohydrate (3.7 ± 1.6 g/kg), calcium (835 ± 405 mg/day), iron (17 ± 15 mg/day), and potassium (1628 ± 1736 mg/day) intake fell below recommendations for an active population. Alterations in dance training and the demands of the academic calendar may be contributing to suboptimal dietary intake and BC in female collegiate dancers.
Collapse
|
76
|
Louis J, Tiollier E, Lamb A, Bontemps B, Areta J, Bernard T. Retraining and Nutritional Strategy of an Endurance Master Athlete Following Hip Arthroplasty: A Case Study. Front Sports Act Living 2020; 2:9. [PMID: 33345004 PMCID: PMC7739816 DOI: 10.3389/fspor.2020.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Retraining and resuming competition following surgery is challenging for athletes due to the prolonged period of reduced physical activity and subsequent alteration of body composition and physical performance. This is even more challenging for master athletes who endure the additional effect of aging. Within this context, the purpose of this study was to evaluate the feasibility and benefits that evidence-based nutritional and training recommendations could have on the time course of reconditioning and retraining following hip arthroplasty in an endurance master triathlete. During 38 weeks (from 6 weeks prior to surgery through to the return to competition in week 32), the athlete was provided with detailed training and nutritional recommendations. Dietary intake (via the remote food photographic method), body composition (via DXA), peak oxygen uptake (VO2peak), peak power output (PPO), cycling efficiency (GE), and energy availability (EA) were assessed 6 weeks pre- and 8, 12, 18, 21, and 25-weeks post-surgery. Training load was quantified (via TRIMP score and energy expenditure) daily during the retraining. Total body mass increased by 8.2 kg (attributable to a 3.5-4.6 kg increase in fat mass and lean mass, respectively) between week -6 and 8 despite a reduction in carbohydrate (CHO) intake post-surgery (<3.0 g/kg body mass/day). This was accompanied with a decrease in VO2peak, PPO, and GE due to a drop in training load. From week 7, the athlete resumed training and was advised to increase gradually CHO intake according to the demands of training. Eventually the athlete was able to return to competition in week 32 with a higher PPO, improved VO2peak, and GE. Throughout retraining, EA was maintained around 30 kcal/kg Lean Body Mass/day, protein intake was high (~2 g/kg/day) while CHO intake was periodized. Such dietary conditions allowed the athlete to maintain and even increase lean mass, which represents a major challenge with aging. Data reported in this study show, for the first time, the conditions required to recover and return to endurance competition following hip surgery.
Collapse
Affiliation(s)
- Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Eve Tiollier
- French National Institute of Sport, Expertise and Performance, Sport, Expertise and Performance Lab, Paris, France
| | - Antonia Lamb
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Bastien Bontemps
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Research Unit "Impact of Physical Activity on Health (IAPS N°201723207F) University of Toulon, Toulon, France
| | - Jose Areta
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thierry Bernard
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| |
Collapse
|
77
|
Larsen MS, Holm L, Svart MV, Hjelholt AJ, Bengtsen MB, Dollerup OL, Dalgaard LB, Vendelbo MH, van Hall G, Møller N, Mikkelsen UR, Hansen M. Effects of protein intake prior to carbohydrate-restricted endurance exercise: a randomized crossover trial. J Int Soc Sports Nutr 2020; 17:7. [PMID: 31992300 PMCID: PMC6986159 DOI: 10.1186/s12970-020-0338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Deliberately training with reduced carbohydrate availability, a paradigm coined training low, has shown to promote adaptations associated with improved aerobic capacity. In this context researchers have proposed that protein may be ingested prior to training as a means to enhance the protein balance during exercise without spoiling the effect of the low carbohydrate availability. Accordingly, this is being practiced by world class athletes. However, the effect of protein intake on muscle protein metabolism during training low has not been studied. This study aimed to examine if protein intake prior to exercise with reduced carbohydrate stores benefits muscle protein metabolism in exercising and non-exercising muscles. Methods Nine well-trained subjects completed two trials in random order both of which included a high-intensity interval ergometer bike ride (day 1), a morning (day 2) steady state ride (90 min at 65% VO2peak, 90ss), and a 4-h recovery period. An experimental beverage was consumed before 90ss and contained either 0.5 g whey protein hydrolysate [WPH]/ kg lean body mass or flavored water [PLA]. A stable isotope infusion (L-[ring-13C6]-phenylalanine) combined with arterial-venous blood sampling, and plasma flow rate measurements were used to determine forearm protein turnover. Myofibrillar protein synthesis was determined from stable isotope incorporation into the vastus lateralis. Results Forearm protein net balance was not different from zero during 90ss exercise (nmol/100 ml/min, PLA: 0.5 ± 2.6; WPH: 1.8, ± 3.3) but negative during the 4 h recovery (nmol/100 ml/min, PLA: − 9.7 ± 4.6; WPH: − 8.7 ± 6.5); no interaction (P = 0.5) or main effect of beverage (P = 0.11) was observed. Vastus lateralis myofibrillar protein synthesis rates were increased during 90ss exercise (+ 0.02 ± 0.02%/h) and recovery (+ 0.02 ± 0.02%/h); no interaction (P = 0.3) or main effect of beverage (P = 0.3) was observed. Conclusion We conclude that protein ingestion prior to endurance exercise in the energy- and carbohydrate-restricted state does not increase myofibrillar protein synthesis or improve net protein balance in the exercising and non-exercising muscles, respectively, during and in the hours after exercise compared to ingestion of a non-caloric control. Trial registration clinicaltrials.gov, NCT01320449. Registered 10 May 2017 – Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03147001
Collapse
Affiliation(s)
- Mads S Larsen
- Department of Public Health, Aarhus University, Dalgas Ave. 4, 8000, Aarhus C, Denmark. .,Arla Foods Ingredients Group P/S, Viby J, 8260, Denmark.
| | - Lars Holm
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Mads V Svart
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Department of Endocrinology, Aarhus University Hospital, Aarhus N, Denmark
| | - Astrid J Hjelholt
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Mads B Bengtsen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Ole L Dollerup
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Line B Dalgaard
- Department of Public Health, Aarhus University, Dalgas Ave. 4, 8000, Aarhus C, Denmark
| | - Mikkel H Vendelbo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus N, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Møller
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Department of Endocrinology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Dalgas Ave. 4, 8000, Aarhus C, Denmark
| |
Collapse
|
78
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
79
|
Philpott JD, Bootsma NJ, Rodriguez-Sanchez N, Hamilton DL, MacKinlay E, Dick J, Mettler S, Galloway SDR, Tipton KD, Witard OC. Influence of Fish Oil-Derived n-3 Fatty Acid Supplementation on Changes in Body Composition and Muscle Strength During Short-Term Weight Loss in Resistance-Trained Men. Front Nutr 2019; 6:102. [PMID: 31380384 PMCID: PMC6652803 DOI: 10.3389/fnut.2019.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023] Open
Abstract
Background: A detrimental consequence of diet-induced weight loss, common in athletes who participate in weight cutting sports, is muscle loss. Dietary omega-3 polyunsaturated fatty acids (n-3PUFA) exhibit a protective effect on the loss of muscle tissue during catabolic situations such as injury-simulated leg immobilization. This study aimed to investigate the influence of dietary n-3PUFA supplementation on changes in body composition and muscle strength following short-term diet-induced weight loss in resistance-trained men. Methods: Twenty resistance-trained young (23 ± 1 years) men were randomly assigned to a fish oil group that supplemented their diet with 4 g n-3PUFA, 18 g carbohydrate, and 5 g protein (FO) or placebo group containing an equivalent carbohydrate and protein content (CON) over a 6 week period. During weeks 1-3, participants continued their habitual diet. During week 4, participants received all food items to control energy balance and a macronutrient composition of 50% carbohydrate, 35% fat, and 15% protein. During weeks 5 and 6, participants were fed an energy-restricted diet equivalent to 60% habitual energy intake. Body composition and strength were measured during weeks 1, 4, and 6. Results: The decline in total body mass (FO = -3.0 ± 0.3 kg, CON = -2.6 ± 0.3 kg), fat free mass (FO = -1.4 ± 0.3 kg, CON = -1.2 ± 0.3 kg) and fat mass (FO = -1.4 ± 0.2 kg, CON = -1.3 ± 0.3 kg) following energy restriction was similar between groups (all p > 0.05; d: 0.16-0.39). Non-dominant leg extension 1 RM increased (6.1 ± 3.4%) following energy restriction in FO (p < 0.05, d = 0.29), with no changes observed in CON (p > 0.05, d = 0.05). Dominant leg extension 1 RM tended to increase following energy restriction in FO (p = 0.09, d = 0.29), with no changes in CON (p > 0.05, d = 0.06). Changes in leg press 1 RM, maximum voluntary contraction and muscular endurance following energy restriction were similar between groups (p > 0.05, d = 0.05). Conclusion: Any possible improvements in muscle strength during short-term weight loss with n-3PUFA supplementation are not related to the modulation of FFM in resistance-trained men.
Collapse
Affiliation(s)
- Jordan D Philpott
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Niels J Bootsma
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Nidia Rodriguez-Sanchez
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - David Lee Hamilton
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - James Dick
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Samuel Mettler
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Stuart D R Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Kevin D Tipton
- Department of Sport and Exercise Sciences, Faculty of Social Sciences and Health, Durham University, Durham, United Kingdom
| | - Oliver C Witard
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom.,Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
80
|
Park Y, Park HY, Kim J, Hwang H, Jung Y, Kreider R, Lim K. Effects of whey protein supplementation prior to, and following, resistance exercise on body composition and training responses: A randomized double-blind placebo-controlled study. J Exerc Nutrition Biochem 2019; 23:34-44. [PMID: 31337204 PMCID: PMC6651693 DOI: 10.20463/jenb.2019.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The composition of protein supplements, the consumption timing immedi¬ately before and after resistance exercise training (RET), and the quantity of protein supplementation may be important factors for the im-provement of muscle mass and function. Although these factors should be considered comprehensively for effective improvement of muscular function in protein supplementation, relatively few studies have focused on this area. Therefore, this study was designed to investigate whether a protein blend supplement before and after resistance exercise for 12 weeks would be effective in increasing muscular function. METHODS In total, 18 participants were randomly assigned to a placebo (PLA) or protein blend supplement (PRO) group. All subjects followed the same training routine 3 times per week for 12 weeks, taking placebo or protein supplements immediately before and after each exercise session. The protein supplement consisted of 40 g of blend protein, including hydrolyzed whey protein. The RET consisted of lower body (barbell squat, dead lift, seated leg extension, and lying leg curl) and upper body (bench press, barbell rowing, preacher bench biceps curl, and dumbbell shoulder press) exercises. A repetition was defined as three sets of 10-12 times with 80% of one repetition maximum (1RM). RESULTS Although the PRO group had a lower protein intake in terms of total food intake than the PLA group, the mean changes in muscle circumference, strength, and exercise volume increased, especially at week 12, compared to the PLA group. CONCLUSION These results suggest that the composition and timing of protein intake are more important than the total amount.
Collapse
Affiliation(s)
- Yeram Park
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Yanghoon Jung
- CJ Research Institute, CJ CheilJedang, SuwonRepublic of Korea
| | - Richard Kreider
- Department of Health and Kinesiology, Texas A&M University, TexasU.S.A.
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
81
|
Michael MK, Joubert L, Witard OC. Assessment of Dietary Intake and Eating Attitudes in Recreational and Competitive Adolescent Rock Climbers: A Pilot Study. Front Nutr 2019; 6:64. [PMID: 31134207 PMCID: PMC6523393 DOI: 10.3389/fnut.2019.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
The dietary intake and eating attitudes of adolescent climbers has not previously been studied. To fill this knowledge gap, we administered three surveys to 22 rock climbers (13 males, 9 females, age 14.2 ± 1.9 years): climbing ability, three-day dietary recall, and Eating Attitude Test-26 (EAT-26). The majority (82%) of climbers did not meet their target energy intake (target = 2,471 ± 493 kcal·day−1; actual = 1,963 ± 581 kcal·day−1) (p = 0.003) and 86% of climbers consumed below their target carbohydrate intake (target = 283 ± 67 g·day−1; actual intake = 226 ± 72 g·day−1) (p = 0.009). Average dietary protein intake was 95 ± 51 g·day−1, with the majority of climbers meeting their target intake of 88 ± 21 g (p = 0.580). Seventy-three percent of climbers consumed below their target dietary fat intake (target = 90 ± 21 g·day−1; actual = 69 ± 20 g·day−1) (p = 0.001). Average EAT-26 scores were 5.3 ± 4.1, indicating minimal risk of disordered eating attitudes/behaviors. There were no significant differences in boulderers vs. top rope climbers for energy/macronutrient intake, BMI, and EAT-26 score. There were no associations between energy intake and EAT-26 score (R2 = 0.245, p = 0.271) or climbing ability and EAT-26 score (R2 = p = 0.217). These data suggest that, with the exception of dietary protein intake, adolescent climbers fail to meet target dietary intakes, and exhibit minimal risk of disordered eating.
Collapse
Affiliation(s)
- Marisa K Michael
- Department of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Lanae Joubert
- School of Health and Human Performance, Northern Michigan University, Marquette, MI, United States
| | - Oliver C Witard
- Department of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
82
|
Jenner SL, Buckley GL, Belski R, Devlin BL, Forsyth AK. Dietary Intakes of Professional and Semi-Professional Team Sport Athletes Do Not Meet Sport Nutrition Recommendations-A Systematic Literature Review. Nutrients 2019; 11:nu11051160. [PMID: 31126159 PMCID: PMC6567121 DOI: 10.3390/nu11051160] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
Background: to develop sport-specific and effective dietary advice, it is important to understand the dietary intakes of team sport athletes. This systematic literature review aims to (1) assess the dietary intakes of professional and semi-professional team sport athletes and (2) to identify priority areas for dietetic intervention. Methods: an extensive search of MEDLINE, Sports DISCUS, CINAHL, Web of Science, and Scopus databases in April–May 2018 was conducted and identified 646 studies. Included studies recruited team sport, competitive (i.e., professional or semi-professional) athletes over the age of 18 years. An assessment of dietary intake in studies was required and due to the variability of data (i.e., nutrient and food group data) a meta-analysis was not undertaken. Two independent authors extracted data using a standardised process. Results: 21 (n = 511) studies that assessed dietary intake of team sport athletes met the inclusion criteria. Most reported that professional and semi-professional athletes’ dietary intakes met or exceeded recommendations during training and competition for protein and/or fat, but not energy and carbohydrate. Limitations in articles include small sample sizes, heterogeneity of data and existence of underreporting. Conclusions: this review highlights the need for sport-specific dietary recommendations that focus on energy and carbohydrate intake. Further exploration of factors influencing athletes’ dietary intakes including why athletes’ dietary intakes do not meet energy and/or carbohydrate recommendations is required.
Collapse
Affiliation(s)
- Sarah L Jenner
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, VIC 3068, Australia.
- Carlton Football Club, Ikon Park, Carlton, VIC 3053, Australia.
| | - Georgina L Buckley
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Regina Belski
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Brooke L Devlin
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, VIC 3068, Australia.
| | - Adrienne K Forsyth
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, VIC 3068, Australia.
| |
Collapse
|
83
|
Ribeiro AS, Nunes JP, Schoenfeld BJ. Should Competitive Bodybuilders Ingest More Protein than Current Evidence-Based Recommendations? Sports Med 2019; 49:1481-1485. [PMID: 31028659 DOI: 10.1007/s40279-019-01111-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bodybuilding is an aesthetic sport whereby competitors aspire to achieve a combination of high levels of muscularity combined with low levels of body fat. Protein is an important macronutrient for promoting muscle growth, and meeting daily needs is necessary to optimize the accretion of lean mass. Current recommendations for muscle hypertrophy suggest a relative protein intake ranging from 1.4 g/kg/day up to 2.0 g/kg/day is required for those involved in resistance training. However, research indicates that the actual ingestion of protein in competitive bodybuilders is usually greater than advocated in guidelines. The purpose of this current opinion article is to critically evaluate the evidence on whether higher intakes of protein are warranted in competitive bodybuilders. We conclude that competitive bodybuilders may benefit from consuming a higher protein intake than what is generally prescribed for recreationally trained lifters; however, the paucity of direct research in this population makes it difficult to draw strong conclusions on the topic.
Collapse
Affiliation(s)
- Alex S Ribeiro
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Rodovia Celso Garcia Cid, km 380, Londrina, PR, Brazil.
| | - Brad J Schoenfeld
- Health Sciences Department, CUNY Lehman College, Bronx, New York, USA
| |
Collapse
|
84
|
O'Brien L, Collins K, Doran D, Khaiyat O, Amirabdollahian F. Dietary Intake and Energy Expenditure Assessed during a Pre-Season Period in Elite Gaelic Football Players. Sports (Basel) 2019; 7:sports7030062. [PMID: 30871227 PMCID: PMC6473249 DOI: 10.3390/sports7030062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022] Open
Abstract
There is currently a lack of research into the energy demands and associated nutritional intakes of elite Gaelic football players during the pre-season period, which is a crucial time of year for physical development. The aim of the current study was to investigate the dietary intake and energy expenditure (EE) of elite Gaelic football players during a typical pre-season week. Over a seven-day period, which included four training days and three rest days, dietary intake (validated self-reported estimated food diary) and EE (Sensewear Pro armband) were recorded in 18 male players from a single elite inter-county Gaelic football team. Average energy intake (EI) (3283 ± 483 kcal) was significantly (p = 0.002) less than average EE (3743 ± 335 kcal), with a mean daily energy deficit of −460 ± 503 kcal. Training days elicited the greatest deficits between intake and expenditure. The mean carbohydrate (CHO) intake was 3.6 ± 0.7 g/kg/day, protein intake was 2.1 ± 0.5 g/kg/day, and fat intake was 1.6 ± 0.2 g/kg/day. These findings indicate that the dietary practices of the sampled players were inadequate to meet EE and CHO recommendations. Training days are of particular concern, with the players not altering energy and CHO intake to encounter increased energy demands. Education on nutritional strategies for elite Gaelic footballers should be considered in relation to training demands to avoid detriments to performance and health.
Collapse
Affiliation(s)
- Luke O'Brien
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Kieran Collins
- Gaelic Sports Research Center, Institute of Technology Tallaght, Tallaght, 24 Dublin, Ireland.
| | - Dominic Doran
- The Tom Reilly Building, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK.
| | - Omid Khaiyat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | | |
Collapse
|
85
|
Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:189-197. [PMID: 30676133 DOI: 10.1123/ijsnem.2018-0290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury, or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.
Collapse
|
86
|
Dietary Protein for Training Adaptation and Body Composition Manipulation in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:165-174. [PMID: 30507259 DOI: 10.1123/ijsnem.2018-0267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Track and field athletes engage in vigorous training that places stress on physiological systems requiring nutritional support for optimal recovery. Of paramount importance when optimizing recovery nutrition are rehydration and refueling which are covered in other papers in this volume. Here, we highlight the benefits for dietary protein intake over and above requirements set out in various countries at ∼0.8-1.0 g·kg body mass (BM)-1·day-1 for training adaptation, manipulating body composition, and optimizing performance in track and field athletes. To facilitate the remodeling of protein-containing structures, which are turning over rapidly due to their training volumes, track and field athletes with the goal of weight maintenance or weight gain should aim for protein intakes of ∼1.6 g·kg BM-1·day-1. Protein intakes at this level would not necessarily require an overemphasis on protein-containing foods and, beyond convenience, does not suggest a need to use protein or amino acid-based supplements. This review also highlights that optimal protein intakes may exceed 1.6 g·kg BM-1·day-1 for athletes who are restricting energy intake and attempting to minimize loss of lean BM. We discuss the underpinning rationale for weight loss in track and field athletes, explaining changes in metabolic pathways that occur in response to energy restriction when manipulating protein intake and training. Finally, this review offers practical advice on protein intakes that warrant consideration in allowing an optimal adaptive response for track and field athletes seeking to train effectively and to lose fat mass while energy restricted with minimal (or no) loss of lean BM.
Collapse
|
87
|
Peos JJ, Norton LE, Helms ER, Galpin AJ, Fournier P. Intermittent Dieting: Theoretical Considerations for the Athlete. Sports (Basel) 2019; 7:sports7010022. [PMID: 30654501 PMCID: PMC6359485 DOI: 10.3390/sports7010022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Athletes utilise numerous strategies to reduce body weight or body fat prior to competition. The traditional approach requires continuous energy restriction (CER) for the entire weight loss phase (typically days to weeks). However, there is some suggestion that intermittent energy restriction (IER), which involves alternating periods of energy restriction with periods of greater energy intake (referred to as ‘refeeds’ or ‘diet breaks’) may result in superior weight loss outcomes than CER. This may be due to refeed periods causing transitory restoration of energy balance. Some studies indicate that intermittent periods of energy balance during energy restriction attenuate some of the adaptive responses that resist the continuation of weight and fat loss. While IER—like CER—is known to effectively reduce body fat in non-athletes, evidence for effectiveness of IER in athletic populations is lacking. This review provides theoretical considerations for successful body composition adjustment using IER, with discussion of how the limited existing evidence can be cautiously applied in athlete practice.
Collapse
Affiliation(s)
- Jackson James Peos
- The University of Western Australia (UWA), The School of Human Sciences, Crawley Campus, WA 6009, USA.
| | | | - Eric Russell Helms
- Auckland University of Technology, Sports Performance Institute New Zealand (SPRINZ) at AUT Millennium, Auckland 0632, New Zealand.
| | - Andrew Jacob Galpin
- California State University, Biochemistry and Molecular Exercise Physiology Laboratory, Centre for Sport Performance, Fullerton, CA 92831, USA.
| | - Paul Fournier
- The University of Western Australia (UWA), The School of Human Sciences, Crawley Campus, WA 6009, USA.
| |
Collapse
|
88
|
Woolley C, Thompson C, Hakendorf P, Horwood C. The Effect of Age upon the Interrelationship of BMI and Inpatient Health Outcomes. J Nutr Health Aging 2019; 23:558-563. [PMID: 31233078 DOI: 10.1007/s12603-019-1206-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES There is growing evidence that the relationship between body mass index (BMI - defined as weight in kilograms divided by height in metres squared) and patient outcomes is age-dependent; specifically, a raised BMI may have a protective effect in older adults. This has been demonstrated clearly in the community setting; less clear is the effect of age on this relationship in the inpatient setting. DESIGN, SETTING, PARTICIPANTS AND MEASUREMENTS Retrospective analysis of 22,903 electronic records for patients discharged from two large public hospitals in South Australia between January 2015 and September 2018 inclusively. Records were retained if the patient's height and weight had been recorded during the admission, BMI was between 10-99 kg/m2 and it was the patient's first admission during that time. Patients were grouped by BMI (<18.5 kg/m2 ("underweight"), 18.5-24.9 kg/m2 ("normal weight"), 25-29.9 kg/m2 ("overweight"), >30 kg/m2 ("obese")) and age (18-59 years, 60-79 years, > 80 years); for each group we measured the relative stay index (RSI) (actual length of stay divided by predicted length of stay), death in hospital and composite adverse outcome after discharge (unplanned readmission within 30 days and/or death within 30 days). RESULTS Underweight patients across all age groups generally experienced significantly poorer outcomes compared to those not underweight. In those aged 18-59 years there were no significant differences in outcomes between the normal weight, overweight and obese groups. In those aged 60-79 years overweight patients had a significantly reduced risk of RSI > 2 compared to those of normal weight (p=0.014), and both overweight and obese patients had a significantly reduced risk of adverse outcome after discharge when compared to those of normal weight (p=0.028 and p=0.009 respectively). In those aged 80 years or older, both overweight and obese patients had a significantly reduced risk of adverse outcome after discharge when compared to those of normal weight (p=0.028 and p=0.013 respectively), and obese patients had a significantly reduced risk of inpatient mortality and RSI >2 when compared to those of normal weight (p=0.027 and p=0.037 respectively). CONCLUSION A BMI > 25 kg/m2 in older patients is associated with reduced risk of prolonged admission, inpatient mortality and adverse outcomes following discharge. This adds to growing evidence that age-specific BMI guidelines are required for adults because the healthiest BMI in the older hospital patient is seemingly not in the range 18.5-24.9 kg/m2.
Collapse
Affiliation(s)
- C Woolley
- C Woolley, School of Medicine, University of Adelaide, South Australia, Australia,
| | | | | | | |
Collapse
|
89
|
Roberts J, Zinchenko A, Mahbubani K, Johnstone J, Smith L, Merzbach V, Blacutt M, Banderas O, Villasenor L, Vårvik FT, Henselmans M. Satiating Effect of High Protein Diets on Resistance-Trained Subjects in Energy Deficit. Nutrients 2018; 11:nu11010056. [PMID: 30597865 PMCID: PMC6356668 DOI: 10.3390/nu11010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
Short-term energy deficit strategies are practiced by weight class and physique athletes, often involving high protein intakes to maximize satiety and maintain lean mass despite a paucity of research. This study compared the satiating effect of two protein diets on resistance-trained individuals during short-term energy deficit. Following ethical approval, 16 participants (age: 28 ± 2 years; height: 1.72 ± 0.03 m; body-mass: 88.83 ± 5.54 kg; body-fat: 21.85 ± 1.82%) were randomly assigned to 7-days moderate (PROMOD: 1.8 g·kg-1·d-1) or high protein (PROHIGH: 2.9 g·kg-1·d-1) matched calorie-deficit diets in a cross-over design. Daily satiety responses were recorded throughout interventions. Pre-post diet, plasma ghrelin and peptide tyrosine tyrosine (PYY), and satiety ratings were assessed in response to a protein-rich meal. Only perceived satisfaction was significantly greater following PROHIGH (67.29 ± 4.28 v 58.96 ± 4.51 mm, p = 0.04). Perceived cravings increased following PROMOD only (46.25 ± 4.96 to 57.60 ± 4.41 mm, p = 0.01). Absolute ghrelin concentration significantly reduced post-meal following PROMOD (972.8 ± 130.4 to 613.6 ± 114.3 pg·mL-1; p = 0.003), remaining lower than PROHIGH at 2 h (-0.40 ± 0.06 v -0.26 ± 0.06 pg·mL-1 normalized relative change; p = 0.015). Absolute PYY concentration increased to a similar extent post-meal (PROMOD: 84.9 ± 8.9 to 147.1 ± 11.9 pg·mL-1, PROHIGH: 100.6 ± 9.5 to 143.3 ± 12.0 pg·mL-1; p < 0.001), but expressed as relative change difference was significantly greater for PROMOD at 2 h (+0.39 ± 0.20 pg·mL-1 v -0.28 ± 0.12 pg·mL-1; p = 0.001). Perceived hunger, fullness and satisfaction post-meal were comparable between diets (p > 0.05). However, desire to eat remained significantly blunted for PROMOD (p = 0.048). PROHIGH does not confer additional satiating benefits in resistance-trained individuals during short-term energy deficit. Ghrelin and PYY responses to a test-meal support the contention that satiety was maintained following PROMOD, although athletes experiencing negative symptoms (i.e., cravings) may benefit from protein-rich meals as opposed to over-consumption of protein.
Collapse
Affiliation(s)
- Justin Roberts
- School of Psychology and Sport Science, Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK.
| | - Anastasia Zinchenko
- Department of Biochemistry, Kings College, University of Cambridge, Kings Parade, Cambridge CB2 1ST, UK.
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| | | | - James Johnstone
- School of Psychology and Sport Science, Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK.
| | - Lee Smith
- School of Psychology and Sport Science, Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK.
| | - Viviane Merzbach
- School of Psychology and Sport Science, Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK.
| | - Miguel Blacutt
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| | - Oscar Banderas
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| | - Luis Villasenor
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| | - Fredrik T Vårvik
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| | - Menno Henselmans
- International Scientific Research Foundation for Fitness and Nutrition, 1073 LC Amsterdam, The Netherlands.
| |
Collapse
|
90
|
Very Low-Calorie Diet, the Morbidly Obese With Liver Cirrhosis and Bariatric Surgery. Transplantation 2018; 102:e188-e189. [PMID: 29278575 DOI: 10.1097/tp.0000000000002065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
91
|
Larsen AE, Bibby BM, Hansen M. Effect of a Whey Protein Supplement on Preservation of Fat Free Mass in Overweight and Obese Individuals on an Energy Restricted Very Low Caloric Diet. Nutrients 2018; 10:E1918. [PMID: 30518130 PMCID: PMC6315656 DOI: 10.3390/nu10121918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
The obesity epidemic has caused a widespread interest in strategies to achieve a healthy "high quality" weight loss, where excess fat is lost, while fat free mass (FFM) is preserved. In this study, we aimed to examine the effect of whey protein supplementation given before night sleep on FFM preservation during a 4-week (wk) period on a very low caloric diet (VLCD). Twenty-nine obese subjects (body mass index (BMI) > 28 kg/m²) completed a 4-week intervention including a VLCD and a walking program (30 min walking × 5 times per week). Subjects were randomly assigned to either control (CON, n = 15) or a whey protein supplement (PRO, 0.4 g protein/kg/day, n = 14), ingested before bedtime. Body composition (dual-energy X-ray absorptiometry, DXA), blood analysis and physical test were performed pre and post intervention. We measured nitrogen excretion in three 24 h urine collections (Day 0, 7 and 28) to assess nitrogen balance. Changes in nitrogen balance (NB) after 7 and 28 days was different between treatment groups (interaction p < 0.05). PRO was in NB after 7 days and in positive NB at day 28. In contrast, CON was in negative NB at day 7, but in NB at day 28. Nevertheless, no significant group differences were observed in the change in pre- and post-FFM measurements (-2.5 kg, [95% CI: 1.9; 3.1], p = 0.65). In conclusion, ingestion of a whey protein supplement before bedtime during a 4-week period on a VLCD improved nitrogen balance, but did not lead to any significant improvement in the quality of the weight loss in regard to observed changes in body composition and health parameters compared with controls.
Collapse
Affiliation(s)
- Anne Ellegaard Larsen
- Section of Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark.
| | - Bo Martin Bibby
- Section of Biostatistics, Department of Public Health, Aarhus University, Bartholins Alle 2, 800 Aarhus C, Denmark.
| | - Mette Hansen
- Section of Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark.
| |
Collapse
|
92
|
Willoughby D, Hewlings S, Kalman D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients 2018; 10:nu10121876. [PMID: 30513859 PMCID: PMC6315740 DOI: 10.3390/nu10121876] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
With over two-thirds (71.6%) of the US adult population either overweight or obese, many strategies have been suggested for weight loss. While many are successful, the weight loss is often accompanied by a loss in lean body mass. This loss in lean body mass has multiple negative health implications. Therefore, weight loss strategies that protect lean body mass are of value. It is challenging to consume a significant caloric deficit while maintaining lean body mass regardless of macronutrient distribution. Therefore, the efficacy of various dietary supplements on body weight and body composition have been a topic of research interest. Chromium picolinate has been shown to improve body composition by maintaining lean body mass. In this paper we review some common weight loss strategies and dietary supplements with a focus on their impact on body composition and compare them to the effect of chromium picolinate.
Collapse
Affiliation(s)
- Darryn Willoughby
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA.
| | - Susan Hewlings
- Department of Nutrition, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Substantiation Sciences Inc., Weston, FL 33332, USA.
| | - Douglas Kalman
- Substantiation Sciences Inc., Weston, FL 33332, USA.
- HPD Exercise Science, Nova Southeastern University, Davie, FL 33314, USA.
| |
Collapse
|
93
|
Philpott JD, Witard OC, Galloway SD. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med 2018; 27:219-237. [DOI: 10.1080/15438627.2018.1550401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jordan D. Philpott
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Oliver C. Witard
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Stuart D.R. Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
94
|
Peos JJ, Helms ER, Fournier PA, Sainsbury A. Continuous versus intermittent moderate energy restriction for increased fat mass loss and fat free mass retention in adult athletes: protocol for a randomised controlled trial-the ICECAP trial (Intermittent versus Continuous Energy restriction Compared in an Athlete Population). BMJ Open Sport Exerc Med 2018; 4:e000423. [PMID: 30364484 PMCID: PMC6196972 DOI: 10.1136/bmjsem-2018-000423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction Reducing fat mass (FM) while retaining fat free mass (FFM) is a common goal of athletes. Evidence suggests that some-but not all-forms of intermittent energy restriction (IER) may be superior to the conventional method of continuous energy restriction (CER) for people with excess body fat that are sedentary, by reducing some of the adaptive responses to ER. However, it is yet to be established whether this dietary approach is effective for athletes. Methods and analysis A single-blind, parallel group, randomised controlled trial with a 1:1 allocation ratio is proposed. Sixty healthy athletes aged ≥18 years will be recruited from local sporting facilities and randomised to an intervention of either moderate CER (mCER) or moderate IER (mIER). Both interventions will consist of 12 weeks of moderate ER, plus 3 weeks in energy balance (EB). The mCER intervention will entail 12 weeks of continuous moderate ER, followed by 3 weeks in EB. The mIER intervention will entail 12 weeks of moderate ER, administered as 4×3 week blocks of moderate ER, interspersed with 3×1 week blocks of EB. The co-primary outcomes are changes in FM and FFM after 12 weeks of moderate ER. Secondary outcomes will be changes in FM and FFM at 15 weeks after intervention commencement, as well as muscle performance, physical activity, sleep quality, changes in resting energy expenditure, subjective drive to eat, circulating concentrations of appetite-regulating hormones, mood states and diet acceptability. Trial registration ACTRN12618000638235p.
Collapse
Affiliation(s)
- Jackson J Peos
- School of Human Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
| | - Eric R Helms
- Sports Performance Institute New Zealand (SPRINZ), Auckland University of Technology, at AUT Millennium, Auckland, New Zealand
| | - Paul A Fournier
- School of Human Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
95
|
Avila ETP, da Rosa Lima T, Tibana RA, de Almeida PC, Fraga GA, de Souza Sena M, Corona LFP, Navalta JW, Rezaei S, Ghayomzadeh M, Damazo AS, Prestes J, Voltarelli FA. Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps. Nutrition 2018; 53:85-94. [DOI: 10.1016/j.nut.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
96
|
Case Study: Body Composition Periodization in an Olympic-Level Female Middle-Distance Runner Over a 9-Year Career. Int J Sport Nutr Exerc Metab 2018; 28:428-433. [DOI: 10.1123/ijsnem.2017-0312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This case study features an Olympic-level female middle-distance runner implementing a science-based approach to body composition periodization. Data are emerging to suggest that it is not sustainable from a health and/or performance perspective to be at peak body composition year-round, so body composition needs to be strategically periodized. Anthropometric (n = 44), hematological, other health measures, and 1,500-m race performances (n = 83) were periodically assessed throughout a 9-year career. General preparation phase (September to April) featured the athlete at ∼2–4% over ideal competition phase body weight (BW) and body fat (%), with optimal energy availability being prioritized. The competition body composition optimization phase (May to August) included creating an individualized time frame and caloric deficit with various feedback metrics (BW, performance, and hunger) to guide the process. There were significant seasonal fluctuations in anthropometric outcomes between phases (47.3 ± 0.8 vs. 48.3 ± 0.9 kg BW; 53.6 ± 7.8 vs. 61.6 ± 9.7 mm International Society for the Advancement of Kinanthropometry sum of 8 [So8] skinfolds; p < .01), and a significant correlation of decreasing So8 during the peak competition period over her career (r = −.838; p = .018). The range of body composition during the competition period was 46.0–48.0 kg BW and a So8 range was 42.0–55.9 mm. There were also significant positive correlations between slower 1,500-m race times and increasing So8 (r = .437; p < .01), estimated fat mass (r = .445; p < .01), and BW (r = .511; p < .0001). The athlete only had two career injuries. This case study demonstrates a body composition periodization approach that allowed for targeted peak yearly performances, which improved throughout her career, while maximizing training adaptation and long-term athlete health through optimal energy availability.
Collapse
|
97
|
Case Study: The Effect of Nutritional Intervention on Body Composition and Physical Performance of a Female Squash Player. Int J Sport Nutr Exerc Metab 2018; 28:279-283. [PMID: 29091479 DOI: 10.1123/ijsnem.2017-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The body composition of a squash player may affect athletic performance as carrying excessive body fat may increase injury risk and impair agility and speed. This case study outlines the effect of a nutritional intervention on body composition, vitamin D status, and physical performance of a female squash player. A structured, 6-week, moderate energy-restricted diet (70-78% of estimated energy requirement of 2,300 kcal) was implemented with weekly support. A daily supplement of vitamin D, omega-3 fatty acids, and a multivitamin and whey protein was used. Full blood count, vitamin D status, body composition, and physical performance assessments were carried out at baseline and Week 6 of intervention. Body composition changes were measured using the BOD POD™ and skinfold calipers. Body fat was 23% at baseline and 22% at Week 6. Mean sum of eight skinfolds was 127.4 ± 2.2 mm at baseline and 107.3 ± 0.4 mm at Week 6. Lean body mass-to-fat mass ratio improved from 3.4 at baseline to 3.7 at Week 6. The greatest increments compared with baseline in serum markers were 25-hydroxyvitamin D3 (68%), ferritin (31%), eosinophils (20%), and triglycerides (16%). All physical performance measures improved, with reactive strength index (4.8%), and on-court repeated speed (6.0%) showing the greatest improvements from baseline. This intervention demonstrates that structured energy restriction alongside appropriately structured strength and conditioning training is an effective way to gradually reduce the body fat and improve the body composition of a female athlete.
Collapse
|
98
|
Johannsen MM, Shin KJ, Priebe K, Coker RH. Alaska Mountain Wilderness Ski Classic: Alterations in Caloric Expenditure and Body Composition. Wilderness Environ Med 2018; 29:221-225. [DOI: 10.1016/j.wem.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
|
99
|
Zhang Y, Yap KN, Williams TD, Swanson DL. Experimental Increases in Foraging Costs Affect Pectoralis Muscle Mass and Myostatin Expression in Female, but Not Male, Zebra Finches (Taeniopygia guttata). Physiol Biochem Zool 2018; 91:849-858. [DOI: 10.1086/697153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
100
|
|