51
|
Bhave VS, Mars W, Donthamsetty S, Zhang X, Tan L, Luo J, Bowen WC, Michalopoulos GK. Regulation of liver growth by glypican 3, CD81, hedgehog, and Hhex. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:153-159. [PMID: 23665349 PMCID: PMC3702736 DOI: 10.1016/j.ajpath.2013.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Previous studies from our laboratory have found glypican 3 (GPC3) as a negative regulator of growth. CD81 was found to be a binding partner for GPC3, and its expression and co-localization with GPC3 increased at the end of hepatocyte proliferation. However, the mechanisms through which these two molecules might regulate liver regeneration are not known. We tested the hypothesis that GPC3 down-regulates the hedgehog (HH) signaling pathway by competing with patched-1 for HH binding. We found decreased GPC3-Indian HH binding at peak proliferation in mice followed by increase in glioblastoma 1 protein (effector of HH signaling). We performed a yeast two-hybrid assay and identified hematopoietically expressed homeobox (Hhex, a known transcriptional repressor) as a binding partner for CD81. We tested the hypothesis that Hhex binding to CD81 keeps it outside the nucleus. However, when GPC3 binds to CD81, CD81-Hhex binding decreases, resulting in nuclear translocation of Hhex and transcriptional repression. In support of this, we found decreased GPC3-CD81 binding at hepatocyte proliferation peak, increased CD81-Hhex binding, and decreased nuclear Hhex. GPC3 transgenic mice were used as an additional tool to test our hypothesis. Overall, our data suggest that GPC3 down-regulates cell proliferation by binding to HH and down-regulating the HH signaling pathway and binding with CD81, thus making it unavailable to bind to Hhex and causing its nuclear translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - George K. Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
52
|
Chavda AP, Prole DL, Taylor CW. A bead aggregation assay for detection of low-affinity protein-protein interactions reveals interactions between N-terminal domains of inositol 1,4,5-trisphosphate receptors. PLoS One 2013; 8:e60609. [PMID: 23555994 PMCID: PMC3608601 DOI: 10.1371/journal.pone.0060609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/28/2013] [Indexed: 12/17/2022] Open
Abstract
Interactions between proteins are a hallmark of all cellular activities. Such interactions often occur with low affinity, a feature that allows them to be rapidly reversible, but it makes them difficult to detect using conventional methods such as yeast 2-hybrid analyses, co-immunoprecipitation or analytical ultracentrifugation. We developed a simple and economical bead aggregation assay to study low-affinity interactions between proteins. By coating beads with interacting proteins, the weak interactions between many proteins are sufficient to allow stable aggregation of beads, an avidity effect. The aggregation is easily measured to allow quantification of protein-protein interactions under a variety of controlled conditions. We use this assay to demonstrate low-affinity interactions between the N-terminal domains of an intracellular Ca2+ channel, the type 1 inositol 1,4,5-trisphosphate receptor. This simple bead aggregation assay may have widespread application in the study of low-affinity interactions between macromolecules.
Collapse
Affiliation(s)
- Alap P. Chavda
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David L. Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
53
|
Quantitative real-time PCR as a sensitive protein–protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system. Methods 2012; 58:376-84. [DOI: 10.1016/j.ymeth.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
|
54
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
55
|
Grefen C, Blatt MR. Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1? Lessons learned from a ménage à trois. PLANT PHYSIOLOGY 2012; 159:915-9. [PMID: 22548784 PMCID: PMC3387716 DOI: 10.1104/pp.112.198051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
56
|
Abstract
The yeast two-hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in model organisms including yeast, Arabidopsis, and humans. It has also become the method of choice for investigating host-pathogen interactions in fungal pathosystems involving crop plants. This chapter describes general procedures to use the GAL4-based Y2H system for identification of host proteins that directly interact with proteinaceous fungal effectors, thus being their potential targets. The procedures described include cDNA library construction through in vivo recombination, library screening by yeast mating and cotransformation, as well as methods to analyze positive clones obtained from library screening. These procedures can also be adapted to confirmation of suspected interactions between characterized host and pathogen proteins or determination of interacting domains in partner proteins.
Collapse
Affiliation(s)
- Shunwen Lu
- Cereal Crops Research Unit, Northern Crop Science Laboratory, USDA-ARS, Fargo, ND, USA.
| |
Collapse
|
57
|
Identification of binding partners interacting with the α1-N-propeptide of type V collagen. Biochem J 2011; 433:371-81. [PMID: 20979576 DOI: 10.1042/bj20101061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The predominant form of type V collagen is the [α1(V)]₂α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.
Collapse
|
58
|
Deng Y, Li Y, Fan X, Yuan W, Xie H, Mo X, Yan Y, Zhou J, Wang Y, Ye X, Wan Y, Wu X. Synergistic efficacy of LBH and alphaB-crystallin through inhibiting transcriptional activities of p53 and p21. BMB Rep 2010; 43:432-7. [PMID: 20587334 DOI: 10.5483/bmbrep.2010.43.6.432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LBH is a transcription factor as a candidate gene for CHD associated with partial trisomy 2p syndrome. To identify potential LBH-interacting partners, a yeast two-hybrid screen using LBH as a bait was performed with a human heart cDNA library. One of the clones identified encodes alphaB-crystallin. Co-immunoprecipitation and GST pull-down assays showed that LBH interacts with alphaB-crystallin, which is further confirmed by mammalian two-hybrid assays. Co-localization analysis showed that in COS-7 cells, alphaB-crystallin that is cytoplasmic alone, accumulates partialy in the nucleus when co-transfected with LBH. Transient transfection assays indicated that overexpression of LBH or alphaB-crystallin reduced the transcriptional activities of p53 and p21, respectively, Overexpression of both alphaB-crystallin and LBH together resulted in a stronger repression of the transcriptional activities of p21 and p53. These results showed that the interaction of LBH and alphaB-crystallin may inhibit synergistically the transcriptional regulation of p53 and p21.
Collapse
Affiliation(s)
- Yun Deng
- The Center For Heart Development, Hunan Normal University, Changsha, Hunan, Peoples' Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst) 2010; 9:517-25. [DOI: 10.1016/j.dnarep.2010.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 01/28/2010] [Indexed: 12/11/2022]
|
60
|
Identification of DNA-binding proteins and protein-protein interactions by yeast one-hybrid and yeast two-hybrid screen. Methods Mol Biol 2010; 639:171-92. [PMID: 20387046 DOI: 10.1007/978-1-60761-702-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The regulation of gene activity is a crucial factor in coordinating development, growth and acclimation to environmental changes. By this means, metabolic processes are adjusted according to cellular needs by changing gene expression patterns. In the genome of the model plant Arabidopsis thaliana, more than 7% of the genes are estimated to encode proteins directly involved in gene regulation. Transcription factors (TFs) are able to bind to specific DNA motifs named cis-elements and control the expression of target genes. The regulation may be either activation, stimulation, inhibition or suppression. The activation of genes is mediated by well-coordinated protein-protein interactions between transcription factors and a various number of cofactors. The gene activation networks are still poorly understood. In order to address the involved protein-DNA and protein-protein interactions, a number of methods have been developed that efficiently address cis-element interacting partners. This chapter describes two powerful methods: the yeast one-hybrid system and the yeast two-hybrid system. In combination these techniques provide the ability to identify cis-element-binding transcription factors and their upstream interaction partners.
Collapse
|
61
|
Rajagopala SV, Hughes KT, Uetz P. Benchmarking yeast two-hybrid systems using the interactions of bacterial motility proteins. Proteomics 2009; 9:5296-302. [PMID: 19834901 PMCID: PMC2818629 DOI: 10.1002/pmic.200900282] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/10/2009] [Indexed: 11/12/2022]
Abstract
Yeast two-hybrid screens often produce vastly non-overlapping interaction data when the screens are conducted in different laboratories, or use different vectors, strains, or reporter genes. Here we investigate the underlying reasons for such inconsistencies and compare the effect of seven different vectors and their yeast two-hybrid interactions. Genome-wide array screens with 49 motility-related baits from Treponema pallidum yielded 77 and 165 interactions with bait vectors pLP-GBKT7 and pAS1-LP, respectively, including 21 overlapping interactions. In addition, 90 motility-related proteins from Escherichia coli were tested in all pairwise combinations and yielded 140 interactions when tested with pGBKT7g/pGADT7g vectors but only 47 when tested with pDEST32/pDEST22. We discuss the factors that determine these effects, including copy number, the nature of the fusion protein, and species-specific differences that explain non-conserved interactions among species. The pDEST22/pDEST32 vectors produce a higher fraction of interactions that are conserved and that are biologically relevant when compared with the pGBKT7/pGADT7-related vectors, but the latter appear to be more sensitive and thus detect more interactions overall.
Collapse
Affiliation(s)
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA,
| | - Peter Uetz
- J Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA, ,
| |
Collapse
|
62
|
Liu B, Paranjpe S, Bowen WC, Bell AW, Luo JH, Yu YP, Mars WM, Michalopoulos GK. Investigation of the role of glypican 3 in liver regeneration and hepatocyte proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:717-724. [PMID: 19574424 PMCID: PMC2716967 DOI: 10.2353/ajpath.2009.081129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2009] [Indexed: 12/14/2022]
Abstract
Glypicans are heparan sulfate proteoglycans that are bound to the cell surface by glycosylphosphatidylinositol. While six members of the glypican family are known in mammals, our study focused on glypican 3 (GPC3). Loss-of-function mutations of GPC3 result in the Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by pre- and postnatal liver and other organ overgrowth. GPC3 is overexpressed in human hepatocellular carcinoma; however, its role in normal liver regeneration and hepatocyte proliferation is unknown. Here we investigated the role of GPC3 in hepatocyte proliferation. GPC3 mRNA and protein levels begin to increase 2 days after hepatectomy with peak expression levels by day 5. In hepatocyte cultures, GPC3 reaches a plateau when hepatocyte proliferation decreases. In vitro studies using Morpholino oligonucleotides showed that blocking GPC3 expression promoted hepatocyte growth. Yeast two-hybrid assays revealed that GPC3 interacts with CD81, a member of the tetraspanin family that is reported to be involved in hepatitis C virus infection and cell proliferation. We found that CD81 levels also increased 2 days after partial hepatectomy and toward the end of regeneration. Immunofluorescence showed that CD81 and GPC3 colocalize by 2 and 6 days after hepatectomy. Co-immunoprecipitation validated the interaction of GPC3 and CD81. Our results indicate that GPC3 may be a negative regulator of liver regeneration and hepatocyte proliferation, and that this regulation may involve CD81.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Pathology, University of Pittsburgh School of Medicine, S-410 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhou X, Zou X, Li J. Interaction between GlnB and the N-terminal domain of NifA in Azospirillum brasilense. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Baruah H, Puthenveetil S, Choi YA, Shah S, Ting AY. An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. Angew Chem Int Ed Engl 2008; 47:7018-21. [PMID: 18677791 DOI: 10.1002/anie.200802088] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hemanta Baruah
- Department of Chemistry, Room 18-496, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
65
|
Baruah H, Puthenveetil S, Choi YA, Shah S, Ting A. An Engineered Aryl Azide Ligase for Site-Specific Mapping of Protein-Protein Interactions through Photo-Cross-Linking. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
66
|
Park K, Yi SY, Lee CS, Kim KE, Pai HS, Seol DW, Chung BH, Kim M. A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system. Protein J 2007; 26:107-16. [PMID: 17203394 DOI: 10.1007/s10930-006-9051-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have developed a novel reporter system involving a yeast two-hybrid assay, which utilizes the reconstitution of the split EGFP reporter in order to characterize the relevant protein-protein interactions. To our knowledge, this study represents the first application of the split EGFP system as a read-out in a yeast two-hybrid assay. In comparison with the existing two-hybrid system, the bait and prey vectors were improved with regard to the reporter and the replication control element. As a result, the reconstituted EGFP has been observed to evidence a restored fluorescence upon protein-protein interactions in yeast, thereby allowing for the characterization of its interactor. The use of a split EGFP reporter has some salient advantages. Firstly, no substrates are required for the production of fluorescence. Secondly, low copy number plasmids may help to solve the protein toxicity problem, via the reduction of expression. Thirdly, this technique may prove useful in overcoming the autoactivation problem, due to the fact that the read-out of the yeast two-hybrid system is transcription-independent. Collectively, our results showed that the split EGFP reporter system might potentially be applied in yeast two-hybrid assays for the high-throughput screening of protein-protein interactions, with a simple and direct fluorescent read-out.
Collapse
Affiliation(s)
- Kyoungsook Park
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 2007; 3:e42. [PMID: 17397251 PMCID: PMC1847991 DOI: 10.1371/journal.pcbi.0030042] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
68
|
Roucourt B, Chibeu A, Lecoutere E, Lavigne R, Volckaert G, Hertveldt K. Homotypic interactions among bacteriophage phiKMV early proteins. Arch Virol 2007; 152:1467-75. [PMID: 17534690 DOI: 10.1007/s00705-007-0967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Little is known about the bacteriophage proteins expressed immediately after infection of the host cell. Most of these early proteins are probably involved in bacteriophage-host interactions redirecting the bacterial metabolism to phage production. Interaction analysis of the first 16 phiKMV gene products (gp) identified homotypic interactions of gp7, gp9 and gp15. Two related yeast two-hybrid procedures, a matrix and a minilibrary approach, were applied to detect protein-protein interactions. A two-step selection procedure enabled drastic reduction of the background. Interactions were confirmed by drop tests. Multimerization of gp15 is consistent with its putative function as a DNA helicase involved in DNA replication. Homotypic interaction of gp7 and gp9 suggests they function as dimers or multimers. The absence of heterotypic interactions among early phiKMV proteins hints at their functional independence from other early phage proteins and their involvement in phage-host interactions that are important for creating optimal conditions for phage propagation. Besides, these results demonstrate the compatibility of phiKMV early gene products with the yeast two-hybrid system. Therefore, they are promising candidates to screen for interactions with host proteins.
Collapse
Affiliation(s)
- B Roucourt
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
69
|
You X, Nguyen AW, Jabaiah A, Sheff MA, Thorn KS, Daugherty PS. Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci U S A 2006; 103:18458-63. [PMID: 17130455 PMCID: PMC1693684 DOI: 10.1073/pnas.0605422103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types.
Collapse
Affiliation(s)
- Xia You
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Annalee W. Nguyen
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Abeer Jabaiah
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Mark A. Sheff
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Kurt S. Thorn
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Patrick S. Daugherty
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
70
|
Lubovac Z, Gamalielsson J, Olsson B. Combining functional and topological properties to identify core modules in protein interaction networks. Proteins 2006; 64:948-59. [PMID: 16794996 DOI: 10.1002/prot.21071] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advances in large-scale technologies in proteomics, such as yeast two-hybrid screening and mass spectrometry, have made it possible to generate large Protein Interaction Networks (PINs). Recent methods for identifying dense sub-graphs in such networks have been based solely on graph theoretic properties. Therefore, there is a need for an approach that will allow us to combine domain-specific knowledge with topological properties to generate functionally relevant sub-graphs from large networks. This article describes two alternative network measures for analysis of PINs, which combine functional information with topological properties of the networks. These measures, called weighted clustering coefficient and weighted average nearest-neighbors degree, use weights representing the strengths of interactions between the proteins, calculated according to their semantic similarity, which is based on the Gene Ontology terms of the proteins. We perform a global analysis of the yeast PIN by systematically comparing the weighted measures with their topological counterparts. To show the usefulness of the weighted measures, we develop an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The proposed method is based on the ranking of nodes, i.e., proteins, according to their weighted neighborhood cohesiveness. The highest ranked nodes are considered as seeds for candidate modules. The algorithm then iterates through the neighborhood of each seed protein, to identify densely connected proteins with high functional similarity, according to the chosen parameters. Using a yeast two-hybrid data set of experimentally determined protein-protein interactions, we demonstrate that SWEMODE is able to identify dense clusters containing proteins that are functionally similar. Many of the identified modules correspond to known complexes or subunits of these complexes.
Collapse
Affiliation(s)
- Zelmina Lubovac
- School of Humanities and Informatics, University of Skövde, Skövde, Sweden.
| | | | | |
Collapse
|
71
|
Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006; 40:625-44. [PMID: 16708762 DOI: 10.2144/000112151] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.
Collapse
|
72
|
Zhou M, Xu XJ, Zhou HD, Liu HY, He JJ, Li XL, Peng C, Xiong W, Fan SQ, Lu JH, Ouyang J, Shen SR, Xiang B, Li GY. BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Mol Cell Biochem 2006; 292:205-12. [PMID: 16786191 DOI: 10.1007/s11010-006-9233-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
BRD7 is a potential nuclear transcription regulation factor related to nasopharyngeal carcinoma (NPC). BRD2, a putative BRD7-interacting protein, has been screened from human fetal brain cDNA library by yeast two-hybrid system. This study was to further identify the interaction between BRD7 and BRD2 in mammalian cells, and to investigate the subcellular localization of BRD2, as well as the effect on the functions of cell biology. Both immunoprecipitation and subcellular colocalization were performed together to identify the interaction of BRD7 with full-length BRD2, as well as C-terminal truncated BRD2 or N-terminal truncated BRD2. GFP direct fluorescence and Hochest 33258 staining were used to investigate the cellular localization pattern of BRD2 and the roles in initiating cell apoptosis in COS7 and HNE1. The results showed that BRD7 could interact with BRD2 and the region from amino acid 430 to 798 of BRD2 was critical for the interaction of BRD2 with BRD7. BRD2 mainly localizes in nucleus in two distribution patterns, diffused and dotted, and BRD2 has distinct roles in initiating apoptosis, and the dotted distribution pattern of BRD2 in nucleus may be a morphologic marker of cell apoptosis.
Collapse
Affiliation(s)
- Ming Zhou
- Cancer Research Institute, Central South University Xiang-Ya School of Medicine, Changsha, Hunan, 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Onken B, Wiener H, Philips MR, Chang EC. Compartmentalized signaling of Ras in fission yeast. Proc Natl Acad Sci U S A 2006; 103:9045-50. [PMID: 16754851 PMCID: PMC1482563 DOI: 10.1073/pnas.0603318103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compartment-specific Ras signaling is an emerging paradigm that may explain the multiplex outputs from a single GTPase. The fission yeast, Schizosaccharomyces pombe, affords a simple system in which to study Ras signaling because it has a single Ras protein, Ras1, that regulates two distinct pathways: one that controls mating through a Byr2-mitogen-activated protein kinase cascade and one that signals through Scd1-Cdc42 to maintain elongated cell morphology. We generated Ras1 mutants that are restricted to either the endomembrane or the plasma membrane. Protein binding studies showed that each could interact with the effectors of both pathways. However, when examined in ras1 null cells, endomembrane-restricted Ras1 supported morphology but not mating, and, conversely, plasma membrane-restricted Ras1 supported mating but did not signal to Scd1-Cdc42. These observations provide a striking demonstration of compartment-specific Ras signaling and indicate that spatial specificity in the Ras pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- Brian Onken
- *Department of Molecular and Cell Biology, The Breast Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 600, Houston, TX 77030; and
| | - Heidi Wiener
- Department of Medicine, Cell Biology, and Pharmacology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016
| | - Mark R. Philips
- Department of Medicine, Cell Biology, and Pharmacology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016
- To whom correspondence may be addressed. E-mail:
or
| | - Eric C. Chang
- *Department of Molecular and Cell Biology, The Breast Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 600, Houston, TX 77030; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
74
|
Popovici C, Berda Y, Conchonaud F, Harbis A, Birnbaum D, Roubin R. Direct and heterologous approaches to identify the LET-756/FGF interactome. BMC Genomics 2006; 7:105. [PMID: 16672054 PMCID: PMC1513213 DOI: 10.1186/1471-2164-7-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 05/03/2006] [Indexed: 11/16/2022] Open
Abstract
Background Fibroblast growth factors (FGFs) are multifunctional proteins that play important roles in cell communication, proliferation and differentiation. However, many aspects of their activities are not well defined. LET-756, one of the two C. elegans FGFs, is expressed throughout development and is essential for worm development. It is both expressed in the nucleus and secreted. Results To identify nuclear factors associated with LET-756, we used three approaches. First, we screened a two-hybrid cDNA library derived from mixed stages worms and from a normalized library, using LET-756 as bait. This direct approach allowed the identification of several binding partners that play various roles in the nucleus/nucleolus, such as PAL-1, a transcription regulator, or RPS-16, a component of the small ribosomal subunit. The interactions were validated by co-immunoprecipitation and determination of their site of occurrence in mammalian cells. Second, because patterns of protein interactions may be conserved throughout species, we searched for orthologs of known mammalian interactors and measured binary interaction with these predicted candidates. We found KIN-3 and KIN-10, the orthologs of CK2α and CK2β, as new partners of LET-756. Third, following the assumption that recognition motifs mediating protein interaction may be conserved between species, we screened a two-hybrid cDNA human library using LET-756 as bait. Among the few FGF partners detected was 14-3-3β. In support of this interaction we showed that the two 14-3-3β orthologous proteins, FTT-1 and FTT-2/PAR-5, interacted with LET-756. Conclusion We have conducted the first extensive search for LET-756 interactors using a multi-directional approach and established the first interaction map of LET-756/FGF with other FGF binding proteins from other species. The interactors identified play various roles in developmental process or basic biochemical events such as ribosome biogenesis.
Collapse
Affiliation(s)
- Cornel Popovici
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Yael Berda
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Fabien Conchonaud
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Aurélie Harbis
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Daniel Birnbaum
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Régine Roubin
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| |
Collapse
|
75
|
Wongthida P, Akkarapatumwong V, Limjindaporn T, Kittanakom S, Keskanokwong T, Eurwilaichitr L, Yenchitsomanus PT. Analysis of the interaction between human kidney anion exchanger 1 and kanadaptin using yeast two-hybrid systems. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
76
|
Yan A, Wu E, Lennarz WJ. Studies of yeast oligosaccharyl transferase subunits using the split-ubiquitin system: topological features and in vivo interactions. Proc Natl Acad Sci U S A 2005; 102:7121-6. [PMID: 15886282 PMCID: PMC1129144 DOI: 10.1073/pnas.0502669102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligosaccharyl transferase (OT) catalyzes the cotranslational N-glycosylation of nascent polypeptides in the endoplasmic reticulum in all eukaryotic systems. Due to the inherent difficulty in characterizing this membrane protein complex, the mode of enzymatic action has not been resolved. Here, we used a membrane protein two-hybrid approach, the split-ubiquitin system, to address two aspects of the enzyme complex in yeast: the topological features, as well as the in vivo interactions of all of the components. We investigated the N- and C-terminal orientation of these proteins and the presence or the absence of a cleavable signal sequence at their N termini. We found that Ost2p and Stt3p have only their N terminus located in the cytosol, whereas Ost3p and Swp1p have only their C terminus oriented in the cytosol. In the case of Ost5p and Ost6p, both their N and C termini are present in the cytosol. These findings also suggested that Ost2p, Stt3p, Ost5p, and Ost6p do not have a cleavable N-terminal signal sequence. The pairwise analysis of in vivo interactions among all of the OT subunits demonstrated that OT subunits display specific interactions with each other in a functional complex. By comparing this interaction pattern with that detected in vitro in a nonfunctional complex, we proposed that a distinct conformation rearrangement takes place when the enzyme complex changes from the nonfunctional state to the activated functional state. This finding is consistent with earlier work by others indicating that OT exhibits allosteric properties.
Collapse
Affiliation(s)
- Aixin Yan
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
77
|
Lin N, Zhao H. Are scale-free networks robust to measurement errors? BMC Bioinformatics 2005; 6:119. [PMID: 15904487 PMCID: PMC1156868 DOI: 10.1186/1471-2105-6-119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Accepted: 05/16/2005] [Indexed: 11/25/2022] Open
Abstract
Background Many complex random networks have been found to be scale-free. Existing literature on scale-free networks has rarely considered potential false positive and false negative links in the observed networks, especially in biological networks inferred from high-throughput experiments. Therefore, it is important to study the impact of these measurement errors on the topology of the observed networks. Results This article addresses the impact of erroneous links on network topological inference and explores possible error mechanisms for scale-free networks with an emphasis on Saccharomyces cerevisiae protein interaction networks. We study this issue by both theoretical derivations and simulations. We show that the ignorance of erroneous links in network analysis may lead to biased estimates of the scale parameter and recommend robust estimators in such scenarios. Possible error mechanisms of yeast protein interaction networks are explored by comparisons between real data and simulated data. Conclusion Our studies show that, in the presence of erroneous links, the connectivity distribution of scale-free networks is still scale-free for the middle range connectivities, but can be greatly distorted for low and high connecitivities. It is more appropriate to use robust estimators such as the least trimmed mean squares estimator to estimate the scale parameter γ under such circumstances. Moreover, we show by simulation studies that the scale-free property is robust to some error mechanisms but untenable to others. The simulation results also suggest that different error mechanisms may be operating in the yeast protein interaction networks produced from different data sources. In the MIPS gold standard protein interaction data, there appears to be a high rate of false negative links, and the false negative and false positive rates are more or less constant across proteins with different connectivities. However, the error mechanism of yeast two-hybrid data may be very different, where the overall false negative rate is low and the false negative rates tend to be higher for links involving proteins with more interacting partners.
Collapse
Affiliation(s)
- Nan Lin
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63143, USA
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University, New Haven, CT 06520, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
78
|
Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry. MASS SPECTROMETRY REVIEWS 2004; 23:350-367. [PMID: 15264234 DOI: 10.1002/mas.10080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein interactions are crucial to the life of a cell. The analysis of such interactions is allowing biologists to determine the function of uncharacterized proteins and the genes that encode them. The yeast two-hybrid system has become one of the most popular and powerful tools to study protein-protein interactions. With the advent of proteomics, the two-hybrid system has found a niche in interactome mapping. However, it is clear that only by combining two-hybrid data with that from complementary approaches such as mass spectrometry (MS) can the interactome be analyzed in full. This review introduces the yeast two-hybrid system to those unfamiliar with the technique, and discusses how it can be used in combination with MS to unravel the network of protein interactions that occur in a cell.
Collapse
Affiliation(s)
- Barry Causier
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
79
|
Burden JJ, Sun XM, García ABG, Soutar AK. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J Biol Chem 2004; 279:16237-45. [PMID: 14739284 DOI: 10.1074/jbc.m313689200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein (LDL) receptor plays a major role in maintaining human plasma cholesterol levels and mutations in the gene cause familial hypercholesterolemia. The LDL receptor (LDLR) pathway has been well characterized, but little is known of proteins involved in its complex intracellular sorting and trafficking. Sorting nexin 17 (SNX17) has recently been implicated in LDLR intracellular trafficking. We show here that endogenous SNX17 is highly expressed in several cell types and is localized partially in early endosomes. We found that the PX domain of SNX17 is required for its endosomal localization but does not interact directly with the LDL receptor. A novel domain containing a FERM-like domain of SNX17 is needed for its interaction with the LDL receptor. Mutations in the NPXY motif of the LDL-receptor cytoplasmic tail that disrupt internalization also disrupt its interaction with SNX17, whereas mutations elsewhere had little effect. When transiently overexpressed in Chinese hamster ovary cells, SNX17 localized to large vesicular structures and disrupted normal trafficking of the LDL receptor in a PX domain-dependent manner. These results suggest that SNX17 plays a role in the cellular trafficking of the LDL receptor through interaction with the NPVY motif in its cytoplasmic domain and interaction of the PX domain with subcellular membrane compartments.
Collapse
Affiliation(s)
- Jemima J Burden
- Lipoprotein Group, Medical Research Council Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, London W12 ONN, United Kingdom
| | | | | | | |
Collapse
|
80
|
Magdolen U, Schroeck F, Creutzburg S, Schmitt M, Magdolen V. Non-muscle α-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1). Biol Chem 2004; 385:801-8. [PMID: 15493875 DOI: 10.1515/bc.2004.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PAI-1 modulates many biological processes involving fibrinolysis, cell migration or tissue remodelling. In addition to inhibiting serine proteases (mainly tPA and uPA), PAI-1 interacts with vitronectin (Vn), fibrin or alpha(1)-acid glycoprotein, interactions which are important for PAI-1-mediated effects in inflammation, tumor invasion and metastasis. To further identify proteins interacting with PAI-1, the yeast two-hybrid strategy was employed. Screening of a human placenta cDNA library identified--in addition to the C-terminal region of cytokeratin 18 (CK18(182-430))--a large C-terminal fragment of alpha-actinin-4 (Act-4) as a binding partner for PAI-1. Two different cDNA clones encoding Act-4(287-911) and Act-4(330-911) respectively, were isolated. An Act-4(330-911)/GST-fusion protein, but not GST alone, was immunoprecipitated together with active PAI-1. In solid phase binding assays, active wild-type PAI-1 as well as the PAI-1 variant Q123K (which does not interact with multimeric Vn) was found to bind to Act-4(330-911)/GST. Latent PAI-1, latent Q123K, and the inactive PAI-1 variant Q55P did not display any binding activity. Act-4 is mainly present intracellularly and is involved in cellular motility via interaction with the actin cytoskeleton, thus probably affecting the metastatic potential of tumor cells. However, an extracellular Act-4-derived fragment (mactinin) has previously been identified, which (i) is generated by proteolytic action of uPA, (ii) displays significant chemotactic activity for monocytes, and (iii) promotes monocyte/macrophage maturation. We suggest that PAI-1, via interaction with both Act-4 and uPA, may function as a modulator of this mononuclear phagocyte response, not only in inflammation but also in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Ulla Magdolen
- Klinische Forschergruppe der Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, Ismaninger str. 22, D-81675 München, Germany
| | | | | | | | | |
Collapse
|
81
|
Yen HCS, Gordon C, Chang EC. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 2003; 112:207-17. [PMID: 12553909 DOI: 10.1016/s0092-8674(03)00043-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Yin6 is a yeast homolog of Int6, which is implicated in tumorigenesis. We show that Yin6 binds to and regulates proteasome activity. Overexpression of Yin6 strengthens proteasome function while inactivation weakens and causes the accumulation of polyubiquitinated proteins including securin/Cut2 and cyclin/Cdc13. Yin6 regulates the proteasome by preferentially interacting with Rpn5, a conserved proteasome subunit, and affecting its localization/assembly. We showed previously that Yin6 cooperates with Ras1 to mediate chromosome segregation; here, we demonstrate that Ras1 similarly regulates the proteasome via Rpn5. In yeast, human Int6 binds Rpn5 and regulates its localization. We propose that human Int6, either alone or cooperatively with Ras, influences proteasome activities via Rpn5. Inactivating Int6 can lead to accumulation of mitotic regulators affecting cell division and mitotic fidelity.
Collapse
Affiliation(s)
- Hsueh-Chi S Yen
- Department of Molecular and Cellular Biology, Breast Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|